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Abstract

Background: The structure and evolution of hybrid zones depend mainly on the relative
importance of dispersal and local adaptation, and on the strength of assortative mating. Here, we
study the influence of dispersal, temporal isolation, variability in phenotypic traits and parasite
attacks on the male mating success of two parental species and hybrids by real-time pollen flow
analysis. We focus on a hybrid zone population between the two closely related ash species Fraxinus
excelsior L. (common ash) and F. angustifolia Vahl (narrow-leaved ash), which is composed of
individuals of the two species and several hybrid types. This population is structured by flowering
time: the F. excelsior individuals flower later than the F. angustifolia individuals, and the hybrid types
flower in-between. Hybrids are scattered throughout the population, suggesting favorable
conditions for their local adaptation. We estimate jointly the best-fitting dispersal kernel, the
differences in male fecundity due to variation in phenotypic traits and level of parasite attack, and
the strength of assortative mating due to differences in flowering phenology. In addition, we assess
the effect of accounting for genotyping error on these estimations.

Results: We detected a very high pollen immigration rate and a fat-tailed dispersal kernel, counter-
balanced by slight phenological assortative mating and short-distance pollen dispersal. Early
intermediate flowering hybrids, which had the highest male mating success, showed optimal sex
allocation and increased selfing rates. We detected asymmetry of gene flow, with early flowering
trees participating more as pollen donors than late flowering trees.

Conclusion: This study provides striking evidence that long-distance gene flow alone is not
sufficient to counter-act the effects of assortative mating and selfing. Phenological assortative
mating and short-distance dispersal can create temporal and spatial structuring that appears to
maintain this hybrid population. The asymmetry of gene flow, with higher fertility and increased
selfing, can potentially confer a selective advantage to early flowering hybrids in the zone. In the
event of climate change, hybridization may provide a means for F. angustifolia to further extend its
range at the expense of F. excelsior.
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Background

Hybrid zones, where lineages differentiable by one or
more heritable traits meet and intercross, provide unique
opportunities for studying the nature and dynamics of
barriers to gene exchange. The evolution of these barriers
can have many different outcomes, including divergence
of populations leading to speciation, collapse of differen-
tiated populations, hybrid speciation or invasion. The
structure and evolution of hybrid zones depend mainly
on the relative importance of dispersal, local adaptation
and the fitness of hybrids [1,2], influencing the strength of
reproductive isolation. For example, with relatively high
dispersal between adjacent populations, gene exchange
between species is prevented only if local adaptation is
sufficiently strong to eliminate hybrids. Temporal isola-
tion is a particular ecological isolation process that can
result from divergent adaptations and cause assortative
mating by itself. It involves differences in reproductive
timing and can be the result of behavioral or developmen-
tal schedule divergences [3,4]. In this study we focus
mainly on the role of dispersal and temporal assortative
mating in shaping the mating patterns in a plant hybrid
zone population, and on the relative male fitness of
hybrids and parental species.

Pollen dispersal is an important factor influencing the
dynamics and evolution of plant populations (e.g. [5,6]).
In particular, the frequency of long-distance dispersal
events can have strong effects on the distribution of
genetic diversity by connecting distant demes in metapop-
ulations [7,8]: in contact zones, it may have important
consequences because it can break down the genetic integ-
rity of locally adapted populations and counter-balance
the strength of selection. Several processes can limit gene
flow despite long-distance dispersal, and thereby increase
the efficiency of response to selection. High selfing rates
for example may preserve genetic integrity of well-adapted
populations, but on the other hand they can also generate
inbreeding depression and reduce the effect of selection
[9-11]. In plants, temporal assortative mating is usually
due to flowering time differences, which can also impede
gene flow despite sympatry. If parental species are adapted
to different habitats in parapatry, divergence in flowering
time can be reinforced in the contact zone, thereby pre-
venting gene flow and maladaptive hybridization. Exam-
ples of this can be seen in natural populations of Agrostis
tenuis and Anthoxanthum odoratum at mine boundaries
[12] and in A. odoratum growing under different treat-
ments in the 150-year old Park Grass Experiment [13]. In
contrast, if divergent flowering times are selected in allo-
patry by different environmental factors, they may overlap
in sympatry if intermediate ecotones exist [3] or in the
case of habitat disturbance (e.g. [14]). If hybrids do not
suffer reduced fitness, the only way to maintain temporal
isolation is a variation of selection regimes through the
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reproductive season [15]. Indeed, as flowering times are
often highly heritable, assortative mating due to flowering
phenology can strongly influence the response to selec-
tion, for example it can increase the rate of response to
directional selection [16,17]. Moreover, in the case of
strong temporal isolation, high selfing rates can provide
reproductive insurance and thus contribute to maintain
this isolation.

Local scale studies involving cross-generational
approaches with molecular markers are known to be use-
ful for exploring the interactions between selection, assor-
tative mating and dispersal in natural hybrid populations
[18]. However, very few recent studies have used methods
such as paternity or mating system analyses to estimate
the importance of assortment and/or heterogeneity in
mating success in structuring hybrid zones of plants (e.g.
[19-21]) or animals (e.g. [22]). Detecting temporal assor-
tative mating, i.e. the correlation in flowering time
between pollen donors and recipients, can be accom-
plished at a local scale by paternity analysis [23]. Here we
extend a recently developed mating model [24] to esti-
mate the level of temporal assortative mating, along with
other important parameters involved in the evolution of a
hybrid zone population between two closely related forest
tree species.

The two European ash species Fraxinus excelsior L. and F.
angustifolia Vahl have separate distributions in France but
occur in sympatry in several contact zones where they
hybridize [25], although they show completely disjoint
flowering phenologies in allopatry [26,27]. We previously
showed that the extent of hybridization seems to be lim-
ited by climatic variations in some regions, but intermedi-
ate conditions provide ecotones where hybrids are
widespread, such as in the Loire valley in central France
[25]. Here we focus on one of the populations of this
hybrid zone, in which we have shown that genetic and
morphological differentiation of the adult trees correlates
with differences in flowering times, producing isolation
by time patterns [28]. Individuals with extreme phenolo-
gies appear genetically and morphologically similar to
one parental species, while intermediate flowering indi-
viduals cluster into several hybrid classes with flowering
dates between those of the two species. Moreover, we
showed that these intermediate flowering hybrids pro-
duced more flowers and fruits over the two years of study.
If these high levels of flowering and fruiting lead to a
higher fitness, we may expect that these hybrid genotypes
will rapidly invade the zone, especially if assortative mat-
ing occurs and/or selfing is frequent. The two parental spe-
cies are known to be outcrossing species (e.g. t,, values
provide outcrossing rates between 0.94 and 1 for F. excel-
sior [29,30], and between 0.95 and 1 for F. angustifolia
[Fernandez-Manjarrés and Gérard, unpublished]) but to
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date, there have been no study examining the level of self-
ing in hybrids.

In this paper, we use a modified version of the mixed-mat-
ing model [24,31,32] to explore the relative importance of
diverse forces influencing the evolution of this hybrid
zone population by estimating jointly: (i) the pollen dis-
persal kernel and the rate of pollen immigration from out-
side the population, (ii) the strength of spatial and
temporal assortative mating, (iii) the selfing rate within
the population, (iv) the relative male fitness through mat-
ing success of the parental species and different interme-
diate flowering hybrids and (v) the effect of different
phenotypic trait variations on male fecundity (i.e. sexual
phenotype, flowering intensity, tree size and fruit produc-
tion), and (vi) the effect of floral parasite infection inten-
sity on the male fecundity. We also estimate the variation
in selfing rates among phenological groups in order to
assess the level of selfing in hybrids compared with the
parental species. Additionally, we study the impact of the
genotyping error rate assumed in the method, as it can
have a strong impact on the estimation of relative mating
successes [33,34].

Results

Joint estimation of the dispersal kernel, temporal
assortative mating and male fecundities

Dispersal kernel and immigration

The exponential power dispersal kernel provided here a
better fit than the normal or the exponential kernel and
than panmixia. Note however that the fit of the exponen-
tial power was not significantly better than the exponen-
tial kernel assuming a genotyping error rate of 0% and
0.1% (Table 1). The estimated dispersal kernel was fat-

tailed: the shape parameters (l; ) were lower than 1 (Table
1). Assuming genotyping error rate of 0.1% or 2.5%
decreased the estimates of the scale parameter of the Gaus-
sian and exponential kernels leading to shorter dispersal
distances. In contrast, high genotyping error led to fatter-
tailed exponential power kernel (i.e. with a smaller shape
parameter b) and also to a greater mean dispersal distance
(Table 1 and Figure 1). The estimated immigration rates
decreased when the rate of assumed genotyping errors
increased (Table 1), but was still ~60% for the highest
assumed error rate.

Temporal assortative mating

The complete model 1, which modelled relative flowering
phenology, provided a significantly better fit than the
model without any effect of relative phenology when
accounting for genotyping error (Table 2). The highest
reproductive successes were observed when males flow-
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Log-plot of dispersal kernels estimated under the Gaussian
(dotted lines), exponential (dashed lines) and exponential
power (plain lines) models, without error rate (black) and
with low error rate (dark grey) and high error rate (soft
grey). All kernels were estimated under the complete model
(model 1).

ered slightly earlier than the trees they fertilize (g ; and

2 ,>g,) or when they belonged to the same phenological
group (g, fixed here at 1). Relative male fecundities

decreased as the pollen-recipient trees flowered earlier
than the pollen emitting trees. The fecundity on pollen-
recipient trees that differed from 4 phenological groups
(i.e. g4, the fecundity of F. angustifolia males on F. excelsior

females) was estimated at 0. Accounting for possible gen-
otyping errors did not substantially change the range of
values of g, except for g ,, which was estimated at a

much lower value when no genotyping errors were
assumed (Table 2).

Male mating success of phenological groups

The complete model 2, where the fertility of each pheno-
logical group was estimated over all pollen-recipient trees
regardless of their flowering time, provided a significantly
better fit than the model without any effect of phenology
(P <0.01, P <0.001 and P < 0.001 respectively with 0%,
0.1% and 2.5% of genotyping error). The estimated male
fecundity was significantly higher for phenological group
2 than for all other groups, and the estimated fecundity of
the late flowering "F. excelsior" group 5 was zero when
assuming no error (Figure 2). All other parameters (dis-
persal, fecundity, s and m) did not change compared to
model 1.

Effect of phenotypic trait variations and gall attacks

Flowering intensity and diameter at breast height (DBH)
had a significant effect on the relative male fecundities,
regardless of the assumed error rate (Table 2): male fecun-
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Table I: Dispersal and selfing parameter estimates
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Genotyping Dispersal distribution Parameter estimates LRT
error
-L ~ ~ ~ N df. K P-value
m [Cl] s [CN] b cn d [Cl]

Without Normal 9590.3 0.82 [0.78-0.85] 0.10 [0.07-0.13] - 98 [80-135] | 9.6 < 0.0l
Exponential 9586.1 0.82 [0.78-0.85] 0.10 [0.07-0.13] - 106 [74—164] | 1.2 0.29
Exp. power 9585.5 0.82 [0.78-0.85] 0.10 [0.07-0.13] 0.63 [0.28-1.33] 147 [90-1072] - - -
Spatial panmixia 9612.4 0.81 [0.77-0.85] 0.10 [0.07-0.13] - - 2 538 <00

Low Normal 9565.5 0.72 [0.67-0.76] 0.11 [0.09-0.15] - 90 [72-105] | 25 <105
Exponential 9554.4 0.72 [0.67-0.76] 0.11 [0.09-0.15] - 84 [66—108] | 2.8 0.098
Exp. power 9553.0 0.72 [0.67-0.76] 0.11 [0.08-0.14] 0.59 [0.41-1.02] 119 [70-215] - - -
Spatial panmixia 9615.3 0.73 [0.69-0.78] 0.11 [0.09-0.15] - - 2 124.6 0

High Normal 9207.5 0.63 [0.58-0.67] 0.12 [0.09-0.15] - 78 [68-98] | 454 <1010
Exponential 9188.7 0.63 [0.58-0.67] 0.12 [0.09-0.15] - 84 [68-104] | 7.8 < 0.0l
Exp. power 9184.8 0.62 [0.57-0.67] 0.12 [0.09-0.15] 0.52 [0.38-0.86] 140 [75-233] - - -
Spatial panmixia 9291.0 0.62 [0.58-0.67] 0.12 [0.09-0.15] - - 2 2124 0

Selfing rate (s), immigration rate (m) and pollen dispersal parameters estimated under models | and 2, and confidence intervals at 95% (IC). The
quality of fit was evaluated through the log-likelihood (L) of the data set under each model, and tested by a Likelihood-Ratio Test (LRT) comparing
fits under the nested model and the complete model (Equation 4) with Exp. Power kernel. K is the LRT statistics and d.f. the number of degrees of

freedom. Values of mean dispersal distance estimates (0 ) are expressed in meters

dities were higher for trees with larger DBH and with
larger flowering intensities. No other factor had a signifi-
cant effect, except gall attacks for the assumed error rate of
0.1% (severely attacked trees had lower fecundities),
while fruiting intensity had a marginally significant effect
(P-value = 0.06, higher male fecundity for trees producing
more fruits). The effect of the sexual type was never signif-
icant. The range of estimated relative fertilities did not
change substantially when accounting for genotyping

errors, except f, for flowering intensity, f, for gall

attacks with a high error and all fertilities for sexual type

(particularly f , corresponding to the relative fertility of
males) (Table 3).

Table 2: Temporal assortative mating parameter estimates

Male effective population density
With model 1, we estimated from equation (8) the reduc-

tion of effective male population density ( d oml Aops) When
only accounting for variation in phenotypic traits as 0.32
when the assumed genotyping error rate was set at 0%,
0.24 for a rate of 0.1%, and 0.27 for a rate of 2.5%.

The mean reduction of effective male population density
due to phenotypic traits and temporal assortative mating

was estimated at (Elem/dobs) =0.30,0.23 and 0.27 (with an

error rate of 0%, 0.1% and 2.5% respectively). Among
pollen-recipients, regardless of genotyping error, the high-
est reductions were estimated from the pollen clouds of

Genotyping Parameter estimates LRT
error
A A A A A A A df K  P-value
g4 galcn g, [C1 garcn B g.en Zalcl g, & °
Without 0 0.24 [0.06-0.96] 1.15[0.05-24.78] 0.84 [0.12-5.97] 1.00 0.55[0.10-3.19] 0.59[0.03-10.77] 0 - 5 40 0.57
Low 0 0.16 [0.02—-1.30] 1.44 [0.80-2.59] 1.72[0.92-3.19] 1.00 0.35[0.12-1.01] 0.15 [0.02-1.02] 0 - 5 204 <0.00l
High 0 0.17 [0.08-0.39] 1.41[0.12-16.16] 1.55[0.21-11.25] 1.00 0.51[0.2]1-1.26] 0.07 [0.05-0.09] 0 - 5 370 <105

Assortative mating parameters relative to phenology (g) estimated under complete model (Equation 4) with Exp. Power kernel, and confidence
intervals at 95% (CI). Indices for parameter estimates indicate the difference in number of phenological groups between the two parents (Father-
Mother). The effect of relative phenology was tested by removing it (i.e. temporal panmixia) and comparing to the complete model by a LRT.
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Estimates of relative fecundities of phenological groups, with
or without accounting for genotyping error.

pollen-recipients belonging to the two latest phenological
groups (4 and 5), and particularly that of group 5 (almost
two-fold decrease, results not shown).

Finally, the mean reduction of effective male population
density due to phenotypic traits, temporal assortative mat-

ing and non-random dispersal was estimated to (d ,,,/d;;)

Table 3: Fertility parameter estimates

http://www.biomedcentral.com/1471-2148/6/96

= 0.09, 0.07 and 0.06 with an error rate of 0%, 0.1% and
2.5% respectively.

Selfing rates

The overall selfing rate estimated with model 1or 2 was
10% and was slightly affected by genotyping error (Table
1). It varied among phenological groups (Figure 3) and
among families, as estimated by MLTR: the mean outcross-
ing rate (t,,) was significantly different from 1 within half
of the families, with values ranging from 31% to 88% (i.e.
selfing rates ranging from 12% to 69%). The selfing rate
was close to 20% in group 2 (t,, = 82.7%, standard devia-
tion = 7.7%). In group 3, the selfing rate was estimated at
7% (t,,= 93%, SD = 0.066): the family-level ¢,, values were
significantly different from 1 within 3/8 families, ranging
between 62.5% and 94%. The selfing rate was estimated at
zero in the two latest flowering groups (4 and 5).

Discussion

Methodological insights

According to Araki and Blouin [33], assignment error can
have a strong effect on the estimation of the relative repro-
ductive successes of different groups, particularly by
increasing type II errors (assignment of an untrue parent)
when the proportion of unsampled parents is high. Avoid-
ing these errors is generally difficult [35]. Here, we
accounted for genotyping errors more realistically than
previous methods [36], where a mistyped allele can be of

Genotyping Parameter estimates LRT

error
Phenotypical trait A A I A I df K  P-value

”* fien falen fsten f4ten fsten

Without Flowering intensity 0.06 [0.01-1.117  0.34[0.04-326] 0.91 [0.10-8.02]  0.63 [0.06-6.23] 1.00 4 126 <005
DBH 0 0.21 [0.04-1.02]  0.68 [0.20-2.30]  1.31 [0.44-3.90] 1.00 3 242 <103
Fruiting intensity 0.47 [0.03-827]  0.57 [0.05-6.19]  0.30 [0.03-3.02]  0.35 [0.03-3.47] 1.00 4 26 064
Gall attacks 1.00 1.56 [0.32-7.65] 1.71 [0.52-5.61] 0.41 [0.07-2.21] 0 3 5.0 0.18
Sexual type 0 1.00 0.97 [0.13-7.32] 1.14 [0.16-8.33] - 2 1.4 0.51

Low Flowering intensity 0.27 [0.07-1.02]  0.53[0.19-1.48] 0.92[0.35-2.43]  1.72 [0.66-4.5] 1.00 4 160 <00l
DBH 0 0.28 [0.10-0.78]  0.62 [0.24-1.58]  1.39 [0.61-3.14] 1.00 3 344 <108
Fruiting intensity 0.10 [0.02-0.39] 0.31[0.12-0.85]  0.16 [0.05-0.48] 0.22 [0.08-0.58] 1.00 4 9.2 0.06
Gall attacks 1.00 2.21 [0.80-6.15] 2.48 [1.13-5.45] 0.90 [0.29-2.76] 0 3 8.2 < 0.05
Sexual type 12.01 [1.12-128.30] 1.00 1.14[0.31-420]  0.84 [0.24-2.97] - 322 054

High Flowering intensity 0.18[0.04-079]  0.35[0.10-127] 0.84 [0.26-2.78]  1.67 [0.50-5.63] 1.00 4 352 <105
DBH 0.03[0.01-028]  0.34[0.15-0.79]  0.84 [0.41-1.75]  1.24 [0.62-2.50] 1.00 4 440 <105
Fruiting intensity 0.28 [0.05-1.54] 0.71 [0.20-2.47] 0.37 [0.11-1.26] 0.49 [0.15-1.62] 1.00 4 7.8 0.10
Gall attacks 1.00 2.16 [0.76-6.18] 1.71 [0.85-3.47] 1.50 [0.71-3.17]  0.60 [0.07-5.22] 4 4.0 0.43
Sexual type 12.38 [0.82-186.18] 1.00 1.61 [0.21-12.64] 1.34 [0.17-10.39] - 3 54 0I5

Fertility parameters relative to phenotypic traits and gall attacks (f) estimated under complete model (Equation 4) with Exp. Power kernel. The
effect of each factor was tested by removing the factor and comparing to the complete model with all factors by a LRT. Indices indicate different
levels of each factor (Flowering and Fruiting intensities: | = Anecdotal, 2 = Low, 3 = Intermediate, 4 = Abundant, 5 = Massive; DBH: | = <40 cm,
2=<80cm,3=<120cm,4 =< 160 cm,5=>200 cm; Gall attacks: | = Inexistent, 2 = Low, 3 = Intermediate, 4 = High, 5 = Massive; Sexual type:
| = Pure males (MM), 2 = Hermaphrodites with a high proportion of male flowers (MH), 3 = Hermaphrodites with a low proportion of male
flowers (HM), 4 = Pure hermaphrodites (HH).
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Figure 3

Outcrossing rates t,, estimated from family arrays sampled on
mothers from each phenological group (2 to 5). Standard
errors were computed from 1000 bootstrap replicates over
families.

any size compared to the original allele. Instead, we
assumed that a genotyping error could be only of + 1
repeat unit, which is more realistic for microsatellite loci.

As expected, some estimated parameter values varied with
different assumed rates of error. However, the general
trends remained quite similar: the estimates of dispersal
parameters were relatively stable, and the ranking of rela-
tive phenology parameters, as well as fertility parameters
of various phenotypic trait classes, were barely affected,
except for sexual type. The main difference lay in the sig-
nificance of effects, which was certainly due to the
increased information provided by accounting for geno-
typing errors.

Similarly, the value of the estimated rate of external pollen
(m) when genotyping errors were assumed may be more
reliable than without errors. The very high value (~80%)
obtained when these errors were ignored illustrates a par-
ticular caveat of paternity analyses using microsatellite
markers: higher allele numbers generally produce higher
estimated immigration rates. Indeed, using paternity
exclusion methods, the apparent gene flow was estimated
here between 45% and 55% with four loci, depending on
the level of polymorphism of the selected loci, and
increased up to 70% with six loci (Gérard et al., unpub-
lished results). Increasing the level of polymorphism of
the chosen loci improves the stringency of paternity anal-
ysis, by reducing the rate of multiple assignments and type
IT errors. At the same time, however, more polymorphic
loci increase the risk of overestimating external pollen
flow by increasing the error rate.

http://www.biomedcentral.com/1471-2148/6/96

Homogenizing effect of long-distance pollen dispersal

We found a high level of pollen immigration, even when
typing errors were accounted for (external pollen flow
~60% for the highest assumed genotyping error rate). This
has also been found in other anemophilous forest tree
species such as Pseudotsuga menziesii [37], or Quercus robur
and Q. petraea [38]. Moreover, the best-fitting dispersal
kernels were rather fat-tailed, which appears increasingly
as a common feature in plants, including perennial herbs
(e.g. [39,40]), crops (e.g. [41]) and forest trees (e.g.
[42,43]). Long-distance dispersal may tend to connect dis-
tant populations, homogenizing differentiated gene
pools. Here it is likely to have acted on the evolution of
the hybrid zone of the two Fraxinus species, by connecting
remote populations, increasing local genetic diversity [7]
and possibly counteracting the effect of local adaptation if
assortative mating is not strong enough. This long-dis-
tance dispersal has probably contributed to the creation
and maintenance of a large-scale hybrid zone, as detected
all along the Loire valley [25].

Isolating role of assortative mating and selfing

Spatial assortative mating

Contrary to long-distance dispersal, short-distance disper-
sal may limit gene exchange at a local scale. The estimate
of the shape parameter b of the exponential power kernel
was not much smaller than 1 (the value for an exponential
kernel) and the estimated mean dispersal distance was

quite low (100 < 5 <150m, depending of the typing error
rate). These findings are consistent with a previous study
we conducted in the same population showing that co-
flowering trees were patchily distributed in space [28].
Thus, even if long-distance dispersal takes place at a non-
negligible rate, a substantial number of reproductive
events inside the stand may occur within the patches.
Short-distance may produce pronounced spatial genetic
structure, as previously detected in this population [28].

Temporal assortative mating

The homogenizing effect of long-distance dispersal may
also be counteracted by temporal assortative mating. Even
with incomplete assortative mating, a large part of inside-
stand reproductive events occurred within the same phe-
nological group, which is strengthened by the high level
of selfing. These patterns may contribute to maintain iso-
lation by time patterns [28] and potentially increase the
rate of response to selection [16,17].

One of our main results is that we detected no crosses
between the parental species, as expected considering
their phenologies. Thus, intermediate flowering hybrids
could represent bridges to gene flow in the contact zone,
as described for example for Asclepias species [44]. Inci-
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dentally, the absence of mating events observed here
between the two distinct species raises the question of
how the first hybrids were produced. This could be due to
exceptional events of hybridization between the two spe-
cies, which occur at too low a rate to be detected in our
study. For example, exceptionally hard winters, in which
F. angustifolia individuals may have flowered much later
than usual, as they require particular heat and chill condi-
tions to flower [26], could have favoured the first hybrid-
ization events.

Selfing rates

High selfing rates may also contribute to counteract the
homogenizing effect of long-distance dispersal, and thus
help maintain temporal isolation and increase the success
of well adapted genotypes if they do not suffer strong
inbreeding depression. Indeed, it has been shown that a
mutant exhibiting high selfing rates can invade locally sta-
ble outcrossing populations despite strong inbreeding
depression [45]. The relatively high rates of self-fertiliza-
tion of hybrids may provide an advantage for them in col-
onizing the hybrid zone, as the parental species show very
limited selfing: the estimated rates vary between 0 and 6%
for F. excelsior [29,30], and between 0 and 5% for F. angus-
tifolia (Fernandez-Manjarrés and Gérard, unpublished).
Given the low selfing rates of parental species, the occur-
rence of relatively high rates within intermediate flower-
ing groups is surprising. The hypothesis of pollen
limitation can be excluded for three reasons: (i) the
number of individuals and the mean flowering intensities
were higher in the groups where high selfing rates were
detected [28], (ii) the reduction in effective male popula-
tion density due to fertility parameters and phenology was
smaller in pollen clouds of mothers from group 2 and 3

(Elgm/dobs) =0.31 and 0.33 respectively), and (iii) mothers

showing the highest selfing rates were not those that had
the strongest reduction in their number of effective sires
(results not shown). A possible explanation for this
increased selfing may be a breakdown of epistasis in inter-
mediate flowering hybrids, caused by linkage disequilib-
rium between alleles at loci involved in self-rejection
mechanisms that co-evolved independently within the
two species.

Male mating success of hybrids and parental species

The fertility of hybrids (i.e. the intermediate phenological
groups), and in particular individuals from group 2, is
higher than the fertility of either parental species (Groups
1 and 5). Differences in some phenotypic traits may par-
ticipate in this increased fertility.

http://www.biomedcentral.com/1471-2148/6/96

We found in our previous study [28] that intermediate
flowering hybrids (groups 2-4) produced more flowers
and had a large DBH (Table 4). Here we show that larger
tree diameters and higher flowering intensities increased
male fertility (Table 3), as expected for wind-pollinated
species [46], and also detected in other tree species (e.g.
[24]). This may contribute to increase the fertility of group
2.

Surprisingly, we did not detect any effect of the sexual type
on fertility, probably due to the similar values of siring
success of different classes of hermaphrodites (i.e. individ-
uals with a majority of staminate flowers did not sire more
seeds than perfect hermaphrodites). Thus male mating
success did not depend on the relative proportions of
staminate vs. perfect flowers. Nevertheless, a higher male
fertility of males relative to hermaphrodites was detected
in controlled crosses [47] and natural populations [30] of
F. excelsior. This was retrieved here by the very high relative
male fecundity of pure males estimated with a typing error
rate but it should be nuanced by the very low frequency of
males in the population (2%).

Optimal sex allocation may also contribute to increase the
male fertility of hybrids. Indeed, trees producing many
seeds also had the highest relative male fecundity. Our
results are consistent with classical predictions of sex allo-
cation theory, i.e. a constant optimal sex allocation for
simultaneous hermaphroditism, where individuals simul-
taneously produce male and female gametes [48,49]. Nev-
ertheless, many plant species seem to exhibit a gradual
shift in sex allocation, and thereby in functional gender,
with increasing size [46,50,51]. A positive correlation
between male and female reproductive success has been
detected in very few cases only [52-54]. Here we present a
case where individuals with a high male mating success
also show a high female success. Further long-term work
is required to confirm that this observation remains true
through time and for other hybrid populations.

The higher relative fertility of group 2 may be partly influ-
enced by its lower mean level of gall attacks, compared
with those of the other groups [28]. As gall mites (Erio-
phyes fraxiniflora) infect male ash flowers [55], it is
expected that high attack levels would influence the rela-
tive male fecundity. Indeed, low levels of gall attacks
seemed to have little effect but high rates strongly
decreased relative fecundity.

Asymmetry of pollen flow and evolution of the hybrid zone
Flowering phenology also generates asymmetrical pollen
flow: trees are quite successful in fertilizing the individu-
als with a flowering period that overlaps their own but
starts later. In contrast, they show quite limited success on
the individuals that flower earlier than they do, even if the
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Table 4: Summary of phenotypic trait values in the phenological groups

Group | (Early) Group 2 Group 3 Group 4 Group 5 (Late)
Number of individuals 34 95 62 46 32
DBH 111.85 (9.50) 92.44 (4.71) 77.03 (6.44) 78.80 (7.86) 54.53 (8.38)
Flowering intensity 1.50 (0.13) 2.65 (0.11) 2.69 (0.12) 2.52 (0.16) 1.62 (0.19)
Fruiting intensity 0.65 (0.11) 1.54 (0.10) 1.87 (0.13) 1.83 (0.17) 0.94 (0.21)
Gall attacks 0.35 (0.14) 0.27 (0.08) 0.49 (0.13) 0.67 (0.17) 0.53 (0.21)
Morphology (CDA I) -0.67 (0.13) -0.48 (0.10) 0.12 (0.14) 0.26 (0.17) 0.93 (0.14)

Mean values (standard errors) of different phenotypic traits in the five phenological groups. The data were taken from Gérard et al. [28].
Morphology values are the mean coordinates for the first canonical variable from a Canonical Discriminant Analysis. This analysis was performed on
four morphological variables in populations of the two species and phenological groups (see [28] for further details).

flowering times overlap. This may result from the protog-
yny of the Fraxinus species: early flowering trees may par-
ticipate in reproduction mainly as pollen donors. Mite
attacks may also contribute to the observed asymmetry of
gene flow by pollen since late flowering trees are more
infected than early flowering trees [28]. They may also
favour hybridization, by reducing the male fertility of late
flowering trees. This asymmetry may provide a demo-
graphic advantage to early flowering hybrids because of
the greater distances of pollen dispersal compared to seed
dispersal in forest trees. On the other hand, although F.
angustifolia individuals (Group1) had poor fertility during
the year of study (which is likely due to higher susceptibil-
ity to late winter frosts, also affecting their fruit produc-
tion), they may benefit from favourable years and
contribute significantly to young seedling generations
(Gérard et al. in preparation). Moreover, F. angustifolia
shows reduced dormancy compared to F. excelsior [56],
possibly conferring another demographic advantage.
Thus, the invasive potential of F. angustifolia through
hybridization in this region may be highly modified in the
case of global warming.

Further work, however, is still needed to assess the relative
fitness of seeds produced by different types of individuals,
either selfed or outcrossed. Moreover, as pollen dispersal
seems to occur over large distances, a larger sampling
effort is perhaps needed to get more accurate estimates of
the dynamics of the metapopulation in this hybrid zone.
As the evolution of partially cross-fertile plant communi-
ties is greatly influenced by the strength of assortative mat-
ing and demographic characteristics [57], theoretical work
is also needed to better understand the interaction of
short- and long-distance dispersal and assortative mating,
as well as environmental fluctuations (e.g. climate) in
plant hybrid zones.

Conclusion

Temporal and spatial assortative mating limit gene flow in
this hybrid zone population, even if long-distance disper-
sal should tend to counter-act their effects. Gene flow

between parental species does not occur and intermediate
flowering hybrids apparently represent bridges to gene
flow between them. Early flowering hybrids, which have
the highest male mating success, show optimal sex alloca-
tion which, with increasing selfing rates, can potentially
confer to them a selective advantage in the hybrid zone.
Moreover, temporal assortative mating could contribute
to increasing the rate of response to selection by limiting
gene flow between different classes of individuals.

The asymmetry of gene flow coming from early flowering
pollen donors into late flowering recipients is probably a
key factor involved in the dynamics and evolution of this
hybrid population. If climate warming allows F. angustifo-
lia not to suffer from winter frosts, the presence of hybrids
could contribute to extending its range through this asym-
metry. This study has strong implications for understand-
ing the dynamics of forest hybrid zones and for the
management of forest diversity in a climate change con-
text.

Methods

Focus species and sampling

Common ash (F. excelsior L.) and narrow-leaved ash (F.
angustifolia Vahl) are closely related species [58] with con-
trasted distributions across Europe: F. angustifolia has a
Southern Mediterranean distribution, whereas F. excelsior
occurs at more Northerly latitudes. They are in sympatry
in several regions in France, such as the Loire and Saéne
valleys [25,59]. Both species are post-pioneer forest trees
with a colonizing behavior and a discontinuous spatial
distribution. They require abundant water, especially F.
angustifolia which is often found in low elevation riparian
forests, particularly in central France [59,60]. Both are
protogynous, although anther dehiscence occurs while
the stigma is still receptive, and pollen and fruits are wind-
dispersed. Fraxinus excelsior has a complex trioecious
breeding system: sexual types vary across a continuum
from pure male individuals to pure females, with all kinds
of hermaphrodites in between [47,55,61]. Much less is
known regarding the mating system of F. angustifolia,
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which rather seems to be androdioecious [28]. The species
differ in their phenology: initiation of flowering occurs
between mid-March and early April for F. excelsior, and
between mid-December and late January for F. angustifo-
lia, with larger among-year variation [26,27].

The study site is an unmanaged, naturally regenerated
population covering almost 7 ha, located at Saint-Dyé-
sur-Loire (latitude 47° 39' 10" N, longitude 1° 28' 40" E,
elevation 78 m.a.s.). It is along the Loire river in central
France in a zone of sympatry between the two species (see
[28] for all details on the stand along with a map). The
population was composed of 269 flowering adult trees,
and we observed a unimodal distribution of flowering
dates, which ranged between the extreme phenologies of
the two species. All trees were assigned to one of five phe-
nological groups according to their flowering date (i.e.
bud flush, just before pollen offset, 1 group = 2 weeks).
These five phenological classes were validated by a
Canonical Discriminant Analysis on morphological traits
and microsatellite allelic frequencies, and by linkage dise-
quilibrium estimation within and among groups ([28]
and Table 4). We also measured the diameter at breast
height (DBH), and grouped them into five discrete classes
(< 40 cm to > 160 cm, with 40 cm intervals). We finally
measured for each individual two fitness components, the
flowering and fruiting intensity (each as a visually-
assessed 5-level class variable), as well as the intensity of
floral gall attacks (also as a visually-assessed 5-level class
variable: class 0 includes trees without any gall whereas in
class 4, more than 80% of flowers were infected) (see
Table 4). For each individual, we also recorded its sexual
type, according to one of the four following categories:
MM, MH, HM, HH, which correspond either to pure
males (MM) or to three types of hermaphrodites, with
either a majority of male flowers (MH) or a majority of
hermaphroditic flowers (HM) or only hermaphroditic
flowers (HH). We followed the classification of Morand-
Prieur [30], who also observed three additional categories
of trees (three types of females) that we did not observe
here.

We harvested 432 seeds on 27 fruiting trees (16 seeds per
tree) in the autumn of 2003. The distances between the
sampled mother trees ranged from 14 to 1775 m, with a
mean of 538 m. We tried to sample individuals of each
phenological group, but the earliest flowering trees (first
group) did not produce sufficient numbers of fruits. Seeds
were rehydrated and sterilized as described in Raquin et
al. [62], and embryonic tissues were dehydrated in a 1:1
ethanol-acetone solution. Total DNA was extracted from
dried tissue using a DNeasy® 96 Plant Kit (Qiagen).

All flowering individuals in the population and all seeds
were genotyped at eight microsatellite loci: M-230, FEMS-
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ATL 4, 8,10, 11, 12, 16 and 19 [63,64], under conditions
described by Morand et al. [65] and Gérard et al. [28]. The
theoretic exclusion probability over the eight loci was
0.9995 for the 269 flowering adult trees.

Mating model analysis

Paternity analysis allows one to gauge the heterogeneity in
male fecundity by estimating the effect of ecological and/
or phenotypic variables on this fecundity: for example the
effect of the floral phenotype [66], of the inflorescence
morphology [67] or of the floral phenology [37]. Here we
adapted a mating model developed by Oddou-Muratorio
et al. [24], which stems from the neighbourhood model
[31,32]. This method allows one to estimate jointly the
dispersal curve, level of pollen immigration, selfing rate
and the heterogeneity in male fertility. It avoids type I and
type Il errors occurring in categorical paternity assignment
(for a review see [68]).

Modeling pollen clouds

The model considers that each offspring 0 sampled from a
given mother j, can result either from: (i) self-fertilization
(with probability s), (ii) cross-pollination by a male
located outside the study population (with probability
m), or (iii) cross-pollination by a male sampled within the
study area (with probability 1- m- s).

The probability that an offspring o of mother j, results
from self-fertilization and has genotype g, depends on
inheritance probabilities only:

Py (0. jo) = sT(8,| 85, + 8, ) (1)

where T(g,| ;. . & ) is the Mendelian segregation proba-
bility [69] of the offspring genotype g, given the mother
genotype g; .

The probability that an offspring o of mother j, results
from cross-pollination by a male located outside the study
area, and is of genotype g, depends on the allelic frequen-
cies in the "outside" populations as follows:

Pyyssiae (01 jor AF) = mT(go| 8j, AF)  (2)

where AF corresponds to the allelic frequencies in the
immigrant pollen cloud entering the study population.
These external allele frequencies were inferred here from
the retrieved paternal gametes of all offspring without
compatible male parent within the study population,
using the software MLTR 3.0 [70].

The probability that an offspring o of mother j, results
from cross-pollination by a male I with genotype g, sam-
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pled within the set W of males occurring in the study pop-
ulation, and has the genotype g, depends on the
contribution of male I to the pollen cloud as follows:

Prnsite (0,0, W) = (1_m_5)2 ”jv,l(edfF'G)T(go |gj,)fgl) (3)
le¥

where m;, (0, F, G) is the expected proportion of pollen
emitted by male k in the local pollen cloud that fertilizes
female j, 0,is a vector of dispersal parameters, F is a vector
of fecundity parameters for all phenotypic classes of males
(including parasite attack intensity). In addition to
Oddou-Muratorio et al. [24], we included here a vector G
containing the probabilities of mating between flowering
classes (see below). The proportion n;, depends (i) on the
spatial location of trees (dispersal), via the probability pj,
that a pollen grain emitted by male k travels to mother j,
computed from the dispersal kernel given below, (ii) on
the phenotypic variables, via the fecundity function @, of
male k and (iii) on flowering phenology (assortative mat-
ing) via the probability y;; that a pollen grain is emitted by
male k when the ovules of mother j are receptive, follow-
ing the equation:

Dy Y1iPite

> Qb
le

(4)

”jk

The py's, @'s and v,;'s are computed respectively from the
dispersal kernel and the F and G vectors (see below).

Model for the dispersal kernel

We modeled pollen dispersal using a dispersal kernel
p(.;x, y) that describes the probability for a pollen grain
emitted in (0,0) to participate in the pollen cloud fertiliz-
ing a tree in (x, y) [7,42]. We used the family of exponen-
tial power functions:

b
b N
p(64:%.7) P { - ] (5)
where I' is the gamma function [71]. 0, includes the
parameters a and b for an exponential power dispersal ker-
nel, but only a for a Gaussian or exponential dispersal ker-
nel (for which b is set at 2 or 1 respectively, see [42]). The
shape parameter b affects the tail of the dispersal function
and the scale parameter a is homogeneous to a distance
[72]. The mean distance 3 traveled by a pollen grain under
the kernel p(a, b) is given by:

5 = a1 L) (6)
[(2/b)

For b < 1, the dispersal kernel is fat-tailed [72], i.e. it
decreases more slowly at long distance than an exponen-
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tial kernel, implying the possibility of long-distance dis-
persal. For b > 1 (e.g. b = 2 for the Gaussian model), the
dispersal is thin-tailed, which implies much less long-dis-
tance dispersal events. For 1 <b < 2, the dispersal kernel is
leptokurtic (i.e. a distribution with a high peak and fewer
long-distance events than the Gaussian one) and it is
platykurtic for b > 2 (i.e. a flat-topped distribution) (see
[42]).

For each dispersal kernel, i.e. for each set of dispersal
parameters 0, = (a, b), the probability p;, used in equation
(4) that a pollen grain emitted by male k travels to mother
j is given by py, = p(04 x,-x;, y)-y;). We thus assume that pol-
len emitted by each sampled male tree disperses according
to the same dispersal kernel p(0,; x, y).

Model for male fecundities
Male fecundity was modeled following Oddou-Muratorio
et al. [24], considering discrete classes for both pheno-

typic traits and gall attacks. Denote f! is the relative

fecundity of a male belonging to the cth class of a given
trait i. The fecundity @, of a male k is thus given by fci(k)

where c(k) is the phenotypic class to which male k
belongs. We did not consider any interaction effect
between phenotypic traits and gall attacks: for example,
the fecundity of a male belonging to class c(k) of flowering
intensity (trait 1) and suffering a level e(k) of gall attacks

(trait 5) is thus simply: @, = fcl(k) S fES(k). All relative

fecundities sz 's of the different phenotypic classes of

males are stored in the vector F.

Models for flowering phenology

We modeled the flowering phenology in two different
ways. In model 1, we modeled the relative flowering phe-
nology considering the phenological differences between
pollen-emitting and pollen-recipient trees to assess the
strength of assortative mating. In that case, we define g, as
the relative male success of a tree at siring offspring on
another tree when the phenological difference between
the two trees is d. The relative male fecundity y,; of tree k
on tree j is thus g, where d(kj) is the difference in phe-
nology between pollen-emitting tree k and pollen-recipi-
ent tree j, d(kj) being zero if k and j flower simultaneously,
positive if the pollen-emitting tree k flowers before the
pollen-recipient tree j and negative if k flowers after j. The
vector G contains all g;'s.

In model 2, we applied to the phenology the approach
described above for other phenotypic traits to assess the
overall relative male mating success of the different phe-
nological groups on all mothers of the population. In that
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case, the vector G, containing the relative fecundities of
the different phenological groups, is defined in the same
manner as F.

Joint estimation of the dispersal kernel, male fecundities and
phenological assortative mating

We used a maximum likelihood approach to estimate
jointly the vector of dispersal parameters (8;), the vector
of the relative male fecundities of the different phenotypic
classes and infection intensities (F), the vector of the rela-
tive fecundities of different classes of flowering time or
flowering time differences (G), the selfing rate (s) and pol-
len immigration rate (m). The log-likelihood function of
all observed progenies collected from females, given the
above model is given by:

0
logL(64,F, G, s,m) = 2 IOg[Pself(of Jo) + Pinside (01 jo - V) + Poursie (0, ju/AF):I (7)
o=1

Equation (7) assumes that all fertilization events are inde-
pendent of each other.

Statistical analyses

All analyses described below were performed using Math-
ematica 5.0 (Wolfram Research Inc.). Notebooks are
available upon request from PRG.

Fits

All fits were achieved by maximizing the log-likelihood of
equation (7) following a quasi-Newton algorithm. For the
exponential power dispersal kernel parameters, we esti-
mated the mean dispersal distance 6 and the shape param-
eter b rather than a and b. To ensure numerical
convergence, parameters m and s were transformed
through a logit function [m = em/(1+e™) and s = e/
(1+e%)] and male fecundity parameters were transformed

through fy) = 10/

Confidence intervals

We obtained the 95% likelihood-profile confidence inter-
vals for & and b, by plotting contour plots of the likelihood
function [73]. For the vectors of parameters F and G (male
fecundities and flowering phenology), and for the param-
eters m and s, we derived 95% confidence intervals by
computing the asymptotic Gaussian variance-covariance
matrix, which is the inverse of the Fisher's information
matrix (i.e. the opposite of the expectation of second-
order partial derivatives of the log-likelihood function
with respect to all couples of parameters) [73]. As these
parameters were estimated through a transformation
function, we first computed a symmetric Gaussian asymp-
totic interval for the transformed parameters (m', s' and f')
by using a delta method [73]. We then obtained asymmet-
ric confidence intervals for the parameters of interest (m,
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s, and f) by the reverse transformation of the bounds of
the intervals.

Tests

We tested for the effect of dispersal kernel, spatial and
temporal non-random mating, and of the variation in
phenotypic traits and gall attacks on male mating success,
by building several corresponding nested models from
equation (4) and using likelihood-ratio tests (LRT) in a
type III approach [24].

Effect of genotyping error

To account for possible genotyping error, we re-computed
the Mendelian transition probabilities allowing an error
of + 1 microsatellite repeat unit for genotypes of all males
at all loci (see Appendix). All models described above
were then used with the modified log-likelihood account-
ing for a fixed mistyping rate, either a low rate of 0.01%,
or a relatively high rate of 2.5%.

Effective male population density

The reduction in effective male population density can
have strong consequences: it may for example increase
drift in natural populations and influence the rate of accu-
mulation of beneficial and deleterious mutations [24,74].
In fact, unequal male fecundities and asynchronous flow-
ering may drastically reduce the effective male population
density [74]. Using male fecundities estimated as
described above, we thus estimated the reduction in effec-
tive male population density caused by heterogeneity in
male fecundity under the complete model following
Oddou-Muratorio et al. [24]. This density is defined by d,,,
= N,,, /A, where N, is the effective male population size
(i.e. the inverse of the probability that two pollen grains
come from the same male) and A is the area covered by
the study population. The reduction in effective male pop-
ulation density can be expressed as:

Aoy 1 | ke i=1

d, N 2 (8)
obs no.
Z(chl(k)]

keW\ i=1

)y (ﬁff(k) ]

where d . is the observed male population density, fci(k)

is the fecundity of male k belonging to the cth class of the
phenotypic trait i, and n is the number of traits under con-
sideration. We also estimated the reduction in effective
male population density due to dispersal features and
phenology, including in the above sums all p;'s and all

8a(ij)'S-
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Estimation of selfing rates within phenological groups

We performed a mixed-mating model analysis using the
software MLTR 3.0 [70], to assess the relation between
selfing rate and flowering time, by estimating the mean
outcrossing rates t,, in each phenological group (from the
second to the fifth, because we had no seeds for the first
group) from the multilocus genotypes of the seeds har-
vested on the mother trees, using an EM algorithm. Stand-
ard errors were computed by performing 1000 bootstrap
replicates using families as resampling units. We also esti-
mated the family-level t,, values (i.e. the mean outcrossing
rates among seeds harvested from each mother-tree) [70].
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Appendix

Modelling the genotyping error rate

If o was the error rate and if the paternal allele of the off-
spring was unambiguously known, we assigned as father
with a probability o, a male homozygous for an allele that
differ by 1 repeat unit from the offspring, and with a prob-
ability 1-2a, a male homozygous for the same allele.

This means that in equation 8, the standard transition
probabilities T(g,| 8, &) defined by Meagher (1986)

were replaced by

T(g, | &, /81)= HTloc (go,loc | gjo,loc'gl,loc) . where for

loci
each locus loc, and with the notations from [70]:

DM Dflf2 + DM bflfz
0 [ [ [
Tloc({olroz}|{m1/m2}/{f1/f2}): : 2 s :

’

(1+6

010y )

Oom, +0
with 8= 1ifi=jand 0ifi=j, D)™ = % is
the Mendelian contribution from the mother, without
any mistyping, and the contribution from the father

accounting for possible mistyping:

B - [ (0, 41 +0Bof, 1 + (1= 200)8,7, ) + (0, 41 +0S,p, 1 +(1=20)3,7,) J
fif2 =
2
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