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Abstract
Background: Vertebrate genes often appear to cluster within the background of nontranscribed
genomic DNA. Here an analysis of the physical distribution of gene structures on human
chromosome 7 was performed to confirm the presence of clustering, and to elucidate possible
underlying statistical and biological mechanisms.

Results: Clustering of genes was confirmed by virtue of a variance of the number of genes per unit
physical length that exceeded the respective mean. Further evidence for clustering came from a
power function relationship between the variance and mean that possessed an exponent of 1.51.
This power function implied that the spatial distribution of genes on chromosome 7 was scale
invariant, and that the underlying statistical distribution had a Poisson-gamma (PG) form. A PG
distribution for the spatial scattering of genes was validated by stringent comparisons of both the
predicted variance to mean power function and its cumulative distribution function to data derived
from chromosome 7.

Conclusion: The PG distribution was consistent with at least two different biological models: In
the microrearrangement model, the number of genes per unit length of chromosome represented
the contribution of a random number of smaller chromosomal segments that had originated by
random breakage and reconstruction of more primitive chromosomes. Each of these smaller
segments would have necessarily contained (on average) a gamma distributed number of genes.

In the gene cluster model, genes would be scattered randomly to begin with. Over evolutionary
timescales, tandem duplication, mutation, insertion, deletion and rearrangement could act at these
gene sites through a stochastic birth death and immigration process to yield a PG distribution.

On the basis of the gene position data alone it was not possible to identify the biological model 
which best explained the observed clustering. However, the underlying PG statistical model 
implicated neutral evolutionary mechanisms as the basis for this clustering.

Background
Over twenty years ago Susumu Ohno postulated that gene
duplication should play a major role in genomic evolu-
tion and that, consequent to eons of mutation, insertion
and deletion, any surviving genes would be scattered
throughout deserts of nontranscribed DNA [1]. Now, with

the fruition of the Human Genome Project, his postulate
could be comprehensively examined and validated [2].

The distribution of genes has more to reveal than just this
scattering. Data provided from the Chromosome 7 Anno-
tation Project [3] has revealed a highly heterogeneous
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density of genes within the physical length of human
chromosome 7, suggestive of non-random clustering. As
well, syntenic regions within the murine genome exhib-
ited parallel disparities in gene density, a finding that
would suggest at least part of this heterogeneity could
have originated through evolutionary mechanisms [3]. To
confirm whether or not clustering was evident and to
determine at what physical scale(s) the clustering might
manifest, a quantitative analysis was required. The object
here was to perform such an analysis with the intent to
identify statistical and biological mechanisms that might
explain the spatial distribution of genes.

The Human Genome Project has already provided an
analysis of the distribution of genes within conserved seg-
ments of the human genome that appeared to be consist-
ent with a random breakage model for chromosomal
rearrangements (see Figs. 47 and 48 from [4]). This anal-
ysis was based on the assumption that differences in gene
density between conserved segments could be ignored, at
least to some extent. In light of the significant differences
in gene density apparent to chromosome 7 [3], it seemed
appropriate to question this assumption. Furthermore, an
understanding of statistical rules governing the spatial dis-
tribution of genes along chromosomes should permit a
more critical analysis of the biological mechanisms that
might be responsible for these disparities.

An analysis of the distribution of gene structures along the
physical length of a chromosome will be presented here,
based upon the available data from human chromosome
7 [3]. This analysis will confirm the presence of gene clus-
tering within chromosome 7, and the clustering will be
shown to manifest over a range of measurement scales.
Based on these findings, a statistical model for the spatial
distribution of genes within chromosome 7 will be pro-
posed and tested. This statistical behaviour will be inter-
preted in the context of two different biological models,
predicated upon the evolution of either microrearrange-
ments or gene clusters.

Results
A scale invariant clustering of genes
The Chromosome 7 Annotation Project demonstrated
that the density of gene structures within the chromosome
was heterogeneous [3]. Figure 1 provides the numbers of
such structures contained within a sequence of equal-
sized non-overlapping bins that spanned the physical
length of chromosome 7. The high degree of heterogene-
ity in local gene density as demonstrated here seemed, at
least on a qualitative level, to indicate clustering.

A quantitative test for clustering was performed upon
these data. If the genes were randomly scattered through-
out the chromosome, without clustering, their dispersal

should reflect a Poisson distribution – the usual model for
such randomness. To determine whether or not this was
the case, the variance var(Z) and the mean E(Z) of the
number of genes per bin, Z, were compared. At the scale
of the 200 kb bins the variance and mean were, var(Z) =
6.6 and E(Z) = 2.3, with a variance/mean ratio of approx-
imately 2.9. The variance should have equalled the mean
with a Poisson distribution. This finding indicated that
the genes were more dispersed than could be predicted by
a random distribution, and thus there was clustering at
this scale.

To determine whether this clustering persisted at other
measurement scales, the variance and mean number of
gene structures per bin were estimated for a range of bin
sizes. Figure 2 provides these data on a log-log plot of var-
iance versus mean. The logarithmically transformed
points seemed to describe a linear relationship. Indeed
the correlation coefficient squared, estimated between the
transformed variance and mean estimates, was r2 = 0.997
thus substantiating a linear relationship. As well, the
residuals between the logarithmically transformed varia-
bles and a trial linear relationship were essentially negligi-
ble and normally distributed about zero (Fig. 2 insert). It
should be mentioned that the linear relationship tested
here against the data in Fig. 2 was obtained not from the
regression fit of the logarithmically transformed data, but
from a statistical model that was fitted to the chromosome
7 data and that will be presented later in this article.

The strong linear relationship between the logarithmically
transformed variances and means indicated that the vari-
ance and the mean were related by a power function,

var(Z) = a·E(Z)p,

where a and p were constants. If the gene structures had
been randomly distributed along chromosome 7, as per a
Poisson distribution, one would have expected an expo-
nent p = 1. Since p = 1.51, this provided further confirma-
tion of clustering, which now was evident over a range of
measurement scales.

This variance to mean power function exhibited another
property of note – scale invariance. This term, as used here,
indicates that if one takes a small segment of a pattern and
magnifies it to a larger scale, then the magnified portion
should be statistically similar to the unmagnified portion.
Specifically, if the measurement scale employed in the
variance to mean relationship is increased by a factor c
then

a·[c·E(Z)]p = (acp)·[E(Z)]p,
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and this relationship would retain the form of a power
function with exponent p. In fact, this variance to mean
power function is the only possible scale invariant rela-
tionship that could exist between the variance and the
mean [5]. As will be seen below the variance to mean
power function implicated a specific probabilistic model
to represent the distribution of gene structures along chro-
mosome 7. Before we can discuss this model, it would be
useful to consider a somewhat more conventional model,
for the distribution of the number of genes within chro-
mosomal segments.

An overdispersed Poisson distribution for conserved 
segments
Earlier in this article the distribution of genes within con-
served segments was alluded to in the context of observa-
tions provided by the Human Genome Project [4].
Conserved segments are conventionally identified on the
basis of the relative order of contiguous landmarks
between the chromosomes of two different species. If one
were to define the enumerative bins employed here on the
basis of the limits of individual conserved segments, one
might expect genes to be randomly distributed within

these bins, in accordance with a Poisson distribution [6].
One might also expect some heterogeneity between differ-
ent conserved segments, such that the mean number of
genes per conserved segment would depend upon both
the physical length of the segment and upon the local
gene density. The distribution of the mean number of
genes per conserved segment has been conventionally
represented by a gamma distribution, giving an overdis-
persed Poisson distribution (i.e., a negative binomial dis-
tribution) for the actual number of genes per conserved
segment [6].

How would a negative binomial distribution affect the
variance to mean relationship as plotted in Fig. 2? With
some simple calculation we have,

where ξ is a constant. In Fig. 2 the optimised least squares
fit of this additional variance to mean relationship was
plotted as a broken line (with ξ = 3.12). Larger deviations

Gene density along human chromosome 7Figure 1
Gene density along human chromosome 7. The numbers of gene structures enumerated within a sequence of nonover-
lapping 200 kb bins that spanned the physical length of chromosome 7 are plotted here. The density of genes appeared quite 
heterogeneous along the length of the chromosome.
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were seen between this relationship and the data, relative
to those seen with the variance to mean power function.

This discrepancy between the negative binomial model
and the variance to mean data was probably to be
expected. In the analysis presented here, the estimates for
the variance and the mean had been calculated from bins
of uniform size rather than from individual conserved seg-
ments, as the negative binomial model would properly
have required. These uniformly sized bins would presum-
ably have contained variable numbers of conserved seg-
ments and, since the convolution of a random number of
negative binomial distributions would not result in a neg-
ative binomial distribution, a negative binomial model
would have been inappropriate. In the next section, a
modification of this model will be presented that will
account for a variable number of conserved segments per
bin.

A scale invariant Poisson-gamma model for the number of 
gene structures per bin
One view of chromosomal structure represents chromo-
somes as mosaics formed from the random fragmentation
and rearrangement of more primitive chromosomes [1,7].
Possibly then, the number of genes within unit segments
of vertebrate chromosomes might reflect this segmental
structure. A modified model for gene distribution might
thus have to account for the contribution of multiple
genomic segments that would individually exhibit statis-
tical behaviour related to the conventional gamma model
for the mean number of genes.

In the initial specification of such a statistical model one
might stipulate that the model be made as general as pos-
sible. The generalized linear models of Nelder and Wed-
derburn [8] provide a simple method to analyse a large
variety of data, and these models can be further general-
ized into an even wider class of models called exponential
dispersion models [5]. These latter models provide
descriptions for a comprehensive range of normal and
non-normal distributions that include the Poisson,
gamma and Gaussian distributions. The reader is encour-
aged to refer to an excellent introduction to these models
in the monograph provided by Jørgensen [5].

If one accepts the premise that some form of exponential
dispersion model might describe the distribution of the
number of genes per bin then, consequent to the finding
of the variance to mean power function, one would be
lead to a statistical model that uniquely exhibits such a
power function, where its exponent p is constrained to
range between the values of 1 and 2. This particular model
is described by a scale invariant Poisson-gamma (PG) dis-
tribution for which its additive form has the cumulant
generating function K* (s) [5],

Here s is a variable used to base the generating function
upon, λ is the index parameter, θ is the canonical param-
eter, α is a parameter related to the power function expo-
nent such that

and the cumulant function κ (θ) is given by,

The variance to mean power function,

Variance to mean power functionFigure 2
Variance to mean power function. Shown here is a log-
log plot of the variance versus the mean number of gene 
structures per bin, as calculated for a range of bin sizes over 
chromosome 7. The transformed data points described a 
straight line on the log-log plot, which implied a power func-
tion relationship between the variance and the mean. The 
solid line represents the theoretical linear relationship deter-
mined from the fit of the PG model. A linear model fitted 
very well to these transformed data as evident from the high 
value for the correlation coefficient squared r2, and the nor-
mal probability plot of the residuals (insert) derived from the 
differences between the theoretical straight line and the 
transformed data points. The broken line represents the best 
fit of a second model, intended for the distribution of genes 
within conserved segments that was based upon the negative 
binomial distribution. It did not fit the data as well as did the 
variance to mean power function.
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var(Z) = λ1/(α-1)·E(Z)p,

follows as a consequence of this cumulant generating
function.

There have been many alternative explanations for the
variance to mean power function, some that represented
approximations and others exact models [reviewed in
[9]]. What would favour the choice of an exponential dis-
persion model over any of these alternatives? Much of the
justification goes back to the theory of errors as developed
by Gauss and others [5]. The Gaussian distribution, which
has been widely applied to describe measurement error,
provides a familiar description for errors of small magni-
tude. However, there exist processes with larger non-Gaus-
sian errors which require a more generalized theory, such
as the fluctuations apparent to the chromosome 7 data.
Nelder and Wedderburn [8], with their generalized linear
models, provided a simple means to analyze a large range
of non-Gaussian data; exponential dispersion models rep-
resent an extension to their theory.

The utility of the exponential dispersion models becomes
most apparent when one considers a class of these models
characterized by the variance to mean power function.
These Tweedie models, named after M.C.K. Tweedie who
first studied them [10], serve as limiting distributions for
a wider range of exponential dispersion models [5]. Much
as the Gaussian model serves as a limiting distribution for
a range of statistical processes, the Tweedie models, which
include the Gaussian distribution as a special case, repre-
sent limiting distributions for a range of non-Gaussian
processes. True, one may employ one of the alternative
models to account for the variance to mean power func-
tion, but the burden would be then to develop a theory for
the specific case which nonetheless would lack the gener-
ality offered by the exponential dispersion models. More-
over, such an alternative model, as indicated by the
Tweedie convergence theorem, might be approximated by
a Tweedie model. For these reasons the more general
approach, allowed by the theory of exponential disper-
sion models, seems appropriate.

Granted these considerations in favour of exponential dis-
persion models, let us consider the PG distribution in
more detail. It is difficult to describe the probability den-
sity function and its corresponding cumulative distribu-
tion function (CDF) for this distribution, since these
expressions do not exist in closed form [5]. The probabil-
ity density function p*(z; θ,λ,α) can be expressed in terms
of the canonical statistic z such that,

p*(z; θ, λ, α) = c*(z; λ)·exp[θ·z - λκ(θ)].

where

The CDF P*(z; θ,λ,α) can then be expressed:

How well does the PG distribution fit the observed data?
Figure 3 provides the empirical CDF, as obtained from a
bin size of 200 kb and fitted to the theoretical PG CDF
(Eq. 1). The fit was very good, with at most a 1.4% devia-
tion between theory and observation. An analysis of the
residuals (Fig. 3 insert) revealed that they were essentially
negligible and normally distributed about zero. A Kol-
mogorov Smirnov test additionally confirmed an accepta-
ble fit of the theoretical PG model to the empirical CDF.

Three parameters were derived from the regression of the
PG CDF (Eq. 1) to the empirical CDF: α = -0.952, λ =
0.245 and θ = -0.691. These were the parameters
employed to provide the theoretical variance to mean
power function given in Fig. 2, with p = (α - 2)/(α - 1) =
1.51 and a = λ1/(α-1) = 2.06, and for which the agreement
with the chromosome 7 data was also very good (χ2 =
0.231, d.f. = 200, P = 1). Thus two different tests of the PG
distribution were provided here to confirm its agreement
with the chromosome 7 data: the fit of the CDF and the fit
of the variance to mean power function to the chromo-
some 7 data.

Discussion
The microrearrangement model
The PG distribution provides a statistical model that accu-
rately describes the spatial distribution of genes within
chromosome 7. A hypothesis was alluded to in the last
section whereby the number of genes per bin could be
represented as the summed contribution from a random
(Poisson distributed) number of chromosomal segments,
each with identical and independent gamma-distributed
numbers of genes. However, the agreement of the statisti-
cal model with the data does not necessarily imply that
the hypothesis used to interpret this model is correct. This
hypothesis therefore deserves further scrutiny.

Modern chromosomes are thought to represent mosaics
of genomic segments laid in sequence and drawn from
more ancient chromosomes [1,7]. One might then expect
a random number of such segments to be joined together
within each of the equal-sized enumerative bins. These
segments presumably would represent changes that
mostly predated those rearrangements defined by the
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conserved synteny between related individual species, and
so they will be distinguished here by the term, primitive
segments. The number of genes per primitive segment
would be distributed, on average, in accordance to a
gamma distribution, as stipulated in the conventional
model [6]. Their summed contributions would further-
more be required to obey a PG distribution.

Let us look more closely at this model: Because individual
genes may have sizeable lengths, they might straddle the
arbitrary boundaries of the enumerative bins. In order to
deal with this possibility, the genes were enumerated on
the basis of the positions of their p-termini. One could
have defined the gene positions by their q-termini or by
their transcriptional start positions. Indeed the variance to
mean power function was evident with both of these alter-
native definitions (data not provided).

Likewise, the packing of the primitive segments within the
enumerative bins should be considered. These segments
conceivably could also straddle the boundaries of the
bins. The PG model, by virtue of its constituent gamma
distribution, represents some degree of averaging and it
should be sufficiently robust to account for minor
discrepancies.

One further consideration regarding the packing of prim-
itive segments remains. If we assume a random breakage
model for chromosomal rearrangements, then the break-
points on the ancestral chromosome would be distributed
according to a Poisson process, and the lengths of the
resultant segments would be exponentially distributed
[7]. With rearrangement there would presumably be a
random redistribution of the breakpoint positions, but
these new points should be also distributed according to
a Poisson distribution. Over evolutionary time periods
additional rearrangements would be expected to accumu-
late. The eventual distribution of rearranged breakpoints
would also be expected to obey a Poisson distribution,
and the segment lengths would be exponentially distrib-
uted. The point here is that the assumption of a Poisson
distributed number of primitive segments per enumera-
tive bin is largely predicated upon a random breakage
model for chromosomal rearrangement. If for some rea-
son the lengths of the primitive segments were not expo-
nentially distributed, then these segments would not
readily pack together within the enumerative bins in
accordance with a Poisson distribution. To some extent
this requirement for random breakage could be relaxed,
given averaging and the possibility that added indels
might permit such a random packing of primitive seg-
ments within the bins.

We thus have a model which provides the local distribu-
tion of genes at scales larger than that of the primitive seg-
ments. This model is applicable to a range of bin sizes,
and thus it is inherently scale invariant. The variance to
mean power function seen in Fig. 2 would be a direct con-
sequence of this model.

The parameters obtained from the regression fit of the PG
CDF could be used to estimate the mean number of prim-
itive segments per bin in chromosome 7, using the expres-
sion λ·κ (θ) = 1.35. Since 790 sequential bins, each 200
kb in length, spanned the 158 Mb of chromosome 7 this
would imply that the total number of primitive segments
within chromosome 7 would be approximately 1.1 × 103.

Pevzner and Tesler estimated that the human and mouse
genomes share 281 synteny blocks of at least 1 Mb length
[11]. They noted 3170 additional microrearrangements
within these synteny blocks, although they conceded that
many of these microrearrangements could have repre-
sented artefact. In a separate analysis Kumar et al. have
estimated that there exist 529 conserved segments
between the human and mouse genomes [6]. The rela-
tively larger estimate for the number of primitive seg-
ments obtained here might be interpreted to indicate that
either these putative primitive segments had their origin
long before the divergence in evolution between humans
and mice, or that many of smaller rearrangements

Cumulative distribution functionFigure 3
Cumulative distribution function. The empirical CDF, 
derived from the numbers of genes per 200 kb bins within 
chromosome 7, was plotted here as data points. The corre-
sponding solid curve represents the least squares fit of the 
PG model to these data. The PG model fitted very well to 
these data as evident from the low value for the Kolmogorov 
Smirnov Dmax, and the normal probability plot of the residu-
als (insert).
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presumed by Pevzner and Tesler to be artefacts [11] were
indeed real.

The parameters obtained from the fit of the PG distribu-
tion allowed some additional predictions regarding these
primitive segments. According to the model, one would
expect a Poisson distributed number of segments to be
contained within each bin. If the primitive segments were
distributed randomly within the bins, the distances
between the p-termini of the primitive segments would be
separated according to an exponential distribution. The
CDF for this exponential distribution would be,

Pexp(x) = 1 - exp[λ·κ(θ)·x/∆x], x ≥ 0,

where x is the distance between the segments and ∆x is the
bin size. Figure 4 provides the predicted CDF for the phys-
ical spacing between the p termini of the primitive seg-
ments. Here we see that about half of the p termini were
spaced at least 100 kb apart. If one assumed that there was
no intervening DNA between the boundaries of the prim-
itive segments, then these distances predicted would cor-
respond to the lengths of the segments, and average
segment length would be about 200/λ·κ (θ) = 150 kb.

As well, the numbers of gene structures per primitive seg-
ment would, on discrete analysis, approximate a negative
binomial distribution with the probability density,

Somewhat over 40% of segments would thus be predicted
to contain no evident gene structures, and about 25%
would contain only one gene (Fig 4, insert).

Two concerns regarding the microrearrangement hypoth-
esis can be raised: If we were to assume that microrear-
rangements occurred at a similar frequency over the entire
3,200 Mb [4] of the human genome then we could predict
a total of 2.2 × 104 such rearrangements. If the ancestral
sequences had their origins with the first demonstrable
microorganisms (about 3.6 × 109 yr ago [12]), and assum-
ing that each rearrangement produced 2 primitive seg-
ments [6], this would imply about 3 rearrangements/Myr.
This rate is higher than the 1.5 rearrangements/Myr esti-
mated between the divergence of the murine and human
genomes [11]. Whether this discrepancy could be
explained by microrearrangements that had otherwise
been dismissed as artefact [11], or by higher rates for rear-
rangement along other regions of the phylogenetic tree, is
presently unclear.

The second concern is similarly difficult to dismiss. There
is some evidence that intron and protein lengths are cor-
related with intergeneic distances [13]. If chromosomal
rearrangements were to occur within the genome on aver-
age at about every 150 kb, as predicted from the
microrearrangement hypothesis, then this relationship
should not be apparent. In view of these concerns one
may ask whether the agreement between the PG distribu-
tion and the chromosome 7 data could be explained by
another biological model. This possibility will be consid-
ered in the next section.

The gene cluster model
The PG distribution might be attributed to mechanisms
involved with the evolution of gene clusters. Under this

Predicted spacing of the segments within chromosome 7Figure 4
Predicted spacing of the segments within chromo-
some 7. A CDF for the physical distances between the p-
termini of the primitive segments of the microrearrangement 
model is presented here, on the basis of the assumption of an 
underlying exponential distribution, and the parameters 
derived from the best fit of the PG CDF to the chromosome 
7 data. Granted these assumptions, about 50% of the primi-
tive segments should be separated by distances of 100 kb size 
or less. If the amounts of intervening DNA between adjacent 
primitive segments could be considered negligible, then this 
plot would correspond to the size distribution of the primi-
tive segments. Alternatively, under the gene cluster model, 
this CDF would correspond to the physical distances 
between gene cluster sites. Insert: Frequency Histogram for 
the Number of Genes per Primitive Segment. The parame-
ters provided from the PG model were used to estimate the 
frequency distribution of genes within the primitive segments 
of the microrearrangement model. More than 40% of the 
primitive segments would be expected to contain no recog-
nizable gene structure, and somewhat more than 20% of seg-
ments would contain only one gene. Under the alternative 
gene cluster model, this histogram would represent the fre-
quencies of the number of genes per cluster.
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hypothesis each enumerative bin would contain a Poisson
distributed number of gene cluster sites, and the number
of genes per site would (on average) be distributed accord-
ing to a gamma distribution.

The cluster sites would presumably represent the posi-
tions of ancestral genes that originally had been scattered
randomly within the ancestral genome. Over evolutionary
time periods the combined action of tandem duplication,
mutation, large rearrangements, and indels might give rise
to gene clusters. These events might be described by a sto-
chastic birth death and immigration (BDI) process [l4].
Under this assumption, both tandem duplication and
gene loss would necessarily occur at rates proportional to
the number of genes within each cluster, and the intro-
duction of new genes to the clusters through major rear-
rangements, would occur at a constant rate per unit time.
The equilibrium distribution for such a BDI process
would approximate a negative binomial form, for which
the continuous equivalent is a gamma distribution.

A BDI process has a number of parameters. Let ν, β, and µ
represent the birth, immigration and death rates, respec-
tively. A finite equilibrium size for the gene clusters would
require that ν < µ; otherwise with ν > µ the cluster size
would eventually become infinite. At equilibrium, the
mean cluster size would be β / (µ - ν), and the PG param-
eters α and θ would relate to the BDI rates by the equa-
tions, α = -β/ν and θ = (ν - µ)/ν.

The average physical distance between cluster sites would
be 200/λ·κ (θ) = 150 kb; Fig 4 would now give the CDF
for the physical spacing between these sites. The insert
within Fig. 4 would describe the frequency distribution
for the cluster sizes at equilibrium: over 40% of the cluster
sites would contain no residual gene, about 25% would
contain only one gene, and the mean cluster size would be
1.4 genes. These estimates would indicate that the primary
mechanism responsible for the apparent clustering of
genes would be the loss of genes. The sites where ancestral
genes had been obliterated would appear as expanses of
noncoding DNA between the remaining genes and gene
clusters, as Ohno had originally postulated [1].

What could be the main genetic mechanisms operative in
the BDI model? Gene duplication and rearrangements
(that introduce new genes into cluster sites) would be nec-
essary for equilibrium to evolve. Some insight into a
major mechanism responsible for gene loss comes from a
comparative analysis of the human and murine genomes
where about 60% of the human genome could not be
aligned to its murine analogues [16]. There is good evi-
dence that these genomic differences can be mainly attrib-
uted to indels [17], and that indels can be used to
distinguish between different branches of the

phylogenetic tree [18]. Indels thus could represent a sig-
nificant contributor to gene density variation, through the
degradation of redundant genes and the consequent crea-
tion of noncoding DNA. Since the disparities in gene den-
sity seen within the human genome seemed to correlate
with those in the murine genome [3], this would indicate
that most of this putative gene loss would have occurred
much earlier in the phylogenetic tree.

In the gene cluster model, the expanses of noncoding
DNA between gene clusters would be explained mainly
on the basis of the degradation of redundant genes, rather
than the generation of noncoding DNA through de nou-
veau insertions. As indicated above, indels could have a
significant contribution to gene degradation. With the
microrearrangement model, however, indels would repre-
sent epiphenomena without a major role in the modula-
tion of gene density. The finding of extensive
misalignments between the human and murine genomes,
localized predominantly to noncoding regions [16],
would indicate that indels occur with such a frequency
that their potential influence should not be ignored. For
this reason the gene cluster model seems more consistent
with current knowledge.

Conclusions
The PG distribution provided an accurate description for
the clustering of genes on human chromosome 7. It thus
seemed appropriate to search for a biological mechanism
based upon a scale invariant sum of a random (Poisson
distributed) number of gamma distributions. Since the
negative binomial distribution can be regarded as the dis-
crete equivalent to the gamma distribution, a number of
alternative statistical models could be constructed to
explain the PG distribution [19].

It is conceivable that some other biological mechanism
may eventually provide a more appropriate explanation
for the observed clustering of genes. Indeed, one might
postulate that insertions and deletions should affect the
spacing of genes though their cumulative action within
the intergene spacer region, rather than the degradation of
redundant genes. This hypothesis is appealing, since pre-
sumably the intergene spacers should present a larger
target for insertions and deletions and these events should
be neutral, whereas events within gene structures would
likely be selected against. How such a mechanism might
account for to a Poisson-gamma distribution remains
unclear, and for this reason this mechanism was not mod-
elled here.

Regardless of the underlying biological mechanisms, the
variance to mean power function that was evident to the
physical distribution of genes on chromosome 7 implied
an inherent scale invariance. The possible cause of this
Page 8 of 10
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scale invariance is worthy of consideration. Exponential
dispersion models include a subclass of models character-
ized by this variance to mean power function, and which
represents limiting forms for a broad range of statistical
models [5]. The Tweedie convergence theorem,
mentioned in the context of this limiting behaviour
above, could be viewed as a kind of generalized Central
Limit Theorem. Instead of error distributions being
required to converging to a Gaussian form, they could be
required to converge towards a Tweedie model, of which
the Gaussian distribution is a special case. The scale invar-
iance inherent to these models could be related to this
behaviour and, in turn, could reflect the collective action
of multiple complex processes.

Some of these processes might represent the gene duplica-
tion, mutation, deletion and chromosomal rearrange-
ments that presumably have accompanied evolution.
Ohno recognized that these processes, given the opportu-
nity to manifest themselves over evolutionary timescales,
could result in inhomogeneity in the physical distribution
of genes, and in the presence of noncoding DNA [1]. Yet
even with the understanding brought about by the
Human Genome Project the question still arises: "Why are
there clustered regions of high and low gene density, and
are these accidents of history or driven by selection and
evolution [2]?" When we observe the extent of clustering
of genes on human chromosome 7 we might be tempted
to interpret this clustering as evidence for some non-ran-
dom force, such as selection. However, if one accepts the
PG model, the clustering of genes on chromosome 7
could be attributable largely to the compound structure of
the PG distribution. This compounding, of the Poisson
and gamma distributions, would indicate the combined
action of two random processes, and thus the resultant
clustering of genes could be explained by predominantly
neutral mechanisms.

There exists good evidence that the local density of genes
correlates with the GC content of chromosomes [4], and
that housekeeping expressed genes tend to group in clus-
ters associated with high GC content [20,21]. These find-
ings would indicate a non-random structure within the
genome which seems difficult to reconcile with an appar-
ent clustering of all classes of genes attributable to neutral
processes. If genomic changes such as local duplications,
insertions and deletions were dependent upon GC con-
tent for mechanistic reasons, then possibly these findings
could be reconciled with the PG model presented here.

In summary, the physical distribution of gene structures
within chromosome 7 was characterized by clustering. A
variance to mean power function inherent to this cluster-
ing implicated a scale invariant PG distribution to
describe the spatial distribution of genes within the

chromosome. Data from the physical positions of genes
on chromosome 7 provided stringent confirmation of the
PG distribution in this regard. This statistical model repre-
sented the sum of a random (Poisson distributed)
number of independent and identically distributed
gamma distributions. The biological mechanisms to
explain this statistical model remain subject to conjecture.
Two hypothetical mechanisms were presented here: the
microrearrangement model and the gene cluster model.
Of these two hypotheses, the gene cluster model seemed
to most faithfully represent Ohno's postulate that the
major mechanisms behind genomic evolution are gene
duplication, modulated by mutation, insertion and dele-
tion [1].

Methods
Data collection
As part of the Chromosome 7 Annotation Project, full
documentation has been provided for an assembly of
157,953,789 DNA nucleotides that comprehensively
spans human chromosome 7 [3]. Of these data about
85% was derived from Celera whole-genome scaffolds,
the remaining 15% came from clone-based sequences
provided by the International Human Genome Sequenc-
ing Consortium. This assembly was made available at the
public website, http://www.chr7.org/. The data used from
this site came from columns 2, 3 and 4 of the table enti-
tled "TCAG Annotated Genes on Chromosome 7". Col-
umn 2 identified the gene structures. In the present study
all transcriptional variants and all gene/pseudogene seg-
ments from the T cell receptor loci (TRBV and TRGV) were
excluded, leaving 1811 gene structures for analysis. Col-
umn 3 provided two numbers delineating the physical
positions of the transcripts, and Column 4 identified the
DNA strand (+/-) on which the transcripts resided. If a
gene was located on the reverse (-) strand, then the first
number in Column 3 represented the end of the gene, and
vice versa. The analyses performed here used the start posi-
tions of these gene structures as the localization points for
gene position.

Analytical methods
The length of chromosome 7 was subdivided into a
sequence of non-overlapping and equal-sized bins, and
the gene structures within each bin were enumerated.
Since the enumerative bins were rigidly defined and
spaced, whereas the gene structures potentially might
span more than one bin, the position of each gene was
defined according to the position of its p-terminus. The
relationship between the variance and the mean number
of gene structures per bin was thus examined over a range
of bin sizes, from 20 to 4000 kb. The correlation coeffi-
cient squared r2 was used to assess the linear correlation
between the logarithmically transformed variances and
means.
Page 9 of 10
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The fit of the variance to mean power function to these
data was found to be reasonably robust, whether the posi-
tions of gene structures was defined by the p-termini, q-
termini or the transcriptional start positions of the genes.
For reasons of simplicity the analysis presented here was
confined to gene position defined by the p-termini.

A probabilistic model was proposed for the spatial distri-
bution of genes structures along the physical length of
chromosome 7, based upon the PG distribution. The the-
oretical CDF from this model was fitted to the empirical
CDF at the scale of 200 kb bins, by the minimization of
the sum of the squared residuals. Because there were three
adjustable parameters associated with the model, the
Kolmogorov Smirnov test was applied to the composite
hypothesis. The critical values for the Kolmogorov Smir-
nov distribution were therefore estimated by Monte Carlo
simulation.

Goodness of fit for the transformed variance to mean rela-
tionship and the model CDF were further assessed by
analyses of residuals. Normal probability plots of the
residuals were constructed such that the data points
would describe a linear relationship if they were normally
distributed.
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