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Abstract
Background: A number of recent papers have cast doubt on the applicability of the quasispecies
concept to virus evolution, and have argued that population genetics is a more appropriate
framework to describe virus evolution than quasispecies theory.

Results: I review the pertinent literature, and demonstrate for a number of cases that the
quasispecies concept is equivalent to the concept of mutation-selection balance developed in
population genetics, and that there is no disagreement between the population genetics of haploid,
asexually-replicating organisms and quasispecies theory.

Conclusion: Since quasispecies theory and mutation-selection balance are two sides of the same
medal, the discussion about which is more appropriate to describe virus evolution is moot. In
future work on virus evolution, we would do good to focus on the important questions, such as
whether we can develop accurate, quantitative models of virus evolution, and to leave aside
discussions about the relative merits of perfectly equivalent concepts.

Background
Quasispecies theory describes the evolution of an infinite
population of asexual replicators at high mutation rate
[1,2]. Quasispecies theory is often cited as the theory to
describe the evolution of RNA viruses [3], but in recent
years several authors have questioned whether quasispe-
cies theory has any relevance for virus evolution [4-7].
Esteban Domingo has responded to this criticism from an
experimentalist's point of view [8]. However, the funda-
mental issue in this discussion is of theoretical nature, and
has not yet been addressed in detail. The fundamental
issue is whether quasispecies theory and population
genetics are two competing theories, and whether virology
ulitmately has to decide for or against one or the other.
Some quasispecies opponents have argued that quasispe-
cies theory contradicts population genetics (e.g. "This

model contrasts sharply with conventional population
genetics models ..." in [7]), and that there is no evidence
that favors quasispecies theory over classical population
genetics [6]. On the other hand, some quasispecies propo-
nents have also voiced the position that quasispecies the-
ory goes beyond population genetics, and virologists in
general have frequently used the term quasispecies inap-
propriately (see e.g. the discussion on this topic by Eigen,
Ref. [9]). I find this discussion somewhat frustrating,
because quasispecies theory is simply a subset of theoret-
ical population genetics, and it is mathematically equiva-
lent to the theory of mutation-selection balance. The only
real difference between quasispecies theory and mutation-
selection balance is that they have been developed largely
independently by two separate schools of research, and
that these schools of research have often focused on
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somewhat different questions and special cases. Quasispe-
cies theory treats multiple loci, whereas early work on
mutation-selection balance has focused on one- or two-
locus models. On the other hand, most work on popula-
tion genetics considers finite populations and includes
stochastic effects, whereas quasispecies theory is first and
foremost a deterministic description of infinite
populations.

Quasispecies theory has its origin in a seminal paper writ-
ten by Eigen in 1971 [10], in which he studied the error-
prone self-replication of biological macromolecules, pri-
marily with the goal of understanding the origin of life.
However, Eigen did not yet use the term quasispecies in this
1971 paper; he coined this term in a later paper coau-
thored with Peter Schuster [11]. These early papers by
Eigen, Schuster, and coworkers (reviewed in [1,2]) were
some of the first to study theoretically the extreme nucle-
otide heterogeneity caused by highly error-prone replica-
tion. As a consequence, they generated interest among
researchers working on RNA viruses, as these viruses were
found to replicate at high mutation rates and have
extremely polymorphic populations [3,12-14].

Eigen's papers also generated substantial interest among
theoreticians (mostly physicists), who found the descrip-
tion of highly error-prone replication an interesting theo-
retical challenge. Unfortunately, much of the theoretical
follow-up work [15-21] has focused on a particular fitness
landscape, the single-peak (or master sequence) fitness
landscape, in which a single sequence (the master
sequence) has superior fitness 1 + s, and all other
sequences have inferior fitness 1. As a result, much of the
generality of Eigen's original work, as well as its connec-
tion to population genetics, have been obscured, and the
conclusions of these special-case studies are frequently
taken to be general predictions of quasispecies theory.

Because of the development of quasispecies theory inde-
pendently from population genetics, and because of the
widespread emphasis on a single fitness landscape in qua-
sispecies theory, many authors now hold a set of beliefs
about quasispecies theory that do not correspond to the
actual predictions of the theory. These beliefs are:

1. Quasispecies theory is at odds with population
genetics.

2. Quasispecies theory is inapplicable if populations are
finite and there is neutral drift.

3. Quasispecies theory predicts an error threshold.

In the next three sections, I will address each of these
points in detail. However, first I have to define what
exactly I mean by quasispecies theory.

Throughout this paper, by quasispecies theory I mean spe-
cifically Eq. (6) in Ref. [11],

where xi(t) is the concentration of sequence i, Wij = AjQij is
the product of the replication rate (fitness) Aj of sequence
j and the mutation probability Qij from sequence j to i,
and E(t) is the total production of new sequences,

In my definition of quasispecies theory, I also include
straightforward generalizations of the above equation that
have been used in the quasispecies literature, such as the
discrete-time quasispecies equation, which can be written
as [22,23]

and leads to the same steady-state solution as Eq. (1).
Both Eqs. (1) and (3) can be mapped onto linear equa-
tions, and then solved by diagonalizing the matrix Wij. In
both cases, the steady-state solution is given by the domi-
nant eigenvector of Wij.

The mapping onto a linear system assumes that the Wij,
which consist of the fitness landscape (as given by the Aj)
and the mutation landscape (as given by the Qij), are con-
stants. In the most general case, fitness will depend on the
mutant frequencies xi, as different mutants may make use
of different resources, and the relative resource concentra-
tions change as the mutant frequencies change. It turns
out that the mapping onto a linear system is still valid if
resource abundances change due to external factors [24],
but not if resources change in response to increasing or
decreasing mutant frequencies xi. In this latter case, which
corresponds to frequency-dependent selection, the con-
clusions drawn from quasispecies theory do not apply.

Is quasispecies theory at odds with population 
genetics?
Several recent papers present quasispecies theory as a the-
ory that is alternative to (and maybe even contradictory
to) standard population genetics [6,7]. Is there any merit
to this position? Is quasispecies theory somehow at odds
with standard population genetics?
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Let us investigate what form the quasispecies equations
take in a simple example. Consider a single locus with two
alleles a and A, and assume that the A allele has a selective
advantage s over the a allele. Further, assume that allele a
mutates into allele A, and likewise allele A into allele a,
with probability µ. Then, in Eq. (1), we have WAA = (1 +
s)(1 - µ), WaA = (1 + s)µ, WAa = µ, Waa = 1 - µ, and hence
(note that xa(t) = 1 - xA(t))

If we set the mutation rate µ to zero, then this equation
turns into

that is, into the standard logistic equation that describes
the rise of a beneficial allele in an otherwise homogene-
ous population. Thus, we can recover standard popula-
tion dynamics from the quasispecies equations. Now, let
us calculate the steady state solution of Eq. (4) for an arbi-

trary mutation rate. We set , and find

and of course xa = 1 - xA. For µ = 0, this expression becomes
xA = 1, which simply means that the A allele will reach fix-
ation in the absence of any mutation pressure. As µ
increases, xA decreases, and xa increases. For a positive µ,
even though the a allele is removed from the population
by selection, it is constantly regenerated from the A allele
by mutation pressure, and thus reaches a positive equilib-
rium frequency. If the mutation rate is sufficiently high,
then the equilibrium frequency of the a allele, maintained
by the balance of selection and mutation pressure, can be
substantial. In summary, we find that for the case of a sin-
gle locus with two alleles, the quasispecies model predicts
logistic growth of the beneficial allele in the absence of
mutations, and mutation-selection balance in the pres-
ence of mutations.

Now consider the multi-locus case. A classic paper on
mutation-selection balance is the one by Kimura and
Maruyama, written in 1966 [25]. In this paper, Kimura
and Maruyama study the mutational load of a haploid,
asexually reproducing population. I will now show that
this model is also a special case of the quasispecies equa-
tions. Kimura and Maruyama assume that the frequency xi
of a sequence with i mutations changes from one genera-
tion to the next according to (Eq. (3.1) in Ref. [25]):

where wi is the fitness of a sequence with i mutations,

, and µ is the mutation rate (note that

Kimura and Maruyama use fi instead of xi and 2M instead
of µ). Now, define the mutation matrix Qij as

and write the matrix Wij in Eq. (3) as Wij = wjQij. Then, we
see that E(t) as defined in Eq. (2) becomes

. Furthermore, the sum ∑jWijxj in

Eq. (3) runs from j = 0 to j = i, since Qij = 0 for i <j. After
introducing a new index k = i - j, we can rewrite the sum as

which demonstrates that Eq. (7) follows directly from the
quasispecies equation Eq. (3). As a consequence, the qua-
sispecies model is in agreement with the Haldane-Muller
principle [26], which means that the mutational load L of
a population described by the quasispecies model is in
many (but not all) cases approximately given by L= 1 - e-

µ. (Deviations from this principle arise for example from
the presence of neutral mutations [27,28].)

Now that we have seen that quasispecies theory and muta-
tion-selection balance are equivalent, the question
remains whether Eigen just reinvented parts of population
genetics, or actually contributed to the development of
the field. While Eigen was not the first to consider muta-
tion-selection balance (this concept goes back to Wright
and Fisher in the early 20th century), by studying multi-
locus mutation-selection equations at arbitrary mutation
rate he was certainly at the forefront of theoretical popu-
lation genetics in the late 1970s and early 1980s. The first
analytic solutions to equations of the form Eq. (1) were
found by Thompson and McBride in 1974 [29] and inde-
pendently by Jones et al. in 1976 [30]. These works were
directly influenced by Eigen's seminal paper of 1971 [10].
On the population genetics side, Moran was the first to
solve Eq. (3) [31], also in 1976, but was unaware of the
work by Eigen, Thompson, McBride, Jones, and
coworkers.

One of the reasons why the quasispecies model is some-
times perceived to be at odds with standard population
genetics is that it predicts (under certain conditions, I
should add) that the equilibrium state of the population,
which is given by the dominant eigenvector of the matrix
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Wij, is a stable mixture of closely related mutants. This
mixture of mutants, also called a mutant cloud or quasispe-
cies, does not necessarily have to contain the fastest-repli-
cating individual sequence that exists in the fitness
landscape. In other words, sequences with high fitness can
lose out against sequences with lower fitness that have
better support from their mutational neighbors [32,33],
an effect which has been termed survival of the flattest (Fig-
ure 1).

It is important to understand that the emergence of a qua-
sispecies is not something that has been put into the
model ad hoc, but is a necessary consequence of the muta-
tion-selection equations. We see in Eqs. (1) and (3) that
the model is built on reproduction of individual
sequences, but that mutations provide coupling between
the different sequence types. When the mutation rate is
low, then the quasispecies model predicts that the fastest-
replicating sequence takes over the population, as we wit-
ness from the emergence of the logistic equation Eq. (5) at
zero mutation rate. However, when the mutation rate is
high, then the coupling between sequences caused by
mutations can become stronger than the individual selec-
tion coefficients, and a quasispecies forms. Note that this

effect will arise in any model of mutation-selection
balance that correctly takes into account the coupling of
different mutants at high mutation rate.

Does quasispecies theory apply to finite 
populations?
In the previous section, I have established that the quasis-
pecies model is equivalent to the theory of mutation-
selection balance in an infinite, haploid, asexual popula-
tion. However, this equivalence does not necessarily
imply that the quasispecies model applies to populations
of RNA viruses, because these populations are finite.
Jenkins et al. [5] argue that the total sequence space of an
RNA virus is much larger than the sequence space a finite
population of realistic size can cover, and that therefore
the deterministic equations of the quasispecies model are
inapplicable, because virus evolution is dominated by
random genetic drift. A priori, this is a reasonable objec-
tion, and we have to test whether the quasispecies equa-
tions are indeed useless in any realistic setting, or whether
maybe complete coverage of the sequence space is not
necessary to observe quasispecies effects. (By quasispecies
effects, I mean that the population behaves in a way that
can only be explained through strong mutational cou-
pling between genotypes. An example would be the obser-
vation of the survival of the flattest effect.)

First, let us have a look at some theoretical studies of finite
populations that have been carried out within the context
of the quasispecies model [19,34-38]. In general, in these
studies the deterministic equations are taken as the start-
ing point, and then the authors derive corrections to these
equations that take into account deviations from the
deterministic behavior caused by the finite population
size. Thus, at least in these model systems, the determinis-
tic equations provide a reasonable starting point to under-
stand the population dynamics. Van Nimwegen et al.
make this point particularly clear by showing that in cer-
tain cases, we can understand the behavior of a finite pop-
ulation from a deterministic description of a population
that occupies the sequence space around a local optimum
[37]. In this model, information about other local optima
(which would be available to an infinite population) is
not necessary to accurately describe the behavior of the
finite population on the given local optimum.

However, one could still object that these models may be
describing idealized and simplified situations that differ
too much from the reality of RNA viruses to be of any rel-
evance. To counter this argument, we have to ask whether
there is a more general way to determine the relevance of
quasispecies theory to finite populations of RNA viruses.
The hallmark of quasispecies theory (and of course of any
theory of mutation-selection balance) is that for a suffi-
ciently high mutation rate, we must take into account the

Schematic drawing of the survival-of-the-flattest effectFigure 1
Schematic drawing of the survival-of-the-flattest effect. At 
low mutation rate µ, all individuals accumulate close to the 
top of the local fitness peak, and hence the individuals on 
peak A outcompete the individuals on peak B. At high muta-
tion rate, most individuals on the steep peak A are located at 
low fitness values, while the individuals on the flat peak B 
remain close to the local optimum. As a consequence, the 
mean fitness of the individuals on peak B exceeds that of the 
individuals on peak A, and thus the former outcompete the 
latter.

A B
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µ

µ
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formation of a quasispecies to obtain a faithful descrip-
tion of the population dynamics. Therefore, the question
is under what conditions does mutational coupling
become so strong that we can observe quasispecies effects
in a finite population. Can theory help us to address this
question?

In the formation of a quasispecies, the population mini-
mizes the mutational load by accumulating sequences
that have a reduced probability to suffer from deleterious
mutations [27,28,39,40]. This effect has been termed evo-
lution of mutational robustness [27]. Van Nimwegen et al.
studied this effect for RNA evolution, and found that
mutational robustness evolved as long as the product of
mutation rate µ and effective population size Ne was sig-
nificantly larger than one, µNe Ŭ 1 [27]. I have recently
made similar observations in simulations of protein evo-
lution [41]. What is interesting about the latter simula-
tions is that in the regime of mutational robustness, the
proteins continued to accumulate mutations, and in fact
accumulated mutations faster than in the regime in which
mutational robustness did not evolve. This observation
demonstrates that the existence of a stable master
sequence is not a necessary consequence of quasispecies
evolution, in contrast to the key assumption of the study
by Jenkins et al. [5]. These results can be understood with
the theory of quasispecies fixation, which shows that an
individual invading sequence has a positive fixation prob-
ability precisely when the mutant cloud that this sequence
will spawn has higher fitness than the currently estab-
lished mutant cloud, regardless of the individual fitness of
the invading sequence [42,43]. Note that, in line with the
previous section, this theory is again equivalent to the
general theory of fixation in a haploid, asexually replicat-
ing population [44,45].

Finally, the recent paper by Comas et al. [7] also provides
evidence that quasispecies effects can be observed in sur-
prisingly small populations, populations far too small to
cover the relevant sequence space. Comas et al. studied to
what extent the survival-of-the-flattest effect would be
affected by population size, and found that population
size played only a minor role in determining the position
of the critical mutation rate at which the flatter strain
began to outcompete the fitter strain. (I had previously
found similar results in simulated RNA evolution [46].)
Even in populations of size 250, Comas et al. consistently
observed outcompetition of the fitter strain by the flatter
strain at high mutation rate. Note that the digital organ-
isms in these experiments had sizes of between 54 and
272 instructions, chosen from an alphabet of 28 different
instructions, so that the complete sequence space of these
organisms was between 1047 and 1068 sequences large.
Clearly, a population of size 250 (or even several thou-

sand, for that matter) cannot even come close to complete
coverage of such a huge sequence space.

The previous paragraphs show that on purely theoretical
grounds, there is no reason to assume that quasispecies
effects cannot play a role in finite populations of RNA
viruses. Nevertheless, to date we have no experimental
evidence that unequivocally demonstrates such effects in
a specific experimental system. On the other hand, selec-
tion for specific, individual mutants is common (see e.g.
Ref. [47]). What does this experimental evidence imply
for quasispecies theory? First, quasispecies theory covers
both cases, those in which mutational coupling can be
neglected, and those in which it can't. The latter is a sec-
ond-order effect that becomes relevant only when there is
no strong selection for individual sequences [40]. Thus, it
is not surprising that in cases where selection is strong,
such as in the case of resistance or escape mutants, we
don't see quasispecies effects. Second, because quasispe-
cies effects are second-order, it may be difficult to detect
them experimentally, and experiments more sensitive
than the ones carried out to date may be necessary to dem-
onstrate their presence unequivocally.

In summary, we currently have no evidence (theoretical or
experimental) that contradicts the existence of quasispe-
cies effects in finite populations of RNA viruses, but we
also have no experimental evidence in favor of it. Theoret-
ical studies and computer simulations indicate that qua-
sispecies effects should become important when the
product of effective population size and genomic muta-
tion rate is significantly larger than one. Since for many
RNA viruses the genomic mutation rate is already on the
order of one [48,49], even moderately large populations
of RNA viruses, or populations that undergo regular bot-
tlenecks, are candidates for quasispecies behavior.

Does quasispecies theory predict an error 
threshold?
The error threshold is probably one of the most misunder-
stood concepts of quasispecies theory. Eigen described the
error threshold in his 1971 paper as a limit to the amount
of information a genome can store at a given mutation
rate [10]. If the mutation rate is increased beyond this
limit, then the population structure breaks down, and the
population disperses over sequence space.

The first important point to understand about the error
threshold is that it is a deterministic effect. This means
that the position of the error threshold depends only
weakly on the population size, and that even in an infinite
population the error threshold occurs at a finite mutation
rate [19,35]. In this way, the error threshold differs mark-
edly from Muller's ratchet [50], which occurs only at finite
population sizes and disappears in the deterministic limit.
Page 5 of 8
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Second, the error threshold's existence and position
depend on the choice of the fitness landscape [51-56].
Even though the error threshold is usually perceived as a
general prediction of quasispecies theory, most of the lit-
erature that studies the error threshold considers only the
single-peak fitness landscape, and disregards all other pos-
sible fitness functions [10,15-21]. The single-peak fitness
landscape has the unrealistic property that all sequences
have a positive replication rate, that is, there are no lethal
mutants. As a result, at high mutation rates these
sequences compete with the master sequence (the single
sequence that has higher fitness than all other sequences),
and can win this competition at sufficiently high muta-
tion rate by sheer abundance. Can the error threshold
occur in a more realistic fitness landscape that contains

lethal genotypes? No. Wagner and Krall have proven
mathematically that the condition for the existence of an
error threshold is precisely the complete absense of lethal
genotypes [53]. An intuitive explanation for this result is
provided in Fig. 2.

There is certainly no lack of lethal mutants in viruses
[57,58], and as a consequence, viruses cannot suffer from
an error threshold as defined by Eigen. If this is the case,
then how can we understand the concept of lethal muta-
genesis, which has recently proven successful in a variety
of viruses [59-62], and for which the error threshold is
generally cited as the underlying theory? The truth of the
matter is that the two concepts are mostly unrelated. To
understand the difference between the two, we have to
understand the difference between soft and hard selec-
tion. Soft selection means that the population size is held
constant, regardless of the mean fitness of the population.
Under soft selection, populations cannot go extinct by
definition. Since the quasispecies model is usually studied
in the context of soft selection (even though it can be gen-
eralized to hard selection), the error threshold per se
makes no statements about population extinction. The
alternative model is hard selection, where the population
size will decline if the mean fitness of the population is
too low. Extinction due to mutation pressure can occur
under hard selection, and is usually called mutational
meltdown [63-65]. Mutational meltdown will operate in
any fitness landscape, as long as the population size is suf-
ficiently small, the mutation rate sufficiently large, or the
hard selection pressure sufficiently strong. While lethal
mutagenesis is probably a valid antiviral therapy, referring
to it as an error-threshold related effect is at best a misno-
mer, and can at worst lead to poor treatment decisions
brought about by a misunderstanding of the actual evolu-
tionary dynamics that unfold under lethal mutagenesis.

Finally, it is interesting to note that in certain fitness land-
scapes, several error-threshold-like transitions can occur
one after the other as the mutation rate increases [66]. At
each transition, the population loses the ability to take
advantage of a particular region of sequence space, and
delocalizes over this region, while remaining localized in
other regions. Tannenbaum and Shakhnovich have
termed this effect the error cascade [66], and in fact, the
survival-of-the-flattest effect [32,33,46] can be considered
as a special case of this error cascade.

Conclusion
To summarize, I have provided arguments for the follow-
ing conclusions: Quasispecies theory is in perfect agree-
ment with population genetics, it can make usefull
predictions for finite populations if the product of popu-
lation size and mutation rate is large, and it predicts an
error threshold only for fitness landscapes that lack lethal

Schematic drawing of the error thresholdFigure 2
Schematic drawing of the error threshold. If a fitness land-
scape has a positive minimum fitness (case A), then at a suffi-
ciently high mutation rate all individuals are pushed to this 
minimum level. The selective strength on the narrow peak is 
not sufficient to counteract the mutation pressure. If a fitness 
landscape has no minimum fitness (case B), then the mutation 
pressure pushes a large fraction of the population to zero fit-
ness. The individuals with zero fitness (shown in gray) are 
inviable, and thus do not compete with the individuals on the 
fitness peak. Therefore, a few individuals will always remain 
on the top of the fitness peak. Note that this conclusion 
holds only when two assumptions are met: (i) The population 
is infinite. (Otherwise, stochastic effects push the population 
away from the peak, and we observe Muller's ratchet.) (ii) 
Selection is soft, that is, only relative fitness differences mat-
ter, and the overall population size is held constant at all 
times. (If selection is hard, then the population size will 
decline as the mutation rate is increased, and eventually the 
population can go extinct. This case is mutational meltdown.)

A B

very high µ

low µ
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mutants, and which therefore have little relevance for
virus evolution.

However, these arguments do not imply that quasispecies
theory is the final answer to all questions of virus evolu-
tion. Quasispecies theory has its short-comings that need
to be addressed in future modeling work. Ironically, the
biggest shortcoming of quasispecies theory, as far as I can
see, does not have its origin in quasispecies theory being
at odds with population genetics, but rather in quasispe-
cies theory being too similar to the population genetics
theory of asexual, haploid organisms. Viruses differ from
other forms of life in that they don't have a well-defined
ploidy. When a single virus particle infects a cell, the virus
can be considered a haploid organism, and indeed the
quasispecies model makes this assumption. However, fre-
quently several virus particles coinfect the same cell, in
which case the ploidy is given by the number of coinfect-
ing particles. Standard population genetics has no model
for such a variable-ploidy organism, and only a handful of
authors have considered the theoretical implications of
viral coinfection in detail [67-81].
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