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Abstract
Background: Genetic systems involving multiple X chromosomes have arisen repeatedly in
sexually reproducing animals. Tiger beetles (Cicindelidae) exhibit a phylogenetically ancient
multiple-X system typically consisting of 2–4 X chromosomes and a single Y. Because
recombination rates are suppressed in sex chromosomes, changes in their numbers and movement
of genes between sex chromosomes and autosomes, could have important consequences for gene
evolution and rates of speciation induced by these rearrangements. However, it remains unclear
how frequent these rearrangements are and which genes are affected.

Results: Karyotype analyses were performed for a total of 26 North American species in the highly
diverse genus Cicindela, tallying the number of X chromosomes and autosomes during mitosis and
meiosis. The chromosomal location of the ribosomal rRNA gene cluster (rDNA) was used as an
easily scored marker for genic turnover between sex chromosomes or autosomes. The findings
were assessed in the light of a recent phylogenetic analysis of the group. While autosome numbers
remained constant throughout the lineage, sex chromosome numbers varied. The predominant
karyotype was n = 9+X1X2X3Y which was also inferred to be the ancestral state, with several
changes to X1X2Y and X1X2X3X4Y confined to phylogenetically isolated species. The total (haploid)
numbers of rDNA clusters varied between two, three, and six (in one exceptional case), and
clusters were localized either on the autosomes, the sex chromosomes, or both. Transitions in
rDNA localization and in numbers of rDNA clusters varied independently of each other, and also
independently of changes in sex chromosome numbers.

Conclusion: Changes of X chromosome numbers and transposition of the rDNA locus (and
presumably other genes) between autosomes and sex chromosomes in Cicindela occur frequently,
and are likely to be the result of fusions or fissions between X chromosomes, rather than between
sex chromosomes and autosomes. Yet, translocations between sex chromosomes and autosomes
appear to be common, as indicated by the patterns of rDNA localization. Rearranged karyotypes
involving multiple sex chromosomes would reduce recombination, and hybrid dysgenesis selects
against polymorphic populations. Hence, the high frequency of these rearrangements could be a
cause of the great species diversity in Cicindela.
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Background
Chromosomal rearrangements have been described in
many groups of animals, distinguishing even very closely
related species and populations [1-4]. As rearrangements
would change the position of genes, generating new link-
age groups that may lead to an increase of genetic differ-
entiation between populations, they are expected to
restrict reproductive compatibility and eventually pro-
mote speciation. Chromosomal rearrangements produce
unbalanced gametes which have been thought to be the
primary effect of rearrangements in speciation because of
the diminished fecundity or viability of the heterozygotes
[5]. However, this notion of 'hybrid-dysfunction' as a
major cause of karyotype-mediated speciation may not be
an effective isolation mechanism [1,6,7]. More recently, it
is being realized that the primary effect of chromosomal
rearrangements is the reduced recombination between
genomes, favoring 'suppressed-recombination' scenarios
for the evolution of reproductive isolation following chro-
mosomal rearrangements [1,6,8].

Recombination rates vary widely depending on the
genomic position and the linkage with genes under selec-
tion, affecting the tempo and mode of gene evolution [e.g.
[7,9,10]]. Specifically, recombination is greatly reduced in
sex-chromosomal linkage groups, because of the lack of a
homologous chromosome in the heterogametic sex, or it
is prevented altogether where sex chromosomes are achi-
asmatic in one of the sexes. In addition, due to the
hemizygosity of the X chromosome (or the W chromo-
some in ZW systems with heterogametic females), reces-
sive mutations associated with the sex chromosomes are
exposed to selection in the heterogametic sex [11]. Hence,
as [12] pointed out, the origination of new X chromo-
somes leads to fixation of a great deal of heterozygosity
(while new Y chromosomes lead to the rapid degradation
of gene content; see [13]). As the result of reduced recom-
bination, genetic barriers to gene flow may arise rapidly
between populations which are fixed for sex chromo-
somal variants.

Lineages with multiple-X chromosome systems may be
especially strongly affected by these evolutionary regimes
because a great proportion of their total genome is cap-
tured in the sex chromosomes. The large size of these X
chromosomes and their limited heterochromatin content
in karyotypic analyses suggest that they contain a large
proportion of genes. Multiple-X chromosomes occur
widely in vertebrates and invertebrates, for example in
monotremes (Platypus) [14], howler monkeys (Aloutta)
[15], fishes [16], gastropod molluscs [17,18], spiders [19],
Lepidoptera [20] and several groups of Coleoptera [21-
24]. Among these, the widely conserved XXY system in
araneomorph spiders [19] and the ancestrally XXXY sys-
tem in Cicindelidae (tiger beetles) are the most ancient

multiple-X system known [25]. Novel X chromosomes of
this kind originate readily as a consequence of karyotypic
rearrangements involving a sex chromosome and an auto-
somal pair, producing chiasmatic sex chromosomes. For
example, a fusion of the X chromosome with an autosome
will produce an expanded X chromosome while the
remaining sister chromosome will become an additional
sex chromosome. In XY systems, this will produce XXY,
whereas in the case of an X0 karyotype, this fusion will
produce an enlarged X chromosome and the homolog
will act as Y chromosome (producing a neo-XY system).
An alternative pathway is that rare chromosomal rear-
rangements with the autosomes increase the size of the X
chromosomes, followed by their dissociation to produce
multiple X chromosomes [12]. In all cases, the conse-
quence is that genes are shifted from an autosomal to a sex
chromosomal position, and hence alter the evolutionary
regime experienced by these genes.

However, the effects of autosomal-heterosomal rearrange-
ments on the evolution of gene regions and recombina-
tion-suppressed speciation depend on the evolutionary
dynamics and genomic extent of such rearrangements. An
unknown factor is what is the frequency of autosomal-
heterosomal changes, and if particularly gene regions
would be affected repeatedly in the evolution of a lineage.
While several studies have assessed these phenomena in
populations and closely related species to investigate the
microevolutionary consequences of rearrangements [1],
only a few studies have addressed these questions on a
macroevolutionary (between-species) scale [26]. Here, we
conducted a survey of X chromosome numbers and rDNA
localization on a representative sample of North Ameri-
can tiger beetles in the genus Cicindela. This group exhibits
a conspicuous, non-chiasmatic multiple-X chromosome
system consisting of 2 to 4 X chromosomes, plus a single
Y, and between 9 to 11 pairs of autosomes. The multiple-
X system in Cicindelidae is apparently ancient and is
present widely in this families except for a set of basal lin-
eages exhibiting an XY system [25]. Despite the presumed
antiquity of the system, secondary reversion to simple XY
or X0 genetic systems have occurred, but are rare [25,27].
In addition to the karyotypic variation in sex chromosome
numbers, species of Cicindela differ in the number and
localization of rDNA loci which include either two or four
pairs of clusters and which are localised on either the
autosomes or heterosomes [23,28,29].

The Cicindela of the North American continent constitute
at least four distinct radiations, each of which with an esti-
mated origin of several million years ago. Based on a phy-
logenetic tree available at the species level for each of
these four lineages [30], the character transitions in sex
chromosome number and switches in the position of
rDNA between sex chromosomes and autosomes can be
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analyzed. Information on the tempo and mode of rear-
rangements in this genetic system that retains a large pro-
portion of the physically observed karyotype in multiple
X chromosomes, will provide the backdrop for assessing
the effect of autosomal-heterosomal turnover on the evo-
lution of coding regions and the origination of species.

Results
X chromosome numbers and rDNA localization
Karyotype analysis and chromosomal localization of
rDNA clusters was carried out in 26 North American spe-
cies, sampled to cover the main phylogenetic groups of
the continent [30]. Examples of karyotype and FISH visu-
alization are shown in Fig. 1, and the results for all species
are summarized in Table 1. Autosome numbers were con-
stant for all species tested (n = 9). Heterosome numbers
were variable, but most species exhibited an X1X2X3Y kary-
otype, which is also the most common type in Cicindela
from the Palearctic, Australia and India, and presumably
represents the ancestral state for the entire lineage that
also includes other genera [25]. We also found the
X1X2X3Y genetic system in several species which in the
older literature were reported to exhibit a single X chro-
mosome (C. pimeriana [31]; C. punctulata, C. purpurea,
and C. repanda [32]; or X1X2Y and n = 9 for Cicindela
repanda, C. tranquebarica, C. scutellaris and C. sexguttata
[32], but some of the X chromosomes may have been
overlooked in these studies. Our analysis found four spe-
cies each showing X1X2X3X4Y (C. lemniscata, C. marutha,
C. nigrocoerulea and C. marginata) or X1X2Y (C. sedecim-
punctata, C. ocellata, C. rugatilis, C. nebuligera) (Table 1).
For the autosomes, pairs of homologous chromosomes in
meiosis could be paired easily by their size. The auto-
somal karyotype in all species had many features in com-
mon, even where heterosome numbers differed. For
example, the largest pair was metacentric and clearly dis-
tinguishable from the rest. The second and third pairs
were also recognizable as metacentric whereas the fourth
was submetacentric. From the third pair to the ninth the
size decreased gradually (not shown).

We found substantial variation in the number and locali-
zation of rDNA clusters (Table 1; Fig. 1). Three types of
rDNA constellations were evident, including: localization
on the autosomes (one autosomal pair) in about half of
the species; localization on the heterosomes (one of the X
chromosomes and the Y) found in six species; and locali-
zation on both (one autosomal pair plus heterosomal
copies located on one of the X chromosome) in the
remaining five species. An additional type was found in C.
marginata where mitotic metaphases showed six rDNA
stains on five chromosomes (Figure 1F), with a single
chromosome carrying rDNA clusters on both arms. We
identified this chromosome as the Y, due to its morphol-
ogy and orientation on first meiotic plates. In this image

the fluorescent signal was located exclusively on the sex
vesicle. Whereas all rDNA clusters present in the genome
can be detected with FISH, silver staining on spermatogo-
nial cells only shows those genes that are actively tran-
scribed during spermatogenesis. Results from FISH and
silver staining were similar generally, indicating that most

Fluorescence in situ hybridization of tiger beetle chromo-somes with a ribosomal probeFigure 1
Fluorescence in situ hybridization of tiger beetle 
chromosomes with a ribosomal probe. A. Cicindela 
punctulata, n = 9 + XXXY, early prophase I nucleus showing 
two rDNA loci, one located on the Y and another located on 
one of the four X chromosomes. B. C. scutellaris, diakinesis 
with n = 9 + XXXY showing two rDNA loci located on an 
autosomal pair. C. C. repanda, diakinesis with n = 9 + XXXY 
showing two rDNA loci located on an autosomal pair D. C. 
tranquebarica, diakinesis with n = 9 + XXXY showing three 
rDNA loci, two located on an autosomal pair and one 
located on one of the 3 X chromosomes. E. C. ocellata, met-
aphase I with n = 9 + XXY showing two rDNA loci located 
on an autosomal pair and one on the X chromosome. F. C. 
marginata, spermatogonial metaphase with 2n = 23 chromo-
somes showing six rDNA loci, one located on each of the 
four X chromosomes and two loci located on the Y chromo-
some. The white arrows indicate the heterosomal loci, the 
empty arrows indicate the autosomal loci. The arrowheads 
point to the sex chromosomes which are condensed in Fig. 
1D forming the sex vesicle, and are recognizable individually 
forming the rosette-like structure in Figs. 1A, B, C, and E.
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rDNA clusters were active, but in species with rDNA clus-
ters found on both heterosomes and autosomes, expres-
sion was mostly limited to the heterosomal locus,
indicating the functional importance of the sex-chromo-
some linked copies.

Character reconstruction and covariation
Parsimony reconstruction (accelerated transformation)
on the mtDNA tree inferred the X1X2X3Y system as the
ancestral state, with several independent derivations of
the X1X2X3X4Y and X1X2Y state (Fig. 2). Whereas the spe-
cies exhibiting four X chromosomes were found in distant
parts of the tree, all species with two X chromosomes were
limited to the subgenus Cicindelidia. The results were con-
sistent with a repeated transition from X1X2X3Y to either
of the two derived states, but not in the reverse direction.
The transitions to the X1X2Y and X1X2X3X4Y states were
entirely limited to the terminal branches of the tree, and
there was no direct transition between these two character

states. The localization of rDNA was similarly variable
phylogenetically, however the species with exclusively
autosomal rDNA (labelled AA in Fig. 2) were largely lim-
ited to two clades, the subgenus Cicindela (sensu stricto)
and the 'red abdomen' group of Cicindelidia. All other
groups exhibited rDNA on the heterosomes, but without
phylogenetic conservation of the two main states (auto-
somal pair plus one X, labelled AAX in Figure 2; or auto-
somal pair plus one X and Y, labelled XY).

Variation in X chromosome numbers and rDNA localiza-
tion was largely independent. For example, ten sister spe-
cies pairs can be assessed for covariation between rDNA
positional changes and differences in X chromosome
numbers on the tree of Figure 2. Between the sister species
a character change in X chromosome number was
observed six times, a change in rDNA localization was
observed three times, and three species pairs were invaria-
ble. Among those sister pairs that were variable for one

Table 1: Karyotypic data of North American species of the genus Cicindela

Species Meioformula rDNA localization

Cicindela
duodecimguttata 9+ X1X2X3Y Autosomes
formosa generosa 9+ X1X2X3Y Autosomes
oregona* 9+ X1X2X3Y --
pimeriana 9+ X1X2X3Y Autosomes
repanda 9+ X1X2X3Y Autosomes
sexguttata 9+ X1X2X3Y Autosomes
splendida 9+ X1X2X3Y Autosomes

Cicindelidia
aterrima 9+ X1X2X3Y Heterosomes (XY)
flohri 9+ X1X2X3Y Autosomes
nebuligera 9+ X1X2Y Autosomes
nigrocoerulea 9+X1X2X3X4Y Heterosomes (XY)
obsoleta 9+ X1X2X3Y Autosomes
ocellata 9+ X1X2Y Autosomes + Heterosomes (X)
punctulata 9+X1X2X3Y Heterosomes (XY)
roseiventris mexicana 9+ X1X2X3Y Autosomes + Heterosomes (X)
rufiventris 9+ X1X2X3Y Autosomes
rugatilis 9+ X1X2Y Autosomes + Heterosomes (X)
sedecimpunctata 9+ X1X2Y Autosomes

Cylindera
hemichrysea 9+ X1X2X3Y Autosomes
lemniscata 9+X1X2X3X4Y Heterosomes (XY)

Ellipsoptera
marginata 9+X1X2X3X4Y Heterosomes (XXXXY)
marutha 9+X1X2X3X4Y Heterosomes (XY)

Habroscelimorpha
dorsalis 9+ X1X2X3Y Autosomes + Heterosomes (X)
fulgoris 9+ X1X2X3Y Autosomes + Heterosomes (X)
severa 9+ X1X2X3Y Autosomes + Heterosomes (X)

Pachydela
scutellaris 9+ X1X2X3Y Autosomes

Tribonia
tranquebarica 9+ X1X2X3Y Autosomes + Heterosomes (X)

*Reference 38
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Phylogenetic distribution of character states in sex chromosome number and rDNA localizationFigure 2
Phylogenetic distribution of character states in sex chromosome number and rDNA localization. Character 
optimization using parsimony was conducted separately for the number of sex chromosomes (2, 3, or 4 X chromosomes) and 
rDNA localization (localization on autosomes only, on the autosomes and X chromosomes, and on the heterosomes only). 
The tree is from Vogler et al. (2005) representing approx. 75% of the Nearctic species of Cicindela (s.l.) and species names are 
preceded by an abbreviated subgenus label (CDIA, Cicindelidia; CELA, Cicindela; TRIB, Tribonia; PACH, Pachydela; HABR, Habro-
scelimorpha; CYLI, Cylindera; ELLI, Ellipsoptera; BRAS, Brasiella). Several major groupings established in the previous phylogenetic 
analysis are indicated on the tree. Asterisks above the branches indicate nodes with good support (Bremer Support ≥3 and 
Bootstrap values ≥60%). Karyotype information is presented by symbols at the tips for all taxa represented in the current 
study. Different shading of branches indicates the character optimization for rDNA localization. Due to the incomplete taxon 
sampling it was not possible to assign the character changes to a precise branch deep in the tree, indicated by thin lines.
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parameter, a transition in the other parameter is inferred
only in two cases, and leading to different states. This
demonstrated a broad lack of co-variation indicating that
the chromosomal rearrangements producing variation in
both karyotypic features were not connected.

Discussion
Phylogenetic character reconstruction at the species level
is useful to test for trait changes associated with speciation
events [33]. The incompatibility of rearranged chromo-
somes could be an important factor leading to reproduc-
tive isolation and speciation, in particular where such
changes are linked to the sex chromosomes. The genus
Cicindela is very species rich, which is usually ascribed to
ecological shifts in habitat associations [34,35] and a ten-
dency for the isolation of local populations [36,37]. How-
ever, karyotypic features have not previously been
considered to affect species diversification in this group.
Karyotype analyses in Cicindela are technically challeng-
ing, due to the small size of chromosomes and the
absence of the polytene chromosomes common in Dip-
tera, plus the difficulties of obtaining meiotic cells (where
multiple sex chromosomes can be accurately identified)
except during a short season of the year. Yet, our sampling
was sufficiently dense for a comparative analysis. We
found that the multiple sex chromosomes provide an evo-
lutionarily dynamic system affected by repeated gains and
losses of X chromosomes, and repeated shifts in the local-
ization of the rDNA loci between autosomes and hetero-
somes, with potential consequences for speciation.

Mechanistically, these shifts in X chromosome numbers
do not appear to involve reciprocal rearrangements in the
autosomes, as the latter remain invariable, arguing against
a mechanism for the origination and loss of X chromo-
somes through fusions with autosomes. The independ-
ence of autosome and heterosome numbers has
previously been established in lineages of Cicindela in the
Palearctic, India and Australia, although in those cases
changes affected mainly the autosome numbers while het-
erosomes were invariable for the modal X1X2X3Y system
[38,39]. The absence of autosomal-heterosomal fusions
and fissions was also supported by the fact that we did not
observe any physical associations of a chiasmatic type
between autosomes and heterosomes during meiosis
which would be required for such rearrangements.
Instead, in all cases studied here the multiple X chromo-
somes and the Y were connected at the telomeric ends
during pairing in male meiosis and were visible as a con-
spicuous multivalent where (Fig. 1), as had already been
described for the Palearctic species C. hybrida [40].

The lack of chiasmatic associations between heterosomes
and autosomes also argues against a role of fusions and
fissions to be responsible for the positional changes of the

rDNA clusters. The number and position of rDNA loci can
readily be altered by Robertsonian changes (fissions or
fusions) via terminal nucleolus organizer regions (NOR)
usually containing the rDNA clusters. Two chromosomes
each carrying a terminal NOR may either fuse to produce
an interstitial NOR, or a single chromosome with an inter-
stitial NOR may undergo fissions resulting in two chro-
mosomes with terminal NORs. However, except perhaps
for the case of C. marginata with six rDNA loci, we did not
see the expected changes in number and position of rDNA
loci, as changes in chromosome number and rDNA loci
were independent. Therefore neither fissions nor fusions
at NORs are supported, unless one invokes additional
rearrangements such as pericentric inversion to accommo-
date the predominantly mediocentric chromosomes in
Cicindela. Furthermore, considering the achiasmatic
nature of heterosomes, Robertsonian rearrangements can-
not explain the changes that occur simultaneously in
autosomes and heterosomes.

An alternative scenario are non-reciprocal translocations
affecting the rDNA clusters which could lead to changes in
position (translocation) or numbers of rDNA sites (trans-
position retaining a copy at the origin). These changes can
be facilitated by the presence of transposable elements, as
e.g. in the Type I and II ribosomal gene insertions in Dro-
sophila melanogaster, Bombyx mori [41], Apis mellifera and
other Hymenoptera [42]. Translocations between chro-
mosomes bearing rDNA loci and those lacking them have
been invoked to explain the rearrangements observed in
Paeonia [43] and Allium [44], and also may occur in the
ground beetle genus Zabrus which presents the highest
variability in the number of rDNA sites (2–12) found so
far in insects [45]. However, these rearrangements occur
among autosomes only, not affecting the sex chromo-
somes. The peculiar situation in C. marginata, where trans-
location of rDNA copies between chromosomes and even
within a chromosome may be responsible for the unusual
number of rDNA loci, might be a good model for elucidat-
ing the cytogenetic basis for the changes in number of X
chromosomes and gene content.

Whatever the mechanisms that produce the change of
number and position of rDNA clusters, they seem to be
affected by various constraints to the rearrangements of
karyotypes. Careful inspection of the chromosome prepa-
rations suggested that the rDNA loci were not always in
the same pair of autosomes, and may be localized on dif-
ferent homeologous pairs, even in closely related species.
Therefore, numerous additional chromosomal rearrange-
ments between autosomes and heterosomes may be
present which are not detected here when scoring chro-
mosome numbers and rDNA autosomal-heterosomal
localization only. Yet, the overall gestalt of the karyotype
was maintained despite these apparent changes in gene
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content. Nine pairs of autosomes were found in all spe-
cies, showing very similar sizes and phenotypes. This
degree of conservation appears to be specific to the multi-
ple-X karyotype, as such constraints on chromosome mor-
phology are not seen in the ancestral simple-X system of
distantly related cicindelids which differ greatly in chro-
mosome number and overall morphology [25]. Similarly,
there are apparent constraints to the number and gene
content of heterosomes. For example, the X1X2Y and X1X2
X3 X4Y karyotypes represented derived states which were
confined to a single species (or perhaps small clades, had
denser taxon sampling been available), indicating that
deviations from the modal X1X2X3Y system are evolution-
arily short-lived and unstable. Finally, the chromosomal
positions of rDNA clusters also appeared to be con-
strained in the multiple-X system. The autosomal number
of clusters was two (one pair of allelic copies), but never
exceeded this number, and when more than two rDNA
copies were found in Cicindela they always appeared on
the heterosomes, most commonly on the X only, and in
some species a further rDNA copy on the Y chromosome.
This is in contrast to the single-X chromosome systems in
the basal groups of Cicindelidae which exhibit between
four and eight (two to four pairs) autosomal rDNA clus-
ters [25]. The nature of these constraints on the karyotype
remains unknown but they may be linked to the evolu-
tionary stability of this multiple-X system [25].

Despite the morphological conservation of the multiple-X
system, the frequent movements of genes between auto-
somal to heterosomal positions expose the affected loci to
greatly altered dynamics of gene evolution and recombi-
nation. As there is no cross-over in the male heterosomes
in cicindelids, rates of homologous recombination in the
sex chromosomes are reduced by half for the X chromo-
somes (recombination only in females) and to virtually
zero for the Y (resulting in their inevitable degradation;
[13]). The hemizygous nature of the X will greatly increase
selection on recessive mutations, altering the rate and
kind of mutational changes. This would cause the rear-
ranged genes to diverge quickly, even if rearranged gene
regions are duplicated. In the case of the rDNA clusters,
this could reduce the rate of homogenization of copies in
different parts of the genome. For example, an analysis of
sequence variation in the ITS1 region of the rDNA cluster
in C. dorsalis, a species shown here to exhibit rDNA copies
on a pair of autosomes plus a single copy on the X, exhib-
ited greatly divergent ITS types, possibly corresponding to
heterosomal and autosomal copies [46]. This supports the
idea that the translocation to the sex chromosomes results
in changes of evolutionary dynamics.

These kinds of chromosomal rearrangements might also
have an effect on speciation. Translocations of genes
between autosomes and sex chromosomes will greatly

change the possibilities for gene flow, and changes in the
number of X chromosomes may alter the production of
balanced gametes. Incompatibility of gametes with differ-
ent numbers of X chromosomes, or indeed changed posi-
tion of rDNA clusters, could lead to incorrect separation
of chromosomes during anaphase I in a hybrid, and pro-
duce a number of unbalanced gametes resulting in repro-
ductive disadvantage. In the case of changes in X
chromosome numbers this effect could be exacerbated by
altering the sex determination control and the gene regu-
lation associated with changes in heterosome number. As
pointed out in the recent literature [1,6,7,47], it is not
likely that these 'underdominant' variants become estab-
lished in a population. This has provided a strong argu-
ment against the stasipatric model of speciation [5] which
suggests that chromosomal rearrangements cause repro-
ductive isolation due to hybrid dysfunction. However,
when involving sex chromosomal unidirectional rear-
rangements as those in Cicindela, this model may still be
valid. Depending on the precise genotypes participating
in a mating, the combination of certain gametes could
lead to a significant proportion of inviable (e.g., no rDNA
clusters, unbalanced number of X chromosomes) zygotes,
selecting against heterozygotes and maintenance of poly-
morphisms in a population. These effects may be exacer-
bated by the reduction of gene flow from suppressed
recombination and extending the effect of linked isola-
tion genes, a mechanism proposed as the main driver for
the fixation of novel karyotypes under more recent mod-
els [8,48]. As gene flow is more restricted between sex
chromosomes than autosomes, sex linked genes are par-
ticularly efficient to produce such postzygotic barriers
[49], and hence rearrangements involving sex chromo-
somal portions of the genome may be a particularly effec-
tive isolating mechanism.

Therefore, the high level of apparent chromosome rear-
rangements and the deposition of a substantial portion of
the genome in the low-recombining sex may promote
speciation in Cicindela. With some 1,000 species world-
wide, this is one of the largest genera of insects. In partic-
ular, the observation of evolutionarily short-lived X1X2Y
and X1X2X3X4Y lineages suggests that these chromosomal
changes could initiate reproductive isolation. If these rear-
rangements are frequent relative to other (ecological or
geographical) processes influencing speciation rates, the
cytogenetic parameters could drive speciation and possi-
bly be responsible for the great species richness in Cicin-
dela. In addition, the population structure of Cicindela is
also favoring the fixation of chromosomal mutations
locally, as most species are early succession specialists fre-
quently occurring in isolated habitat patches where a
dynamic system of colonization and extinction may
enhance the separation of local genetic entities. In support
of this possibility, we found two Iberian species, C. flexu-
Page 7 of 10
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osa and C. littoralis, where in each case a single population
was fixed for an rDNA localization different from all other
populations [29], indicating that local genetic races arise
frequently.

Conclusion
The evolutionary significance of elaborate multiple-X sys-
tems compared with simpler sex chromosomes is still
poorly understood. Phylogenetic approaches can greatly
increase the power of comparative cytogenetic analyses,
and have revealed the great fluidity of the cicindelid mul-
tiple-X chromosomes, while also establishing evolution-
arily conserved features. Even more variable than the X-
chromosome numbers are translocations of the rDNA
clusters. This provides the background for future investi-
gations to understand the evolutionary forces operating
on the sex chromosomes. Whereas the current study uses
a macroevolutionary approach, establishing the frame-
work of character variation over greater evolutionary dis-
tances, this can be combined with the specific effects of
rearrangements on the population level.

Sex chromosomes are of specific interest to speciation, not
least because they have been shown to accumulate genes
determining species specific traits such as host plant use
and pheromone response in butterflies [50]. The observed
cytogenetic phenomena should also be studied because of
their functional consequences, with regard to the control
of sex determination, chromosome size and morphology,
and the mechanisms of gene repositioning. Further inves-
tigation will require a targeted approach to the compara-
tive genomics of tiger beetles and the construction of
chromosomal homology maps, using reciprocal chromo-
some painting with sex chromosome specific probes
obtained by microdissection. Molecular cytogenetics stud-
ies, assisted by comparative genomics and phylogenetics,
may help to investigate the evolutionary dynamics of gene
content of chromosomes and may reveal karyotypic
changes that remain unnoticed in conventional cytoge-
netics analysis. These studies are the basis for tests of how
variation in sex chromosomes can drive population differ-
entiation and speciation rates.

Methods
Samples for study and chromosome preparations
Taxon sampling for this study was limited to Cicindela
from North America. There are some 147 described spe-
cies recorded for the North American continent, grouped
in 11 subgenera [51]. A recent phylogenetic analysis based
on 1897 base pairs of mtDNA and taxon sampling which
is 75% complete at the species level, revealed that most
species can be ascribed to four monophyletic groups rep-
resenting radiations endemic to North and Central Amer-
ica [30]. A representative sample of all major clades in the
mtDNA tree was selected for chromosome analysis, with

good representation of all four endemic radiations. Char-
acter variation in X chromosome number and rDNA local-
ization was assessed on this tree, using parsimony
optimization as implemented in MacClade [52]. Adult
beetles were obtained in the field, and chromosome prep-
arations were obtained from male gonads. Mitotic and
meiotic chromosomes can be obtained at different stages
of development in the tubular testes, and can be observed
as described previously [28].

Silver staining and in situ hybridization
Active NORs (i.e., regions of active rRNA transcription)
were detected with silver according to the [53] technique,
with slight modifications [29]. In situ hybridization was
performed as previously reported in Proença and Galián
(2003) using a 555 bp rDNA probe obtained after PCR
amplification of the conserved 18S rRNA gene region
from C. campestris total genomic DNA using the universal
primers NSI and NSII [54], labelled with biotin-11dUTP
by a second PCR reaction.
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