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Abstract

Background: Alu elements are Short INterspersed Elements (SINEs) in primate genomes that
have proven useful as markers for studying genome evolution, population biology and
phylogenetics. Most of these applications, however, have been limited to humans and their nearest
relatives, chimpanzees. In an effort to expand our understanding of Alu sequence evolution and to
increase the applicability of these markers to non-human primate biology, we have analyzed
available Alu sequences for loci specific to platyrrhine (New World) primates.

Results: Branching patterns along an Alu sequence phylogeny indicate three major classes of
platyrrhine-specific Alu sequences. Sequence comparisons further reveal at least three New World
monkey-specific subfamilies; AluTa7, AluTal0, and AluTal5. Two of these subfamilies appear to be
derived from a gene conversion event that has produced a recently active fusion of AluSc- and
AluSp-type elements. This is a novel mode of origin for new Alu subfamilies.

Conclusion: The use of Alu elements as genetic markers in studies of genome evolution,
phylogenetics, and population biology has been very productive when applied to humans. The
characterization of these three new Alu subfamilies not only increases our understanding of Alu
sequence evolution in primates, but also opens the door to the application of these genetic markers
outside the hominid lineage.

Background

SINEs (Short INterspersed Elements) are powerful tools
for systematic and population biologists [1-8]. Examples
of phylogenies elucidated using the SINE method include
the use of SINEs to support the hypothesis that cetaceans
(whales, dolphins and porpoises) form a clade within
Artiodactyla [9], clarification of relationships between
cichlid fishes [10-12] and the resolution of the human-
chimpanzee-gorilla trichotomy [5]. Although applica-
tions of SINE elements to resolve population dynamics
have been limited to humans [13-19] and, to a lesser
extent, cichlid fishes [11,20,21], these studies have been

very successful in revealing patterns of variation and there
is every reason to believe that they can be as productively
applied to other species.

One reason for the success of SINEs as phylogenetic and
population genetic markers is that their mode of evolu-
tion is unidirectional [3,4,7,8,22]. This characteristic
allows for a confident inference that the ancestral state is
the absence of the SINE at each locus. Because there is no
known mechanism for the specific removal of SINEs from
any genome [4,23], individual SINEs are generally
thought to be homoplasy-free characters [4,7,17,22-25].
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Alu elements are primate-specific SINEs of ~300 bp. These
elements have been extremely successful at propagating in
primate genomes as evidenced by the fact that they make
up ~10% of the human genome by mass [23,26]. Distinct
subfamilies of Alu elements in the human genome have
been described in detail [17,18,23,27-32]. Examination of
these young subfamilies has provided us with clues as to
the mobilization dynamics and evolution of Alu elements
in the hominid lineage. Characterization of Alu mobiliza-
tion in non-human primates has not been as complete.
The ascertainment of lineage-specific subfamilies of Alu
elements would increase our understanding of mobile ele-
ment evolution in these organisms and allow for the
development of SINE-based studies of population and
evolutionary patterns.

We recently used Alu insertion loci to clarify various rela-
tionships among platyrthine (New World monkeys,
NWM) and cercopithecid (Old World monkeys) primates
[33,34]. These projects produced examples of Alu inser-
tions present in a wide variety of lineages along the pri-
mate tree. We have performed a phylogenetic analysis of
the Alu sequences themselves (focusing on the platyr-
rhine-specific insertions) in order to characterize the evo-
lutionary history of Alu lineages that have been or
currently are retrotransposition competent in some non-
human primates.

Results and discussion

Platyrrhine-specific Alu sequences were obtained from the
data sets used in Ray et al. [34] When available, the
sequences from multiple taxa at a particular locus were
aligned and a consensus sequence generated to create an
approximation of the sequence of the original insertion. A
total of 48 platyrrhine-specific insertions were collected.
All selected sequences were examined for the presence of
target site duplications (TSDs). The presence of these TSDs
along with the absence of each marker in hominid and
cercopithecid taxa (and from the genomes of other platyr-
rhine primates in many cases) serves to verify that the ele-
ments are the result of retrotransposition events and not
segmental duplications. To trim potentially long branches
and to verify the ability of the approach to recover previ-
ously established relationships among reference
sequences, we added the consensus sequences for Alu ele-
ments specific to hominids (AluYa5, AluYa5a2, AluYbS,
AluYb9, AluYcl, AluYc2, AluYd3, AluYd6, and AluYe5)
[18,30-32,35-37]. We also included the canonical Alu
consensus sequences for the Jb, Sc, Sg, Sp, Sq, Sx, and Y
subfamilies [38-40] and rooted the tree on AluJb based on
previously established relationships [40-42].

The methods used to identify informative loci among cer-
copithecid taxa primarily involved a linker-PCR strategy
using two Alu selection primers [33]. Unfortunately, this
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introduced a sequence bias toward particular subfamilies
of recently integrated or lineage specific Alu elements. The
strategy used to identify informative platyrrhine loci, on
the other hand, used a combined computational-experi-
mental approach. Over half of the loci identified were
derived from Bacterial Artificial Chromosome (BAC)
sequences and thus no bias was introduced. In addition, a
wide variety of primers was used in the linker-PCR
approach; as a consequence, the bias was reduced for
experimentally-derived loci. Because of the bias in the
data derived from the cercopithecids, we have not
included these Alu sequences in the analyses. For platyr-
rhine Alu lineages, however, more confident inferences
can be made.

Tree topologies recovered using Bayesian and parsimony
criteria were generally congruent (Fig. 1). Minor differ-
ences in the placement of some sequences are observed
but the well-supported clades recovered by the Bayesian
analysis are often present in the parsimony consensus
trees with reasonable support (>75%). However, boot-
strap support on the parsimony-based cladogram was not
as high for several of the major nodes found on the Baye-
sian tree. We suspect that this is due to the hybrid (par-
tially gene converted) nature of 31 sequences that share
diagnostic features of both AluSc-derived and AluSp
derived elements (see below for a full discussion). Given
the assumptions inherent in parsimony-based analyses
(i.e. incremental sequence-based changes) hybrid ele-
ments that accumulated a whole suite of character states
as a unit and that define other lineages in the data set
would be expected to cause significant problems. Supple-
mental analyses with the hybrid elements removed con-
firmed this suspicion by raising support values at some
nodes over 20 points (data not shown). The reduced tree-
search method used is also thought to recover lower boot-
strap support values than more traditional methods [43].
For these reasons, we have chosen to base our major con-
clusions on the topology and support values present on
the Bayesian tree.

Within that tree, the established relationships between
canonical Alu consensus sequences were recovered as
expected. The AluJb subfamily is basal to the remaining
Alu sequences and relationships between the various AluS
subfamilies are similar to the results of Kapitonov and
Jurka [39]. Among the New World primate Alu sequences
all but three platyrrhine-specific sequences fall within a
well supported AluSc-AluY derived clade. This topology
suggests that at there may have been three Alu lineages
active at the time of the platyrrhine-catarrhine divergence
around 35-40 million years ago [44]: an AluY progenitor;
AluSp; and, AluSc. The three platyrrhine-specific Alu inser-
tions that clustered outside the major platyrrhine AluSc/
AluY-derived clade were 'All. NWM_Locus_1',
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A) Majority-rules consensus of 10,000 trees generated using a Bayesian approach. Support values greater than 0.85 are indi-
cated on relevant nodes. The major platyrrhine clades (A, B, C, and D) are indicated. Within clade D, members of subfamily
AluTal0 are underlined. B) Majority-rules consensus tree of 107,470 equally parsimonious trees generated as described in the
Methods section. Bootstrap values for nodes with greater than 50% support are indicated. Sequences representing well-sup-

ported clades from the Bayesian tree are also indicated.

'All_NWM_Locus_15', and 'All_ NWM_Locus_31'. Each of
these insertions is present in all tested platyrrhine taxa,
suggesting that they occurred before the radiation of the
New World monkeys into three recognized families,
(Cebidae, Atelidae and Pitheciidae). The Alu sequence at
'All_NWM_Locus_1"' appears to be derived from an AluSp
source gene. Direct observation of the Alu sequence con-
firms the presence of several AluSp diagnostic sites in this
element (see supplemental alignments). Based on our
analyses, the sequence for 'All_NWM_Locus_15"' appears
to be derived from an AluY progenitor. There is no signif-
icant support for the node, however, and it should be
noted that this is merely a suggestion based on the topol-
ogy of the tree. Thus, an AluY progenitor, AluSp, and AluSc
were all active around the time of the split. The source of
the sequence at 'All_NWM_Locus_31"is unclear given the
differences in placement between the Bayesian and parsi-

mony analyses. RepeatMasker [45] lists the element as
belonging to the AluSg lineage. Thus, it may represent a
fourth lineage that was active early in the evolution of
New World monkeys.

A majority of the Alu sequences specific to various New
World monkeys are most closely related to an AluSc and
there are four well-supported clades within this group.
Clade A is represented by two sequences that were found
only in members of Pitheciidae. The insertions
'Callicebus_83' and 'Pithecia_46', were specific to their
respective Pitheciid genera, and they share eight exclusive
non-CpG mutations when compared to AluSc and other
AluSc-like sequences (Bayesian support = 1.00). The close
relationship between these sequences was also recovered
in the parsimony analysis. While we will not assign them
to a new subfamily based on only two sequences, we
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suggest that they are good candidates for a Pitheciid-spe-
cific lineage.

A second clade (B) within the putative AluSc-derived
group was also highly supported (0.99) and was repre-
sented an insertion identified in all platyrrhine primates
("AIl_NWM_Locus_26'), as well as in two Atelid taxa
('Lago_and_Atel_20') and in all members of Cebidae and
Atelidae ('Cebid_Atelid_Locus_14"). These sequences may
represent an AluSc-derived subfamily. However, this clus-
ter was based on only a few sequences and on shared
mutations at CpG sites; thus, it should be interpreted cau-
tiously. An alternative is that these and the other elements
in this group represent true AluSc insertions that have con-
tinued to accumulate in platyrrhine genomes throughout
their evolution. This is not unlikely given the recent obser-
vations of potentially polymorphic AluScloci [46] and rel-
atively recent AluSx insertions in humans [47]. The
'stealth' model of Alu evolution and dispersal reported by
Han et al. [48] also predicts low levels of activity for older
Alu subfamiles. AluSc may represent a hardy subfamily
that has remained active at a low level for long periods of
time in a variety of primate genomes.

Clade C (support = 0.99) comprises five sequences char-
acterized by 11 shared mutations (including a 7-base
duplication) that distinguish them from AluSc. Sequences
in this clade are distributed among members of families
Pitheciidae and Atelidae. One interpretation of this pat-
tern is the emergence of the source gene prior to the
expansion of a Pitheciid-Cebid clade but after the diver-
gence of Atelid taxa. This hypothesis is unlikely, however,
given the results of Ray et al. [34] in which it was made
clear that family Pitheciidae was the first to diverge from
the early platyrrhine groups. We suggest instead that the
source gene emerged after the divergence of platyrrhine
and catarrhine primates but before the platyrrhine radia-
tion 17-20 mya [49,50], and that none of these elements
was recovered for Cebid taxa due to sampling error. Addi-
tional work will be required to test this hypothesis.

Clade D is the largest of the clearly definable platyrrhine
Alu clades, comprising 31 sequences from all three platyr-
rhine families. It is well-supported (1.00) and is distin-
guished by numerous shared mutations among its
members. Of the new subfamilies described here, this lin-
eage is particularly interesting because of its apparently
unique origin. Close examination of the sequences reveals
four shared AluSc diagnostic mutations at the 5' end of the
elements; however, at the 3' end of the elements, there are
five additional diagnostic sites characteristic of the AluSp
subfamily. Examples of 'hybrid' elements have been
described previously [17,25,29], but these represented
individual instances involving the gene conversion of Alu
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elements already present in the genome. That does not
appear to be the case here.

The presence of 31 distinct elements harboring this com-
bination of AluSc and AluSp diagnostic mutations (plus
three additional shared mutations) suggests that there is a
recently active source gene with these characteristics. We
propose that a source gene (most likely derived from
AluSc) existed early in platyrrhine primate evolution and
that the 3' end of the element was subjected to a gene con-
version event via any of the three potential models
described by Kass et al. [51]. Starting somewhere between
bases 199 and 226 and continuing to the end of the ele-
ment, the conversion event resulted in the replacement of
the sequence of the source gene with sequence from an
AluSp-like element (Fig. 2). The result was a 'fusion' ele-
ment that remained active and may still be active in the
genomes of several platyrrhine primates.

This group of elements can be further subdivided into two
subfamilies based on additional shared diagnostic muta-
tions in what appears to be the more recently derived sub-
family. In addition to the AluSp and AluSc derived sites
and the three additional distinguishing sites, 21 elements
share four unique mutations. Thus, clade D can be subdi-
vided into two subfamilies consisting of 10 and 21 ele-
ments, respectively (see supplemental alignments).

These two subfamilies share two diagnostic positions with
the previously mentioned clade C 5' to the appearance of
the AluSp indicative sites. Thus, we believe that these three
groups of sequences represent a new platyrrhine-specific
subfamily we dubbed AIuT. We chose this designation
based on the nomenclature proposed by Batzer et al. [38]
in which younger subfamilies are assigned later letters of
the alphabet. This is followed by a lowercase letter desig-
nating the order of publication, and a numerical designa-
tion indicating the number of diagnostic sites that
differentiate it from the subfamily consensus. Because this
group was similar to and apparently derived from AluSc,
AluT was most appropriate. It is distinguished from AluSc
by the two aforementioned diagnostic mutations and can
currently be divided into three subfamilies; AluTa7,
AluTal0, and AluTal5 (Fig. 2). For reference, we have
included a hypothetical AluT consensus sequence based
on the diagnostic sites shared by the Ta5, Tal0, and Tal5
consensi and the presumed ancestral sequence, AluSc, in
figure 2.

Represented by 21 sequences, AluTal5 was only found in
Cebid taxa (Aotus, Callithrix, and Siamiri). AluTal0 is rep-
resented by ten sequences and was recovered in members
of all three platyrrhine families. The distribution of this
subfamily of elements among platyrrine taxa and the pat-
tern of shared diagnostic sites suggest that the AluTal0
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Figure 2

Multiple sequence alignment of three canonical reference sequences (Alujo, AluSc, and AluSp) with the new consensus
sequences described in this work. Identical sequence residues are indicated by ".". Indels events are indicated by "-". Diagnostic
mutations characteristic of AluSc and AluSp that are shared by the new consensus sequences are shaded. Substitutions distin-

guishing all AluT subfamily members from AluSc are boxed.

family expanded earlier in platyrrhine evolution and may
have given rise to the AluTal5 subfamily. A larger sample
based solely on elements derived from unbiased methods
will be required to test this hypothesis and is currently
underway.

Conclusion

The identification of three (potentially four) new sub-
families that are unique to platyrrhine primates represents
a step forward in our understanding of the evolution of
Alu elements in the genomes of non-hominid primates.
Further, this is the first report of a unique mechanism of
Alu subfamily generation. Until now, the evolution of Alu
subfamilies could easily be described using the sequential
accumulation of diagnostic mutations. For example, the
hominid Alu subfamily AluYb currently consists of four
variants, Yb7, Yb8, Yb9, and Yb11 [30,31,52]. Patterns of
sequence variation clearly illustrate the hierarchical
nature of sequence evolution in this family. Yb9 exhibits
all of the diagnostic mutations defining AluYb7 and
AluYb8 as well as its own signature mutation. AluYb11 fol-
lows suit by exhibiting all of the AluYb9 mutations plus
two others. This pattern is confirmed using age estimates
that suggest AluYb7 is the oldest and AluYbl1 is the

youngest. The AluTa10 and AluTa15 subfamilies represent
the first documented cases of a recently active 'fusion' ele-
ment in which the diagnostic mutations were not accu-
mulated gradually over time; instead, they represent the
sudden incorporation of several signature mutations by
way of a gene conversion event. Thus, a new mechanism
of Alu subfamily generation, though previously consid-
ered possible [29], has now been substantiated in the
genome.

On a more practical level, a number of questions raised in
other taxonomic analyses of New World monkeys can
now be better addressed [1,34,53-60] given the data pre-
sented here. We can confidently assign subfamily status to
certain individual Alu elements in platyrrhine genomes.
Thus, we are able to target particular Alu subfamilies with
known expansion timeframes to address branching pat-
terns for particular primate lineages. This technique has
previously proven valuable. For example, by combining a
targeted analysis of the AluYe5 subfamily with sequence
database searches for additional informative loci, we were
able to confidently address the human-chimpanzee-
gorilla trichotomy [5]. Application of similar techniques
to other primates can easily be adapted by using the linker
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protocols described in Ray et al. [34], Xing et al. [33] and
Roy et al. [61] and by computational analyses of existing
sequence data.

At the population level, the amplification dynamics of Alu
elements have been well characterized in humans and
even in chimpanzees, but have not been investigated
extensively in other primates. This is unfortunate given
their utility in studies of genome evolution in humans
and chimpanzees [62-64], population biology in humans
[13,15,16,27,65-74], and phylogenetic analysis at all lev-
els of the primate tree [2,5,6,33,34,41,75]. Knowledge of
these subfamilies will aid in the development of markers
useful for all of the above tasks. For example, given the
endangered status of many New World taxa, the existence
of easy-to-ascertain markers (via a single PCR) to identify
species-specific Alu insertions in tissues of unknown ori-
gin will be a boon to conservation biologists and to pop-
ulation geneticists. Similar genetic systems have already
proven useful in other taxa ranging from humans to
waterfowl [76-78]. As one simple example, we now use
many of the Alu loci used in this study to verify the iden-
tity of cell lines in our laboratory. Using a single PCR to
amplify a taxon-specific Alu insertion is quick and effi-
cient when compared to methods that involve morpho-
logical analysis (if possible on a tissue sample) or
amplification and sequencing of DNA.

In this study we have identified diagnostic mutations for
platyrrhine specific subfamilies. The identification of par-
ticular Alu lineages is the critical first step in identifying
polymorphic elements in a primate taxon [17,18,31,61].
By identifying the subfamilies that are specific to particu-
lar taxa, researchers are now better able to use previously
established techniques that take advantage of diagnostic
mutations to identify useful markers at various taxonomic
levels. The essentially homoplasy free nature of SINE
markers makes them in some ways superior to other com-
monly used nmarkers for population genetics
[3,4,10,12,22,34]. Thus we see this as the beginning of a
series of studies in which the SINE method of population
genetic analysis will be expanded beyond our own
species.

Methods

Insertion/deletion (indels) events play a significant role in
defining Alu subfamilies. For this reason, the phylogenetic
method we used to reconstruct relationships was based
primarily on the Bayesian method implemented by
MrBayes, Ver. 3.1 [79,80]. We chose this method because
of its robustness and its ability to take advantage of infor-
mation present in the form of insertion/deletion events in
the alignment. We partitioned the data into two sets,
sequence data and gap data. For partition one, sequence
parameters were estimated from the data The second par-
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tition was generated using indels that were present in two
or more sequences. These were coded as present
(sequence) or absent (gap). For the second data partition,
we estimated rates of indel occurrence from the data and
corrected for ascertainment bias by setting the coding
option to 'variable' as per the MrBayes manual.

Two simultaneous Markov chain Monte Carlo analyses
were performed using one cold and three heated chains
(temperature set to default 0.2) for each analysis. We ran
the analysis for 7.5 million generations, sampling the
trees every 100 generations. At ~6.13. million generations,
the standard deviation of split frequencies consistently
reached a value of <0.01, indicating that both analyses
had begun converging on similar trees. We discarded the
first 6.5 million generations as burn-in and generated a
majority-rules consensus tree. Nodes with probability val-
ues of 0.85 to 0.89 were considered to have low support,
0.90 to 0.94 to have moderate support and nodes greater
than 0.95 to be highly supported [80].

As a comparison, we also performed a parsimony analysis
of the data in PAUP* v4.0b10 [81]. Non-CpG dinucle-
otides were weighted at six times the value of CpG dinu-
cleotides [82] and gaps were treated as a fifth character
state. The size of the data set made a bootstrap analysis
using a full heuristic search for each replicate impractical.
For this reason, we employed a reduced tree-search boot-
strapping method as described by DeBry and Olmstead
[43] to ascertain support for nodes.

The sequences from each clearly defined clade (see Results
and Discussion) were collected and examined for shared
mutations that presumably represent diagnostic muta-
tions or positions characteristic of mobile element sub-
families. Consensus sequences for each of these groups
were constructed. For non-CpG sites, a simple majority-
rules approach was taken to obtain the consensus for the
site. Alu elements, however, are rich in CpG dinucleotides
that are known to mutate at a 6-fold higher rate than non-
CpG sites [82]. These sites tend to be highly variable and
could represent a problem when determining the identity.
We addressed this issue by examining types of variation at
potential CpG sites and by referring to the presumed
ancestral sequences. First, dinucleotide sites exhibiting
high diversity that comprised primarily both CpA and
TpG dinucleotides were assumed to be highly mutable
CpG sites that decayed as the result of the spontaneous
deamination of 5-methylcytosine. When it remained
unclear whether or not the site should be considered a
CpG dinucleotide, we referred to the AluSc or AluSp con-
sensus sequences to determine the likely ancestral state for
the site and made the appropriate assignment.
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Sequence alignments used for phylogenetic analysis and
for the generation of consensus sequences are available
online as additional files.
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