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Abstract

Background: While the pathogenesis and epidemiology of tuberculosis are well studied, relatively
little is known about the evolution of the infectious agent Mycobacterium tuberculosis, especially at
the within-host level. The insertion sequence IS6 1 10 is a genetic marker that is widely used to track
the transmission of tuberculosis between individuals. This and other markers may also facilitate our
understanding of the disease within patients.

Results: This article presents three lines of evidence supporting the action of positive selection on
M. tuberculosis within patients. The arguments are based on a comparison between empirical
findings from molecular epidemiology, and population genetic models of evolution. Under the
hypothesis of neutrality of genotypes, |) the mutation rate of the marker IS6/ 10 is unusually high,
2) the time it takes for substitutions to occur within patients is too short, and 3) the amount of
polymorphism within patients is too low.

Conclusions: Empirical observations are explained by the action of positive selection during
infection, or alternatively by very low effective population sizes. | discuss the possible roles of
antibiotic treatment, the host immune system and extrapulmonary dissemination in creating
opportunities for positive selection.

Background to the relative involvement of Thl and Th2 immune cells,

How actively do populations of Mycobacterium tuberculosis
cells undergo adaptive evolution on the spatial and tem-
poral scales of individual infections? On the one hand,
the long generation time and limited sequence diversity of
this organism might suggest a slow pace of adaptive evo-
lution. On the other hand, the rapidity and ease with
which antibiotic resistance is generated during infection
suggests otherwise. The physiology and immunology of
tuberculosis pathogenesis have been well studied. The
infectious agent M. tuberculosis is known to invade and
replicate within alveolar macrophages. There is a spec-
trum of responses by the immune system, corresponding

which respectively stimulate the cytotoxic response (more
effective against infected cells), and the humoral/anti-
body response (more effective against extracellular patho-
gens) [1,2]. Some progress has been made in describing
the population dynamics of mycobacterial infection
quantitatively [3-5]. At the wider spatial and temporal
scales of populations, the molecular epidemiology and
the evolution of M. tuberculosis have been carefully stud-
ied. Genotypic data are rapidly accumulating in the
molecular epidemiology of infectious diseases. These are
usually compiled and summarised to make inferences
about the state of an epidemic in a given geographic
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location, or at the global level. For example, epidemiolo-
gists seek to identify risk factors for infection, and to locate
particular strains that are especially transmissible or path-
ogenic [6-8]. The evolutionary history of M. tuberculosis
has also been characterised. For example, it has been
argued that the limited variation at the nucleotide is due
to a recent population bottleneck [9], and that the com-
mon ancestor of Mycobacterium bovis and M. tuberculosis
may well have been a human rather than bovine pathogen
[10].

Less understood is the evolution of M. tuberculosis at the
cellular level inside bodies. There has been little integra-
tion of the genetic information from markers with the
population genetics of the bacterial population within
hosts. In this article, I examine data collected for the pur-
poses of molecular epidemiology to present three lines of
evidence supporting the action of positive selection on M.
tuberculosis. The data come from the marker IS6110, which
is currently the standard method of typing tuberculosis
isolates. These genotypic data will be considered under
assumptions of neutrality, and then under the assumption
that positive selection is acting. The case for the action of
selection is based on the following three arguments.

e Under the assumption of neutrality, the observed muta-
tion (or transposition) rate of the genetic marker 1S6110
is unusually high; the estimated mutation rate is lower if
selection is acting.

e The observed times associated with change are too low
to be explained by neutrality; positive selection lowers the
expected substitution time.

¢ The observed level of polymorphism is too low to be
explained by neutrality.

Results: Models and observations

In each of the following sections a comparison is made
between the strictly neutral model and a generalised
model including selection through a single parameter s
(described in the Appendix). Although the analyses start
with strict neutrality (s = 0) in each argument, alleles for
which s < 1/N, where N is the effective population size,
can be considered nearly neutral, in that the effects of drift
outweigh the force of selection [11]. In each case, explain-
ing observations in this range of selective coefficients
requires very low effective population sizes.

Transposition rates of IS6110

When genetic mutations are selectively neutral, the substi-
tution rate is equal to the mutation rate [11]. In the
present case, the within-host substitution process is of
interest. Rosenberg et al. [12] determined the within-host
substitution rate of the IS6110 marker to be around
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0.00184 to 0.0390 events per copy per year, with the max-
imum likelihood estimate at 0.0287. Under neutrality,
therefore, this rate corresponds to a per insertion mutation
rate of y;~ 7.9 x 105 events per site per generation, assum-
ing a generation time of 1 day in active infections. This fig-
ure comes from a measured doubling time of close to 24
hours, based on clinical isolates grown in human mono-
cyte cultures and in culture media [13-15]. Rates of point
mutation (events per nucleotide per generation) are usually
in the vicinity of 10-%. In mutator strains, that is, genomes
in which the DNA repair machinery is damaged, leading
to elevated mutation rates, the mutation rate rises orders
of magnitude, up to ~10-7 - 10-°[16]. The mutation rate of
[S6110 under neutrality therefore seems suspiciously
high, although this is only "circumstantial evidence",
since it is not inherently problematic. Indeed, mutation
rates as high as 104 per element per generation have been
measured for I1S10 in vitro [17]. Nevertheless, if positive
selection is allowed the estimated mutation rate decreases.
Leaving aside the complicating influence of clonal inter-
ference [18], the rate of substitution is

K=uN g (1)

where u is the probability of fixation of a mutant, ; is the

mutation rate and N is the population size [11]. An esti-
mate of the mutation rate when mutants have advantage s

is fI; = K/(uN). The diffusion model of drift provides an
expression for u as a function of the population size N and

selective coefficient s (see the Appendix). Figure 1 plots 4;
over s for a few different values of N. In each curve the esti-
mated mutation rate decreases as the selective coefficient
rises. According to this analysis, lower mutation rates are
possible when there is some selection and a large popula-
tion size, or when selection is strong and the population
size is small. Note that the estimated mutation rate
remains high if mutations are nearly neutral.

Fixation times

Various studies have measured the stability of IS6110 as a
genetic marker by examining genotypes of serial isolates
from patients with persistent infection. A small number of
changes in the genotypes between serial isolates indicates
a stable marker. Differences in genotypes due to exogene-
ous reinfection by unrelated strains are excluded from
consideration. In the data of Niemann et al. [19] and
Rosenberg et al. [12], the median time interval associated
with changes in IS6110 genotypes from serial samples of
M. tuberculosis is 212 days, and the maximum is 683 days.
Because the second sample is taken some time after fixa-
tion of the mutant, the actual substitution times are
unknown, but they were clearly all under 683 days. I will
now show that the expected substitution times under
strict neutrality are well in excess of this value.
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Estimate of mutation rate when positive selection is
acting. The estimate U; is plotted on a logarithmic scale in
base 10. Solid curve: N = 10; Dashed; N = 1000; Dotted: N =
105.

Let us start with the assumption that the expected time for
substitution to occur is the average time taken for the suc-
cessful mutant to appear plus the time taken for that
mutant to reach fixation conditional on its eventual fixa-
tion. (I will later drop the assumption about waiting for
the mutant to appear). The average appearance time is 1/
(4Nu) = 1/ since u = 1/N under strict neutrality. The aver-
age time for a successful neutral mutant to reach fixation
is 4N generations. The mutation rate of interest in this
context is the rate per genome per generation, since what is
of concern is whether any of the elements in a given
genome produce change. For simplicity, assume that the
genomic mutation rate scales linearly with copy number.
(At the resolution of this analysis, this is a reasonable
approximation.) Considering a typical strain has 10 cop-
ies of the IS element, the relevant mutation rate here is u
=4 x 10 = 7.9 x 104 Therefore, for N = 10, 103, 103, the
expected substitution times are roughly 1300, 5300, 4 x
10> generations, respectively. With the generation time set
to one day, the upper bound of observed substitution
times was 683 generations, which is well below theoreti-
cal expectations.

Now consider the possibility of positive selection under
two alternative conservative assumptions. The earlier
assumption that there are no successful mutants at the
time of the first sample is favourable to the parental strain.
A more conservative approach (favouring mutants) would
be to say that the mutant destined to reach fixation
appears exactly at the time of the first sample. We can then
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ask how long it takes on average for this mutant to reach
fixation if it is positively selected. An even more conserva-
tive model would be that not only is the successor strain
present at the time of the first sample, but is present at a
frequency of 30%. Furthermore, let us say the subdomi-
nant strain only needs to be at 70% at the time of the sec-
ond sample to be considered to have replaced the parental
strain.

A model of the sojourn times of alleles in populations
conditional on fixation must now be specified. Again
using the diffusion model of drift (see Appendix), the
mean time spent by a mutant in the range of frequencies
(a, b) (provided a is greater than the initial frequency),
conditional on fixation, was found by Ewens [20] and by
Maruyama [21] to be

b (1 _ 6_4[\] SX)(l _ e—4Ns(1—x))

T(a,b) = | )

@ x(1-x)(1-e )

Figure 2 shows the two conservative models, correspond-
ing to two different boundary values for (g, b). Even in the
extremely conservative model shown in the right-hand
plot, the effective population size must be below 400 in
order to explain the observed substitution times under
strict neutrality. The data are difficult to account for even
in terms of nearly neutral mutations (s < 1/N) and an
effective population size of N = 1000. The alternative
explanation is that the effective population size is larger,
but positive selection is acting to make changes sweep
through the population faster.

Polymorphism

Many analyses of pathogen genotypes assume isolated
strains to be clonal, that is, to be monomorphic. This
assumption has been scrutinised by De Boer et al. [22],
who showed that, in fact, a large proportion (93%) of M.
tuberculosis isolates are monomorphic using IS6110 as the
marker. They also show that the limits of detection of a
second strain are around frequencies of 0.1 to 0.3. More
sensitive instruments and refined genotyping procedures
are likely to reveal greater polymorphism. The current
information can be used, however, to study the popula-
tion of the organism in hosts by using ranges of detectable
polymorphism. In this section, two ranges will be consid-
ered in examining predictions from models: first, 0.1 to
0.9, and second, 0.3 to 0.7.

The polymorphism argument rests on the assumption
that the isolates reported in [22] can be viewed as a ran-
dom sample from a set of populations in mutation-drift
equilibrium. It should be noted that because the isolate
represents a sample of cells from the patient, it presuma-
bly does not always reflect the diversity of cells in the
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Mean sojourn times as functions of selective coefficient s, for different values of N. Left: froma=I/Ntob=1- 1/
N; Right: froma =0.3 to b = 0.7.
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This quantity can be alternatively interpreted as the pro-
portion of populations observed to be polymorphic
according to the detection limits set by (a, b).

First consider the neutral case. When there is no selection
(s = 0), the distribution described by f(x) is a Beta distri-
bution. Figure 3 shows the probability of an isolate being
scored as a polymorphic population, using two alternative
detectable polymorphism ranges (a, b) = (0.1, 0.9) and
(0.3,0.7), and a mutation rate of y£= 7.9 x 104 per cell per
generation.

Next, consider the model that includes selection. For the
two detectable polymorphism ranges, Figure 4 shows how
selective coefficient s and effective population size N are
related to the probability of observing polymorphism. As
s increases, the predicted polymorphism decreases dra-

Probability of detecting polymorphism in the
absence of selection, as a function of N. Two different
ranges of detectable polymorphism were used. Dashed
curve: (0.1, 0.9); dotted: (0.3, 0.7). We use 1 =7.9 x |04
The horizontal bar indicates the observed fraction of poly-
morphic populations (0.074) from de Boer et al. [22].

matically, particularly for large N. Again, an explanation
of the observed level of polymorphism is only possibly by
setting N to be extremely low.

Discussion

The three lines of evidence presented in this article suggest
positive selection on M. tuberculosis within hosts. There
are, however, limitations to these analyses. In the first
argument there is no inherent problem with finding trans-
position rates that are high. In the second argument, it is
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\ N=100,000

Probability of polymorphism

Probability of polymorphism as a function of s. Left: the detection threshold is set at 0.3; Right: the detection threshold

is set at 0.1. The mutation rate is set to ¢ = 7.9 x 104

possible to lower the effective population size far enough
to explain the speed of substitution. In the third argu-
ment, 1) the bacterial populations sampled in [22] might
not be close to mutation-drift equilibrium, 2) the sam-
pled cells might not reflect the true diversity of the
bacterial population in a patient, and 3) the levels of pol-
ymorphism again may be explained by very low effective
population sizes. Consistency with observations neverthe-
less requires N values of around 100 or lower, which
seems grossly at odds with the usually large census popu-
lation sizes of bacteria. In mouse models of TB infection,
for instance, bacterial loads reach around 105 - 107 colony
forming units per lung [2,24]. It has been noted, however,
that effective population sizes of bacteria can be much
lower than actual sizes [11,25].

I will also comment on why I have not attempted to sta-
tistically fit the model to data to estimate N and s. First,
from the plots shown here, it is clear that different combi-
nations of the two parameters can explain the observa-
tions. This would make it difficult to locate the best fit.
Second, although the model can be used to assess the pos-
sibility of neutrality in the current context, it cannot ade-
quately serve as a framework for estimation given the
intricacies of host-pathogen interactions. Further, adding
more parameters to the model would increase the com-
plexity of the analysis beyond what can be sustained by
the resolution of the currently available data.

Taken together, the results suggest positive selection,
although the evidence is not conclusive. A possible alter-
native is that the effective population sizes of M. tubercu-
losis within patients are very low due to population

structure, background selection, or other factors. If there is
indeed detectable adaptive evolution of tuberculosis
within patients, what are the sources of selection? Two
important candidates are antibiotic treatment and the
host immune system. Studies using serial isolates have
found no correlation between IS6110 genotype instability
and (a) drug resistance/susceptibility of the isolate
[26,27], (b) change in drug resistance status [19] or (c)
drug adherence by the patient [26]. It is still possible,
however, that the collection of observed changes involve
a variety of different genetic loci, with at least some con-
ferring drug resistance, although such events may not be
statistically detectable. Further, mutation in drug resist-
ance loci will not necessarily be revealed by a marker.
Genetic analysis of isolates of M. tuberculosis from the lung
lesions of six patients has shown heterogeneity in resist-
ance-associated alleles, but not with respect to 1S6110
[28].

Alternatively, fingerprint changes may reflect (evolution-
ary) escape from the immune system. The analysis here
hints at low effective population sizes - perhaps the
immune system induces a heavy decline in population
sizes of M. tuberculosis within patients, i.e., bottlenecks —
which is overcome by survivors with new genotypes. If the
observed patterns are to be explained by severe bottle-
necks, the surviving cells are not necessarily better adapted
to residing in the host than the parental cells that were
eliminated by the immune response. It is noteworthy that
Yeh et al. [26] found no relationship between HIV status
of the patient and genotype instability. This suggests that
genetic changes in M. tuberculosis are not primarily driven
by the immune system. However, the extraordinary ability
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of M. tuberculosis to manipulate the T cell response [2] sug-
gests the role of adaptation to the immune system in the
deeper evolutionary history of the organism.

Interestingly, de Boer et al. [27] found an association
between IS6110 change and extrapulmonary disease or
pulmonary+extrapulmonary disease and extrapulmonary
origin of isolates. Dissemination is a major factor in the
pathogenesis of tuberculosis. Since the lungs are the pre-
ferred environment of the organism, the new
environments outside lungs may create opportunities for
adaptive evolution. Adaptive evolution leading to special-
isation to tissue types is to be expected. A recent article
[29], for example, has found the occurrence of tissue-spe-
cific adaptations in Streptococcus pyogenes by examining
ratios of non-synonymous to synonymous substitution
rates (d,/d,).

Is IS6110 directly responsible for adaptive mutations? On
one hand, the apparently strict asexuality of M. tuberculosis
implies that all genes good, bad or neutral are tightly
linked to each other. It is likely then that IS-induced
changes hitchhike to fixation with other mutations that
confer advantage to the genome. On the other hand, it has
recently been demonstrated that IS6110 carries a pro-
moter that can modify the the expression of neighbouring
genes, raising the possibility of a direct role for the ele-
ment in adaptive evolution [30]. Note that changes
caused by IS6110 can be not only beneficial, but also neu-
tral or deleterious [31].

At the within-patient level, the best studied pathogen is
perhaps HIV. While M. tuberculosis shares with viruses the
characteristic of replicating within cells, a major difference
is that mutation rates in viruses are much higher, particu-
larly in retroviruses, which depend on reverse tran-
scriptase (a low-fidelity enzyme) to copy their genomes.
Hence, the extent of nucleotide variation of M. tuberculosis
is not expected to be the same as is commonly observed
for example in HIV [32]. There is ongoing controversy
among HIV researchers about the role of stochasticity due
to low effective population sizes in the evolution of the
virus [33-35]. In any case, investigating the ratio of non-
synonymous to synonymous substitutions (d,/d,) has
established the action of positive selection on HIV within
patients [32,36].

In M. tuberculosis, the level of polymorphism at synony-
mous sites has been noted to be extremely low [9]. It
would be of interest to measure the ratio of non-synony-
mous to synonymous polymorphisms in key genes, such
as loci conferring resistance to drugs, or those implicated
in interactions with the immune system. These d,/d, ratios
may provide further insight into the nature of positive
selection in M. tuberculosis.

http://www.biomedcentral.com/1471-2148/4/31

Appendix: Bacteria and the Wright-Fisher
process

The analyses here rely on the commonly used diffusion
model of drift and selection in a population, based on the
Wright-Fisher process [37,38]. It is also possible to use the
Moran model, in which at each time step an individual is
chosen randomly to reproduce, and then another individ-
ual is chosen to die. The individual to die may be the same
as the individual that reproduced, but not the offspring.
Selection can be incorporated by including differential
probability of birth or death for different genotypes. As
noted by Ewens [38], the Moran model closely resembles
the Wright-Fisher model; the critical difference between
the two models arises from differences in the distribution
of offspring number. The theory is usually discussed in
relation to a diploid population of size N, in which there
are 2N, copies of the (autosomal) gene in question. The
diffusion model is used here with minor adjustments to
describe bacterial populations. Let the number of bacte-
rial cells in a population be N. Each mutant appears in the
population at frequency 1/N. Realistically, population
sizes fluctuate and only a subset of cells actively divide.
The number N should therefore be considered to be the
effective rather than the actual population size, which
may be much larger than N.

Mean and variance of change

It can be shown that the deterministic dynamics of selec-
tion in a haploid model are well approximated by a logis-
tic model. The mean change in frequency x of an allele per
generation is m(x) = sx(1-x), which is identical to the dip-
loid model with additive fitnesses (no dominance) if each
copy of the advantageous allele adds s to the fitness (see
[[37], p.- 192]). That is, heterozygotes enjoy a fitness
advantage s and homozygotes have advantage 2s.

The variance component v(x), the variance in change of
allele frequency per generation, can also be taken from
diploid theory. Replacing the diploid model of the ran-
dom union of gametes with choosing cells randomly from
each generation to the next, the effective population size
is adjusted according to the distribution of offspring
number under a given model of cellular division.

Binary fission

There are numerous ways to model drift in populations of
organisms that reproduce by dividing to produce two
daughters [39]. Here, cells are assumed to undergo fission
synchronously and daughter cells are chosen randomly at
each generation. In the absence of selective effects, the off-
spring distribution is p, = 1/4, p; = 1/2, p, = 1/4, where p;
is the probability of producing i offspring. The variance in
offspring number here is 1/2 and the variance-effective

1
population size equals N/ (E) = 2N. Thus in this case,

Page 6 of 8

(page number not for citation purposes)



BMC Evolutionary Biology 2004, 4:31

the diploid theory can be directly used as far as v(x) is con-
cerned (replacing 2N, with 2N). Johnson and Gerrish [39]
consider alternative models. These alternatives are associ-
ated with different rates at which drift proceeds in a pop-
ulation, and would not affect the qualitative conclusions
drawn here.

Fixation probability

Diffusion models of genetic drift have shown [11] that the
probability of fixation of an allele at frequency p in a ran-
domly mating diploid population of size N, (with 2N,
copies of the gene in question) is

1— e—4Nesp

u=——m—m———,: 4
1_9_4Ne5 (4)

Therefore, using p = 1/N rather than the usual p = 1/(2N,)
the probability of fixation of a mutant bacterial cell with
selective advantage s is

—45s
1-e
u=——0 . (5)
1— ¢ 4Ns

Note that when 4Ns >> 1, u ~ 4s. This agrees with a result
of Gerrish and Lenski [18], using a branching process
model (rather than the diffusion model) to find the fixa-
tion probability under this same model of binary fission.
See [39] for discussion of u for alternative models.

Steady state distribution

Let the mutation rates from any genotype to any other be
equal (u). As stated above, selection is additive. As shown
by Wright [23], the steady state distribution of allele fre-
quency is then given by the density function

x4N,L[—1 (1 _ x)4N,u—1 e4Nsx

1 .
IO y4N/I—1 (1 _ y)4N,u—1 e4NSydy

f(x) =

(©)

See also [37,38] for further details.
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