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Abstract

Background: For organisms living or interacting in groups, the decision-making processes of an
individual may be based upon aspects of both its own state and the states of other organisms
around it. Much research has sought to determine how group decisions are made, and whether
some individuals are more likely to influence these decisions than others. State-dependent
modelling techniques are a powerful tool for exploring group decision-making processes, but
analyses conducted so far have lacked methods for identifying how dependent an individual's
actions are on the rest of the group.

Results: Here, we introduce and evaluate two easy-to-calculate statistics that quantify how
dependent an individual's actions are upon the state of a co-player in a two-player state-dependent
dynamic game. We discuss the merits of these statistics, and situations in which they would be
useful.

Conclusion: Our statistical measures provide a means of quantifying how independent an
individual's actions are. They also allow researchers to quantify the output of state-dependent
dynamic games, and quantitatively assess the predictions of these models.

Background state-dependent models use an evolutionarily meaningful

The development of state-dependent modelling tech-
niques applicable to evolutionary biology has allowed us
to address many questions about the behaviour and life
history strategies of organisms. Behavioural or life history
decisions induce changes in the state of the organism
(where state can represent physical aspects of the organ-
ism, such as its energy reserves, or other changeable prop-
erties of the individual, such as its number of successful
matings) [1,2]. These changes in the organism's state are
then linked to changes in some measure of its fitness
(such as lifetime reproductive success). This means that

currency [3]. As well as being used to generate testable pre-
dictions about the behaviour of individuals (see [4-8] for
some examples of successful tests), these state-dependent
techniques have also been extended to consider interac-
tions between individuals, using game-theoretic tech-
niques. For example, state-dependent dynamic games
have examined competition between animals over
resources [9], games between predators and prey [10], sig-
nalling [11-14], mate choice [15], social foraging [16-19],
aggregation behaviour [20], and parental care [21-23].
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In evolutionary and behavioural ecology, one area that
has been the focus of a great deal of attention recently is
how groups of animals come to make combined decisions
(behaviours by individuals within a group that are
dependent upon belonging to the group, and which may
have effects upon both themselves and other individuals
within the group) [17,24]. State-dependent dynamic
games are an important theoretical tool for examining
decision-making processes by the individuals within a
group, where the inclusion of state components allows us
to add a degree of complexity and realism that is lacking
from state-free game theory (e.g. [25,26]). However,
although state-dependent dynamic games are extremely
powerful in the range of predictions that they are able to
make, they can be difficult to analyse. In most of the cases
listed above, the models are solved numerically rather
than analytically. This usually means that sensitivity anal-
ysis then has to be conducted using a wide range of
parameter values, and the results of these analyses have to
be summarised in some manner that gives insight into the
behaviour of the model. This can be done by visually
comparing the policies generated for meaningful trends
(see, for example, [21,22]), or by using the policies gener-
ated to simulate the behaviour of individuals within a
population, and then comparing these predicted behav-
iours in response to different parameter values ([17] gives
an example where both policies and population behav-
iours are examined).

When we look at group decision-making strategies, it is
important for us to know how decisions are being made,
and who is making them. It is possible to explore this
using dynamic game models. For example, Rands et al.
[17] developed a game in which a pair of individuals fol-
lowing identical state-dependent strategies spontaneously
separate into different decision-making roles based upon
random fluctuations in their state (one member of the
pair becomes the 'leader’, initiating all changes in behav-
iour, whilst the other 'follower' individual copies its
actions). These roles can be defined more rigorously by
reference to the degree of independence that an individual
shows in its actions: in the model described in [17], we
can define the 'leader’ as the 'individual whose actions are
less dependent upon the actions and/or state of its co-
player', and the 'follower' as the 'individual whose actions
are more dependent upon the actions and/or state of its
co-player' (Note that we use 'leader' here specifically to
refer to the individual whose actions are more likely to
determine the combined actions of the pair — by using the
term, we do not imply any other special properties of the
individuals such as dominance. See [27] for further dis-
cussion of leadership terminology.) In [17], it was rela-
tively straightforward to assess which individual would
become the 'leader', because the policies generated were
not difficult to interpret. However, more complex models
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are very likely to throw up policies that are less easy to
decipher.

The potential complexity of the results generated by state-
dependent dynamic games needn't be a barrier to using
them as tools for investigating group decision-making and
social behaviour, provided we are able to develop tech-
niques for quantifying and comparing pertinent aspects of
the models, such as the degree of autonomy different indi-
viduals have in determining their behaviour. In this
paper, we develop two statistics for quantifying the degree
of independence that individuals show in a two-player
game. Using these statistics give us a new tool for investi-
gating decision-making processes using state-dependent
dynamic games.

Results and discussion

To generate our independence statistics, we first assume
that the solution has been found to a game between two
players. Within this game, each animal in the pair per-
forms a behaviour at a given moment in time. For simplic-
ity, we assume here that a behaviour is the probability of
performing one of two possible actions, and we refer to
this behaviour as the 'principal action'. As an example, the
model developed in [17] examined individuals who could
either forage or rest, and so if we define 'rest' as the prin-
cipal behaviour, if p,, = 0.25 for a pair of players in states
x, y, the focal player should rest 25% of the time, and for-
age 75% of the time (the chance of conducting the princi-
pal action is defined with a continuously-distributed
percentage here, rather than being limited to 0% or 100%,
as we are assuming that the behaviours defined in our pol-
icy are of the 'responses with error' form defined by McNa-
mara et al. [28]). Note that although the statistics we
derive are dependent upon the distributions of states and
responses to those states in a two-player example, they
could easily be extended to consider multi-player games.

In the game, both players possess a changeable quality
that is defined by a state variable. For convenience, we
define the state variable of the focal player as x, and that
of its co-player as y. The solution to the game defines a
behavioural response (usually taken to be the optimal
response, although this is not an essential condition for
the statistics derived here) for each player based on the
current state value of both itself and its co-player, and so
for a focal player in state x with co-player in state y, its
action is p,, as defined by the game's solution. We refer to
the full set of behavioural responses for all possible com-
binations of state pairs as the 'policy' of an individual. For
simplicity, we assume that there is no dependence upon
time in this example, meaning that the players are follow-
ing the same policy at each decision period, and their
actions are only dependent upon the current state of their
co-player (note that the techniques described could be
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extended to consider time, if time is included as a state-
variable). Note also that the statistic we derive is inde-
pendent of the measures of fitness used to derive the pol-
icy (in order to assess the effects of decision making upon
fitness, it is necessary to consider the canonical costs of
making errors, as discussed in [3]).

We also assume that the expected state distribution of a
stable population has been determined, for instance by
forward-running a population of player pairs following
the calculated policy using a Markov-chain process [2], or
by calculation [1]. We therefore know that for any state
pair x, y, the proportion of the current population in that
state pair is d,,, where 2, d,, = 1.

Statistic I: C, based upon the absolute size of a mistake
made when estimating behaviour

Our first statistic considers a situation where the focal
individual knows its own state x, but does not know the
state of its co-player y. Although the focal knows its own
state, its policy may define a large range of possible behav-
iours in response to the possible states of its co-player.
Although exact information about the co-player's state
doesn't exist, it is possible to calculate the probability that
the co-player is in each state y because we have already cal-
culated the expected state-distribution of the population.
Therefore, we can calculate g, a 'best guess' as to the
behaviour to conduct based upon weighting the policy-
determined behaviours for all possible co-player states by
the probabilities that the co-player is in those states (note
that this 'best guess' is not equivalent to the optimal
behaviour in the absence of information about the co-
player's state, since the costs of making errors are not
taken into account). Therefore, this best guess represents
the behaviour that maximises the proportion of time that
the focal individual in any state x responds in the appro-
priate manner (as defined by its policy) to a co-player in
state y, despite the focal player not being able to assess y.

Based on the likelihood of the pair being in states x, y, the
best guess is calculated as

8= 2y (Pydy) /Lyl (1)

The statistic C quantifies the 'incorrectness' of this best
guess. For a state pair x, y, the 'incorrectness' of a best guess
is given by

|gx_ pxy| (2)

For a focal individual in state x, the size of the worst mis-
take it can therefore make is the maximum value of g, and
1 - g,. Therefore, recalculating eqn. 2 as
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|gx _pxy|
max (g1~ 8y )

(3)

gives us the size of the mistake made at x, y relative to the
worst mistake possible. For a given value of x, we can sum
this over all values of y (adjusted accordingly for the pop-
ulation distribution) to calculate the severity of the mis-
take made when the focal individual is in state x. In this
way, we can calculate an overall incorrectness statistic C,
considering all possible state pairs and their distributions,
as

|gx_pxy|

— |d
max ( gy, 1- g )

- (4)

C= zx’y

C defines the degree of independence an individual has in
its actions. If C = 0, then even when the co-player's state is
unknown, the focal player's 'best guess' as to the action
specified by its policy is always correct. This implies that
its actions are completely independent of the co-player's
state. By contrast, if C = 1, the focal individual's best guess
is no better than if it were to make the worst mistake pos-
sible, implying that its actions are maximally dependent
upon the state of the co-player.

The necessity of using eqn. 3 instead of eqn. 2 becomes
apparent with a few examples. Consider a state distribu-
tion in a population of pairs in which the focal players are
all in the same state, whilst 50% of the co-players are in
state 1, and the other 50% are in state 2. If we represent
the state-dependent policy set of the focal individual as p,
= {b,, b,} where b, is the likelihood of performing a set
behaviour if the co-player is in state i, then it is straightfor-
ward to show that if p,= {0,0} orp,= {1, 1}, then C=0,
meaning that the actions of the focal player are not
dependent upon the state of its co-player. If we consider
an adjusted version of the incorrectness statistic, C' =
218 - Py |)d,, which uses eqn. 2 instead of eqn. 3, C' is
also equal to 0.

The inherent problem with using eqn. 2 is more apparent
if we consider p, = {0, 1}. This is the policy where the focal
can make the greatest potential mistakes if it is unable to
assess its co-player's state, where it performs the principal
behaviour 50% of the time, and consequently performs
the behaviour that is appropriate to its co-player's state
50% of the time. For this policy, we find that C=1 and C'
= 0.5. Now compare this to a policy p,= {0, 0.5}. If the
focal player is again unable to assess its co-player's state, it
should perform the principal behaviour 25% of the time,
and will therefore be performing the behaviour that is
appropriate to its co-player's state 66.7% of the time. The

Page 3 of 10

(page number not for citation purposes)



BMC Evolutionary Biology 2006, 6:81

statistics for this policy are C = 0.667, and C' = 0.75. We
see here that C' is therefore not a useful statistic, as it
increases despite an decrease in the inaccuracy of the
choice made. On the other hand, C accurately reports the
decrease in incorrect choice-making.

Statistic 2: S, based upon the information provided about
a player's likely behaviour by knowledge of the co-player's
state

The previous case defined a statistic that quantifies how
dependent the actions of an individual are upon the state
of its co-player by calculating the degree to which its abil-
ity to correctly respond to its co-player is reduced when it
lack information about the co-player's state. Instead of
using C (which is arbitrarily based upon the size of the
maximum mistake possible), we can instead compare the
uncertainty of an observer about an individual's likely
behaviour, when the observer has and when it does not
have knowledge of the co-player's state (we assume that in
both cases the observer knows the state of the focal
player). The difference between these two values, i.e. the
reduction in uncertainty due to knowledge of the co-
player's state, provides another measure of the extent to
which the focal player's behaviour is influenced by the
state of its co-player. This statistic relies upon quantifying
the ability of an observer to predict the behaviour of a
focal individual in a given state in the cases where the
observer does or does not know the exact state of the co-
player.

These measures are relatively straightforward to quantify.
We base our definitions of uncertainty on the measure of
uncertainty (or entropy) defined by Shannon and Weaver
[29] (see [30] for discussion of error and noise in an evo-
lutionary context). For an individual in state x with a co-
player in state y, we can calculate an observer's Shannon-
Weaver uncertainty regarding the individual's choice of
action as

0 ifpx), =0,
U(pxy): —[px},logszy+(1—pxy)log2(1—px),)] if 0<pyy <1, (5)
0 ifpy, =1.

Note that this measure gives a minimum value of 0 when
the p,, is 0 or 1 (and therefore the observer can predict
exactly the behaviour that will be performed), and a max-
imum value of 1 when p,,is 0.5 (and the observer is most
likely to incorrectly guess the behaviour the focal individ-
ual will perform). Using eqn. 5, the expected uncertainty
of the observer when it has perfect knowledge of the co-
player's state can be calculated as

U =3,U(p,)d,. (6)
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We can calculate in a similar way the observer's uncer-
tainty about the behaviour of the focal player, when it (the
observer) does not know the state of the co-player. If the
focal player is in state x, the probability with which it per-
forms the principal action (averaging across all possible
state values of the co-player, weighted according to their
probability) is g, and so the uncertainty regarding its
behaviour is

0 ifg, =0,
U'(8:) =4[ 8xlogs g +(1-8x )loga (1-g,) | if0<gy <1, (7)
0 ifg, =1.

The expected uncertainty for an observer with no informa-
tion about the co-player's state is therefore

0=% U (8)( 2, dy ) (8)

Having calculated the mean uncertainties when the
observer does and doesn't know the co-player's state, we
can use the absolute difference between these values to
determine how uncertainty changes with knowledge of
the co-player's state, giving the statistic

S=0' -0 (9)

If there is no change in uncertainty, S = 0, that implies that
a player's actions are completely independent of the state
of its co-player. If S is greater than 0, this means that
knowing the co-player's state allows us an observer predict
the behaviour of the focal individual with a greater degree
of success, which implies that the actions of the focal
player are to some extent dependent upon the state of the
co-player. S can reach a maximum value of 1, which
would imply that the focal player's behaviour is com-
pletely dependent upon the state of its co-player (such
that the observer can predict what action it will take with
perfect accuracy when the co-player's state is known, but
can do no better than guessing at random when the co-
player's state is unknown).

Comparing the statistics

Both C and S give broadly similar summaries of the degree
of independence shown by individuals. Table 1 gives a
number of examples based upon the policy sets and pop-
ulation distributions given in Figure 1 (the exact shape of
each of the policies and distributions are detailed in the
figure legend). Policies a-c are completely independent of
state, and give C and S values of 0 regardless of the popu-
lation distribution. Policies d and e are dependent upon
the state of the co-player but not the state of the focal indi-
vidual, and give differing values of C and S based upon
the population distribution. Note that for a population in
which pairs of individuals are distributed evenly across all
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Table I: C and S values for all the policies and distributions illustrated in Figure |

population distribution

| 1l 11l v \ Vi
policy C S C S @ C S C S C S
a 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
b 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
c 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
d 1.000 1.000 1.000 1.000 0.524 0.830 0.750 0.950 0.812 0.966 0.931 0.994
e 0.500 0811 0.500 0811 0.143 0.371 0.312 0.620 0.699 0.922 0.493 0.800
f 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
g 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
h 0.375 0.608 0.286 0.464 0.108 0.278 0.187 0.385 0.476 0.613 0.368 0.591
i 0.526 0318 0.526 0318 0.319 0.237 0.423 0.294 0.459 0.296 0.494 0310
j 0411 0.369 0.411 0.369 0.203 0.333 0.307 0.368 0.464 0.348 0.401 0.357
k 1.000 1.000 1.000 1.000 0.870 0.981 0.932 0.994 0.900 0.989 0.890 0.987
I 0.462 0.231 0.469 0.233 0.441 0.236 0.455 0.236 0.447 0.224 0.437 0.233

state-combinations (distribution 1), policy d gives a C
value of 1, whilst policy e gives a C value of 0.5 - this cor-
responds to the fact that the best-guess of the focal indi-
vidual is a 50% chance of performing the principal
behaviour with policy d, and a 25% chance with policy e,
which is analogous to the numerical example given above.
The S values in e are greater than 0.5 however, highlight-
ing how the two statistics can differ.

Policies f and g are dependent upon the state of the focal
player, but not the co-player, and so the focal individual's
behaviour should be independent of its co-player: corre-
spondingly, the C and S values are all 0. Policy h gives a
typical case in which the focal player's behaviour may be
dependent upon the state of both itself and its co-player,
and we can see that the C and S values of this policy are
intermediate between those of policies ¢ and g. Policies i
and j demonstrate that these statistics can also be used to
consider policies with continuously distributed likeli-
hoods of performing behaviours - these particular cases
are dependent upon the state of the co-player but not the
focal player itself, and should be compared to policies d
and e. Finally, policies k and I demonstrate the sorts of C
and S values expected for a randomly generated discrete
and continuous policies.

In describing C, we used a simple example model where
the focal player was always in a single state, and its co-
player could be in one of two possible states. In Figure 2,
we show how the values of C and S calculated for this sim-
ple example change in response to changes in the focal
player's policy (represented by the changes in b; within
each panel, and b, between each panel). This figure shows
that C may be more sensitive than S to detecting small
improvements in predicting how dependent an individ-
ual's actions are upon its co-player's state (shown by the
more rapid increase in C than in S in the region of the
graphs where C or S is close or equal to zero). This sug-

gests that C may be a more useful statistic to use when it
is likely that there is little dependence of players' actions
on those of their co-player. S, on the other hand, gives a
much smoother convex shape, which may be more useful
at detecting small changes in dependence of action
between policies where dependence is going to be high.

The panels of Figure 3 show how C and S change in
response to differing probabilities of the co-player being
in each of its possible states in the simple example
described. This figure demonstrates that if we change the
state-distribution within the population, the values of C
and S will change, and the values of these statistics will be
low if the state distribution is highly skewed within the
population (as in the top and bottom panels of Figure 3
where d;; = 0.125 or 0.875), meaning that we should take
the distribution of states into consideration if we are com-
paring the statistics gained for a range of different policies
with separately calculated stable population distributions.
Therefore, it may be sensible to combine the S or C statis-
tic with some other measure of state distribution within
the population.

In this paper, we have presented two statistical measures
that both give a means of measuring how dependent the
actions of a pair of players are on each other within a state-
dependent dynamic game, by comparing some measure-
ment of an individual's ability to respond appropriately to
its co-player when information does or does not exist
about the exact state of that co-player. In the first statistic
C, this measure involved quantifying the change in the
focal player's ability to respond correctly to its co-player,
whilst the second statistic S quantified the change in the
amount of uncertainty an observer faces in predicting the
response of the focal individual to its co-player. As can be
seen from these examples, C and S give broadly similar
results (although they are quantitatively different), and so
we leave it to the reader to decide which of these statistics
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state of co-plaver (y) —————

.....................................

..............

INENEEEEEEEEE .

state of focal individual (x) ———

Figure |

Policy sets and distributions used as illustrations. Policy sets used to illustrate the statistic are given in figures a — I, and
distribution sets used are given in figures | — IV: see the Methods section for a full description of the policy and distribution
sets. For both types of figure, the 20 x 20 squares represent the policy or distribution for focal individuals with 20 possible
states (where a given individual is in state x) paired with co-players with 20 possible states (where a given individual is in state

y)-
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Figure 2

Changes in statistics for a toy model, in responseto
policy changes. Changes in C (dark line) and S (light line)
for a focal player with a single state (x = 1) in response to
changes in the likelihood of a co-player performing the target
behaviour b, if is in the first of two possible states (y = 1), for
the simple toy model described in the text. The graphs show
changes in response to differing values of b, (the likelihood
the co-player conducts the target behaviour when it is in its
second state). In all graphs d;;, = 0.5 and d,, = 0.5.
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Figure 3

Changes in statistics for a toy model, in responseto
changes in population state distribution. Changes in C
(dark line) and S (light line) for a focal player with a single
state (x = |) in response to changes in the likelihood of a co-
player performing the target behaviour b if is in the first of
two possible states (y = |), for the simple toy model
described in the text. The graphs show changes in response
to differing values of d,, (the proportion of a population of
player pairs where the focal player one is in state | and its
co-player is in state 1). In all graphs b, = 0.3.
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they prefer to implement. We do however suggest that S
may be more meaningful biologically:C is defined relative
to the size of maximum mistake that an individual can
make when it is in any given state, and is thus scaled to
give a numerical value ranging between 0 and 1. S also
gives a numerical value between 0 and 1, but is based
upon concepts from information theory that capture how
individuals use (or fail to use) the information available
to them within the structure of the state-dependent policy.
As described above, C may be more sensitive to differ-
ences in policy in situations where there is likely to be lit-
tle dependence of a player's actions upon those of its co-
player, whilst S may be more sensitive when it is very
likely that there is dependence.

This is demonstrated in the output given in Figure 4, for a
sample set of results from the symmetric two-player game

0.8 -
T A
A A A A [}
%o.e— . A
g A " xmow
2041
(o]
E mC A
$ 021 AS
O L T T T 1
0 2 4 6 8 10

predation risk (x 107)

Figure 4

Example of statistics being used to explore the
results of a two-player dynamic game. This example
uses the forage-rest dynamic game detailed in the appendix
of [17] (note that the parameter values given here purely for
the purpose of illustration, and the reader is referred to this
paper for an explanation of their meaning). The optimal pol-
icy and stable paired state distributions were generated for
nine parameter sets, where the predation risk of foraging
together my (shown here as the value on the 'predation risk’
axis) varies between being equal to the predation risk when
resting my (set here at 2 x 107, equal to the left-most value
of m;) and being equal to the predation risk when foraging
alone m, (set here at 10 x 107, equal to the right-most value
of my). This means that when m;= m,, there is no fitness
advantage to an individual basing its actions upon the state of
its co-player. Following the notation of [17], the other model
parameters are set at ¢, = 3.0 state units, g, = 6.0 state
units, k = 10-12, A = 0.01, u= 1.5 state units, pgz = 1.0 state
units, v, v, = 4.0 state units, y,, y, = 1.0 state units, maxi-
mum state possible = 20 state units, 65, 6z = 0.5 state units.
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described by Rands et al. [17]. In the paper, the authors
note that output of the model shows the actions of the
two players are relatively independent of state in cases
where there is no fitness advantage to conducting an
action together, but should become more dependent
upon knowing the state of both players when there is
some advantage to conducting a behaviour together. In
Figure 4, the value of 'predation risk' given on the right-
hand side of the graph corresponds to a case where there
is no fitness advantage to conducting an action together;
as the value of predation risk falls below this value, there
is an advantage to foraging together. The values of both C
and S in Figure 4 show that the quantified dependence of
actions changes when the fitness advantage of conducting
an action together is changed, but the statistic S gives a
better illustration of the immediate shift from relative
independence (with a value of S » 0.3 when the 'predation
risk' is set at 10 x 10°7) to greater dependence (with a value
of S = 0.6 for values of 'predation risk' lower than 10-7).
Therefore, we suggest that S is a more sensitive statistic in
this case, where players are likely to show a high degree of
dependence of action upon the exact level each others'
state.

The examples discussed above (such as the foraging game
described in [17]) focus on cases where both players in the
game are identical, and so the polices generated are sym-
metrical. However, these statistics should be especially
useful in two-player games where the two contestants
have different roles (and so the strategies of the two play-
ers are potentially asymmetrical). For example, in games
considering the parental care strategies of the male and
female in response to each other [1,21-23], these statistics
would give us a means of identifying exactly how depend-
ent each player is on the actions of its partner. This would
allow us to go beyond identifying ecological conditions
where biparental care is favoured over desertion by one of
the parents, and consider the degree to which partners are
affected by both the actions of their partner and the eco-
logical and life history constraints that they experience.

Similarly, in games between predators and prey (such as
that developed by Alonzo [10]), we could use these statis-
tical measures to explore the degree to which predator
behaviour is determined by the state of the prey, and vice
versa. We could, for example, use this to explore how dif-
ferences in the size and energetic requirements of preda-
tors and prey affect their strategies: how do predators
feeding on similarly-sized prey items differ from those
that eat prey that are usually much smaller or larger than
themselves? As an extreme case, we could consider the
relationship between a parasite and its host as an
extremely asymmetrical game (for discussion of state-
dependent modelling of parasite behaviour and life his-
tory strategies, see [31,32]): parasite behaviour is likely to
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be extremely dependent upon host state, but would it be
optimal for an infected host to respond to the state of its
parasites, given that it is already infected? Using these sta-
tistical measures to quantify the degree of dependence of
each player on the state of the other may yield valuable
insights into the evolution of antagonistic relationships
within and between species.

Conclusion

We can see from the examples given that these techniques
give useful and relatively straightforward methods of
assessing the independence of an individual's action from
the output generated by a state-dependent dynamic game.
The statistics we describe here give us a means of quanti-
fying the effects of changing the parameter values of
dynamic game models, and consequently a means of
exploring the effects of both the environment and the life
history traits of the players (dependent upon the assump-
tions made in formulating the model). These summary
statistics should be useful for assessing consensus decision
making, leadership decisions, antagonistic relationships,
and other situations in which there is a potential conflict
of interest between individuals that base their decisions
upon some aspect of the states of their group's members.

As well as giving us a means of quantifying the effects of
changing parameters upon these group processes, they
should allow us a means of comparing how policies and
their associated stable distributions of individuals change
in response to sensitivity analysis, which should contrib-
ute to our use of these models to identify behavioural
rules that can then be explored both experimentally and
theoretically [8,33,34].

Methods

The statistics used in this paper are developed and
described in the 'results and discussion' section above. For
illustrative purposes, these statistics are used to explore
the policy and distribution sets outlined in figure 1. These
sets were created according to the rules detailed below.

In the policy sets, a white square represents 'perform prin-
cipal behaviour with a probability of 1.0' and a black
square represents 'perform principal behaviour with a
probability of 0.0' (which means the alternative behav-
iour should be performed with a probability of 1.0). Grey
squares represent the corresponding continuum between
performing the principal behaviour at 0-100% of the
time. Policies illustrated represent: a) never perform the
principal behaviour; b) always perform the principal
behaviour; ¢) perform the principal behaviour 50% of the
time, regardless of state; d) behaviour is dependent upon
the co-player's state — 'only perform the principal behav-
iour if y < 10'; e) behaviour is dependent upon the co-
player's state — 'only perform the principal behaviour if y

http://www.biomedcentral.com/1471-2148/6/81

<5'; f) behaviour is dependent upon personal state — 'only
perform the principal behaviour if x < 10'; g) behaviour is
dependent upon personal state - 'only perform the prin-
cipal behaviour if x < 5'; h) behaviour is dependent upon
the state of both individuals - 'only perform the principal
behaviour ifx <5 ory < 5'; i) the probability of performing
the principal behaviour is dependent upon personal state,
at 1 - ((x - 1)/19); j) the probability of performing the
principal behaviour is dependent upon personal state, at
1-((x-1)/19)2 k) for any given state pair, the likelihood
of performing the principal behaviour is either 0 or 1
(chosen randomly with a uniform distribution), with the
additional constraint that g, = 0.5 for all x; 1) for any given
state pair, the likelihood of performing the principal
behaviour is between 0 and 1 (chosen randomly with a
continuous uniform distribution), with the additional
constraint that g, = 0.5 for all x.

For the population distributions, shading represents the
distribution of pairs within the population, with darker
squares representing higher densities at a pairing. Distri-
butions illustrated represent: 1) uniform distribution of
pairs across all state combinations, where d,, = 1/400; II)
population where focal individuals are more likely to
have lower state values, where d,,,= (20 - x)/4200; I1I) pop-
ulation where co-players are more likely to have higher
state values, where d,, = y/4200; IV) population where
focal individuals are more likely to have lower state val-
ues, and co-players are more likely to have higher state
values, where d,, = (20 - x +y)/8000; V) state distribution
similar in form to those found by Rands et al. [17]; VI)
randomised state distribution. Note that shading is purely
for illustrative purposes, and should not be compared
between the distributions.
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