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Abstract

Background: Angiogenesis, the formation of new blood vessels, is a primordial process in
development and its dysregulation has a central role in the pathogenesis of many diseases.
Angiogenin (ANG), a peculiar member of the RNase A superfamily, is a potent inducer of
angiogenesis involved in many different types of cancer, amyotrophic lateral sclerosis and also with
a possible role in the innate immune defense. The evolutionary path of this family has been a highly
dynamic one, where positive selection has played a strong role. In this work we used a combined
gene and protein level approach to determine the main sites under diversifying selection on the
primate ANG gene and analyze its structural and functional implications.

Results: We obtained evidence for positive selection in the primate ANG gene. Site specific
analysis pointed out 15 sites under positive selection, most of which also exhibited drastic changes
in amino acid properties. The mapping of these sites in the ANG 3D-structure described five
clusters, four of which were located in functional regions: two in the active site region, one in the
nucleolar location signal and one in the cell-binding site. Eight of the 15 sites under selection in the
primate ANG gene were highly or moderately conserved in the RNase A family, suggesting a
directed event and not a simple consequence of local structural or functional permissiveness.
Moreover, || sites were exposed to the surface of the protein indicating that they may influence
the interactions performed by ANG.

Conclusion: Using a maximum likelihood gene level analysis we identified |5 sites under positive
selection in the primate ANG genes, that were further corroborated through a protein level
analysis of radical changes in amino acid properties. These sites mapped onto the main functional
regions of the ANG protein. The fact that evidence for positive selection is present in all ANG
regions required for angiogenesis may be a good indication that angiogenesis is the process under
selection. However, other possibilities to be considered arise from the possible involvement of
ANG in innate immunity and the potential influence or co-evolution with its interacting proteins
and ligands.
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Background

Angiogenesis, the physiological process involving the
growth of new blood vessels, is a primordial process in
development. The complex network of interactions
between pro- and anti-angiogenic regulators dictates that
any imbalance in this process can lead to disease. Indeed,
angiogenesis plays a central role in the pathophysiology
of cancer, rheumatoid arthritis, diabetic retinopathy and
several heart diseases (reviewed in [1]). Angiogenin
(ANG), a potent in vivo inducer of angiogenesis, was first
isolated in a systematic search for angiogenic factors
secreted by human HT-29 colon adenocarcinoma cells
[2]. Its increased expression was subsequently docu-
mented in different tumors and in several instances corre-
lated with the disease progression and aggressiveness
(reviewed in [3]). The use of antibodies [4-7], antisense
targeting [8] and inhibitors [9,10] has proven useful in
inhibiting the establishment, progression and metastasis
of tumors in mouse models, thereby establishing ANG as
a promising target for anticancer therapy. Furthermore,
ANG was shown to have in vitro antimicrobial [11] and
antiviral [12] effects, raising the possibility of its implica-
tion in the innate immune system. Recently, ANG muta-
tions were described in amyotrophic lateral patients [13],
constituting the second angiogenic factor implicated in
this disease [14].

The human ANG gene comprises a single exon flanked by
small UTRs and codes for a 14 kDa polypeptide. The pro-
tein is synthesized with a 24 amino acid signal peptide
that is cleaved to produce a mature form with 123 amino
acids. Sequence analysis revealed its homology to the
Ribonuclease A (RNase A) superfamily, where it was
included and classified as RNase 5 [15,16]. ANG has three
main distinctive features when compared to the family
archetype bovine RNase A: (1) the characteristic ribonu-
clease activity towards poly-, di- and cyclic nucleotides is
104-10¢ lower and its enzymatic specificity is also different
[17]; (2) the region between residues 58-70 appears to
constitute a 'cell-binding site', independent from the
active site [18,19], probably involved primarily in pro-
tein-protein interactions; and (3) the region 31-35 consti-
tutes a nucleolar localization signal [20]. All of these
features are essential to the angiogenic activity as shown
by directed mutagenesis experiments [20-23].

The RNase superfamily has a highly dynamic evolutionary
history, in which ANG occupies an important position.
The fact that only ANG/RNase 5-like ribonucleases are
found in non-mammalian vertebrates has led to the
hypothesis that the RNase ancestral was structurally simi-
lar to ANG. This ancestral enzyme was most likely
involved in host-pathogen interactions and did not pos-
sess an angiogenic activity [24]. A gene expansion
occurred before the divergence between placental and
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marsupial mammals, followed by a process of differential
gene duplication and retention between different orders
of the placental mammals, which resulted in the present
inter-species diversity of the RNase superfamily [25].

Diversifying (positive) selection had a strong influence in
the RNase A superfamily evolutionary pathway: eosi-
nophil RNases, EDN and ECP, are among the most rap-
idly evolving coding sequences in primates [26], as are the
paralogous rodent eosinophil associated ribonucleases
(EARs) [27]. ANG genes suffered a rapid expansion in
rodents [28] - 6 genes and 3 pseudogenes in the mouse
genome, 2 genes in the rat genome - as the result of posi-
tive selection and gene sorting. ANG was also previously
shown to be under the effect of diversifying selection in
primates [29,30]. All primate species analyzed thus far
possess a single gene for ANG except for Pygathrix nemaeus
(Asian Douc Langur), in which the ANG gene appears to
have pseudogenized [31].

In this work we assessed the impacts of positive selection
on the primate ANG gene using: (1) a gene level evalua-
tion of the non-synonymous/synonymous ratio (dN/dS)
and (2) a protein level evaluation of radical changes in
amino acid properties. Several sites under positive selec-
tion were detected in the different functional regions of
ANG and the effects in its structure and function have
been analyzed.

Results and discussion

Phylogenetic analyses

Neighbor-Joining (NJ), maximum-likelihood (ML) and
Bayesian (BAY) tree reconstructions of the primate ANG
coding sequences (table 1) presented similar overall
topologies (figure 1). ML and BAY trees were topologically
identical, the main difference relatively to the NJ tree
being the unresolved Homo/Pan/Gorilla trichotomy and
the positioning of Miopithecus talapoin. Overall, tree topol-
ogies were mostly coherent with the accepted phylogeny
of primates. The small differences detected are not surpris-
ing since the gene tree does not necessarily reflect the spe-
cies tree [32].

Positive selection analyses

We first analyzed primate ANG genes for signatures of
positive selection using PAML [33]. This software uses a
maximum-likelihood approach to determine the non-
synonymous to synonymous rate ratio (o), also desig-
nated Ka/Ks or dN/dS, a widely used measure to detect
departures from neutrality as indicators of selective pres-
sures on protein coding genes. A ® > 1 indicates positive
selection, whereas o = 1 indicates neutrality and o < 1 is
indicative of negative selection. Branch models, where ®
is permitted to vary between lineages, were first tested. The
simplest model (one ratio), a very strict model allowing a
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Table I: Species and sequence reference number used in this study

Common Name

Species

GenBank Reference

Human
Chimpanzee
Gorilla
Orangutan
Baboon

Rhesus macaque
Vervet monkey
Talapoin monkey

Tonkin snub-nosed monkey

Francois's leaf monkey
Mantled guereza

South American squirrel monkey

Cotton-top tamarin
Northern night monkey

Homo sapiens
Pan troglodytes
Gorilla gorilla
Pongo pygmaeus
Papio hamadryas
Macaca mulatta

Cercopithecus aethiops

Miopithecus talapoin
Pygathrix avunculus

Trachypithecus francoisi

Colobus guereza
Saimiri sciureus
Saguinus oedipus
Aotus trivirgatus

NM_001145
NM_001009159
AF441662
AF441663
AF441666
AF441667
AF441664
AF441665
AY221132
AY221129
AY221128
AF441670
AF441668
AF441669

single o for all branches, obtained a ® = 1.2934, providing
a good support for positive selection in the primate ANG.
Two o ratios models and a free o ratios model where also
tested (see additional files 1 and 2) and LRTs performed
against adequate null models. Several branches presented
a o ratio above one, but only the two-ratio model for the
branch including Papio hamadryas, Macaca mulatta and

Cercopithecus aethiops (figure 1) presented a significant
LRT. We then tested three nested pairs of site models that
allow @ variation between codons: one admitting no pos-
itive selection (restricting ® < 1) and another admitting
positive selection (M1a vs. M2a, M7 vs. M8 and M8a vs.
MS8). Both positive selection admitting models, M2a and
M8, presented a significantly better fit to the data than

Homo s.
99/ = Pan t.
} Hominidae
7911 5
99/95/100 Gorilla g.
Pongo p. J
\
7378/91] Papio h.
® Macacam. 'Cercopimecinae
99/97/100
Cercopithecus a.
97/87/100 e Cercopithecidae
ARG ) (Old World monkeys)
8377 Colobus g.

90/82/99)| E Trachypithecus f.
66/61/
Pygathrix a. J

} Colobinae

100/100/100 — Aotus t.

98/68/68

Saimiri s.
0.02

Figure |

Saguinus o.

Cebidae
(New World monkeys)

Phylogenetic tree for the primate ANG sequences used. Neighbor-Joining phylogenetic tree of the primate species
analyzed. The bootstrap values for different methodologies are indicated bellow each branch (NJ/ML/BY). The symbol (*) indi-
cates distinct topological arrangements. The symbol (*) indicates the branch with a significant LRT in the PAML branch analysis.
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their neutral counterparts M1a, M7 and M8a (table 2).
The slightly more conservative model M2 detected 41% of
sites under positive selection (o = 3.10), whereas M8
detected 49% of sites under positive selection (o = 2.88),
indicating with a high degree of confidence that the ANG
gene is under positive selection. These results were con-
sistent across all the tree reconstruction methods used.
Posterior Bayesian analysis through a Bayes Empirical
Bayes (BEB) methodology [34] allowed the determina-
tion of several amino acid sites under positive selection.
M2 detected four sites with @ > 1 having a posterior prob-
ability (PP) above 0.95 and four above 0.99, while M8
detected nine sites above 0.95 and seven above 0.99.
Either of the models detected several other sites with a PP
above 0.9. Similar results were obtained across all tree
topologies, with the exception of site 52 that only had a
strong support in the NJ topology. Since M2a is more con-
servative and M8 more prone to false positives [35], we
adopted an empiric threshold to consider candidate sites
under positive selection: a PP above 0.95 for M8 and
simultaneously above 0.90 for M2. Fifteen sites were
above the defined threshold (table 3).

Table 2: Likelihood ratio tests for PAML site models

http://www.biomedcentral.com/1471-2148/7/167

Some concerns have been raised over the reliability of par-
ticular sites inferred to be under positive selection using
PAML [36]. Further support for the PAML results was
obtained using a complementary protein level approach
implemented in TreeSAAP [37]. This program performs
ancestral sequence reconstruction to determine and cate-
gorize evolutionary changes in 30 amino acid properties.
The number of radical changes per site was used as an
indicator of positive selection. An empirical threshold of
six properties with radical changes was adopted to further
support previous candidate sites. Most of the 15 PAML
sites had radical amino acid changes, which in five cases
had a number of properties above the defined threshold
(n > 6) (table 3). Site 66 had the highest number of prop-
erties under selection (n = 16). In order to facilitate poste-
rior analyses, a categorization was introduced: sites that
were above the defined threshold in TreeSAAP were desig-
nated as type I, whereas the remaining sites were desig-
nated as type II.

In order to assess if the sites under selection were only var-
iant in angiogenin or throughout the whole RNase A
superfamily, the primate ANG sequences were compared
with a pool of 168 non-angiogenin RNase sequences

Model Parameters

InL

2AInL (LRT)

MO o=12934

-1632.9385

Na

Mla po = 0.38665
p,=0.61335
@ = 0.00000

®, = 1.00000

-1614.8048

Mla vs. M2a
27.2618

(p = 1.2027E-06)

M2a po = 0.40009
p, = 0.18886
p, = 0.41105
o= 0.00000
®, = 1.00000

®, = 3.09729

-1601.1739

M7 p =0.00750

q = 0.00500

-1614.8327

M7vs M8 M8a vs. M8

M8 po=051176
p, = 0.48824
p =0.19739
q=136510

o = 2.88352

-1601.3690

26.9274
(p = 1.4216E-06)

268716
(p = 2.1743E-07)

M8a po = 0.38665
p, = 0.61335
p = 0.00500
q=69.77288

o = 1.00000

-1614.8048
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Table 3: Sites under positive selection on the primate ANG gene

Sites PAML «/PP (BEB) TreeSAAP properties
Codon  Amino acid M2a M8 Total Chemical Structural Other
28 4 Ser 3.376 £ 0.53 0.999 3.210£0.518 1.000 9 Ry H,, E,..,R, F,P,B, o, P 0 -
31 7 Thr 3.246 + 0.735 0.946 3.158 £ 0.610 0.980 4 Re pK', H a, 0 -
32 8 His 3.245 £ 0.73 0.943 3.166 + 0.590 0.982 ¢ a, 0 -
35 Il Thr 3.369 £ 0.547 0.996 3.208 + 0.521 0.999 30 e Pg, K%, o, 0 -
56 32 Arg 3.246 £ 0.73 0.943 3.157 £ 0.610 0.979 5 pH, p F, a,P 0 -
58 34 Gly 3.229 £ 0.740 0.936 3.160 £ 0.607 0.979 9 B, Ry, E, Hyoo Ry, Hp, E, N, Py 0 -
65 41 Asp 3.263 £ 0.709 0.950 3.173+0.587 0.984 7 pK', P, p K% F, o, M,
75 51 Arg 3.349 + 0.584 0.986 3.202 £ 0.534 0.996 5 pH, H,. K%e,, P 0 -
76 52 Ser* 3.247 + 0.729 0.946 3.166 + 0.598 0.983 o o e 0 e 0 -
87 63 Asn 3.335%0.607 0.980 3.199 £ 0.540 0.995 9 B, P, p N, o, B, V° M,
90 66 Arg 3.318 £0.635 0.974 3.191 £ 0.555 0.992 16 B, Ry, pK', pH;, E;, Ry, Hy,, H, E, FEM,a N,P:;B,P 0 -
106 82 Lys 3.287 £ 0.680 0.960 3.178 £ 0.579 0.987 4 B. pH; E, N, 0 -
108 84 His 3.368 £ 0.550 0.995 3.207 £ 0.524 0.998 6 pH;, H,.p F,a,P 0 -
117 93 GIn 3.367 £ 0.551 0.995 3.208 £ 0.523 0.999 5 B. pH; E, B, o, 0 -
127 103Val 3.229 £ 0.75 0.936 3.150 + 0.628 0.976 ¢ , 0 -

 and Bayesian (BEB) analysis posterior probabilities obtained with the NJ topology are shown for sites with PP > 0.95 in M8 that also have a PP > 0.90 in M2a. TreeSAAP analysis

results present the total number of radical changes in amino acid properties and their assigned categories. Type | sites are shown in bold. *Site 52 had only strong support when using
the NJ topology.
Properties symbols are as following: o . Power to be — C-term., a-helix; « ,,: Power to be in the N-terminal of an a-helix; B: Buriedness; B: Bulkiness; E,: Long-range non-bonded
energy; E,,.: Short and medium range non-bonded energy; E,: Total non-bonding Energy; F: Mean r.m.s. fluctuation displacement; H: Hydropathy; H, .. Normal consensus
hydrophobicity; H,,: Surrounding hydrophobicity; H,: Thermodynamic transfer hydrophobicity; KO: Compressibility; 1 Refractive index; M, Molecular volume; M,,: Molecular weight;
N,: Average number of surrounding residues; P: a- helical tendencies; Py: B-structure tendencies; P Coil tendencies; P: Turn tendencies; p: Polarity; pH;: Isoelectric point; pK":

Equilibrium Constant of ionization for COOH; P, Polar requirement; R, Solvent accessible reduction ratio; R Chromatographic index; V9:Partial specific volume;
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using the ConSurf web server [38]. This software calcu-
lates evolutionary conservation scores (1 to 9) based on
alignments and a reference structure (human ANG 3D-
structure) (figure 2). The sites under positive selection in
the primate sequences presented low conservation scores
of 1, except for site 52 that had a score of 3. Conservation
scores for sites 32, 34 and 52 were below the confidence
cut-off for ConSurf. When analyzed in the pool of RNase
sequences, sites 11, 84 and 103 presented a high conser-
vation score of 7; whereas sites 4, 8, 51 and 34, 93 had
moderate conservation scores of 5 and 4, respectively. The
remaining sites had lower scores. It is striking that eight of
the 15 sites detected under selection in the primate ANG
gene, including three of the five type I sites, are highly or
moderately conserved in the RNase A family. Although
this might result in part from the structural and functional
divergence between the members of this family, it also
indicates that these sites are not subject to random varia-
tion throughout the family as a result of structural and
functional permissiveness on their locations.

Structure-function analyses

To envisage possible structure-function implications of
positive selected sites in the ANG gene, the candidate sites
were mapped on the ANG X-ray structure (figure 3). Sites
clustered in particular regions of the protein structure, a
good indication of a non-random event. Four of the five
positive selection clusters were located within known
ANG functional regions: clusters 1 and 2 in the active site
region, cluster 3 in the nuclear location signal and cluster
4 in the 'cell-binding' site. Interestingly, positive selection
appears to act in all ANG's regions currently deemed

http://www.biomedcentral.com/1471-2148/7/167

essential for its angiogenic function. In order to obtain
further insights into the structural variations of these
regions, homology 3D-structure models were produced
for all the ancestral and current ANG sequences, using
SWISS-MODEL/Deep-view [39].

The active site

RNase' A active sites can be divided in different subsites
corresponding to the binding sites of the phosphate (P,-
P,), base (By-B,,) and ribose (R,-R,) moieties of each RNA
nucleotide (reviewed in [40]). The most important ones
are subsites: (1) P,, where scission of the P-O5' bond
occurs; (2) B1, where the 3' base binds and (3) B, where
interaction with the 5' base occurs. Structural compari-
sons between RNase A and ANG have allowed the map-
ping and characterization of the different catalytic subsites
[41,42]. Only the P, subsite (containing the catalytic triad
His-Lys-His) appears to be well conserved, the most strik-
ing structural differences residing in the B, subsite that
appears to be blocked by GIn117 and partly by Phe120.

As expected due to functional constraints, no evidence for
positive selection was detected in amino acids with
important roles to the P;, B; or B, catalytic subsites. Clus-
ter-1 of positive selected sites under positive selection was
located in the subsite P, region, and included type I site, 4
(Ser) and three type II sites: 7 (Thr), 8 (His) and 11 (Thr).
These sites were all located within the first ANG a-helix,
neighboring several conserved important amino acids.
Site 4 presented the greatest diversity of drastic changes in
chemical and structural properties, linked to polarity,
hydrophobicity, bulkiness and structural conformation. A

9- -9
8- | g I Primate ANG
(]
S 74 - _ _ k7 CIRNases
(3]
? - -6
c
S 54 n s n -5
g 4= -4
o 3- -3
§ 2- - 2
1 - 1
LTI . 1NN
L AR BN R PR RN R S S L LR
FELFL P LN P EE S PP S
FAENTLSF T PEF P EF W
Figure 2

ConSurf conservation scores for sites under positive selection. Comparison of ConSurf conservation scores for pri-
mate angiogenin protein sequences and a pool of 168 non-angiogenin RNase sequences. (*) Indicates sites that were below the

confidence cut-off for this analysis.
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Map of sites under positive selection and ANG functional regions. The three main functional regions of ANG are rep-
Lateral images highlight the five structural clusters of sites under positive selection (determined using PAML and TreeSAAP),

resented in the centre image: (i) the ribonucleolytic active site (as determined by superimposition with RNase A [42]) with the

four of which are located within or in the vicinity of the three main functional regions.
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more reduced diversity was obtained for site 7 mostly
reflecting chemical changes, whereas sites 8 and 11 had
few and mostly conformational properties under positive
selection.

Interestingly, cluster-1 presented a proline in site 4 for two
of the primate species analyzed, Colobus guereza and
Macaca mulatta (figure 4). This amino acid may cause the
kinking of a-helices (reviewed in [43]) thereby affecting
the local structure of this region. To further evaluate the
effects of these substitutions, we compared the 3D-struc-
ture models for these two species with the 3D-strucutre
model inferred for the most recent common ancestral of
these, superimposing the protein backbones (figure 5).
Macaca mulatta ANG presented a significant backbone dis-
tortion that was not so pronounced in Colobus guereza
ANG. The overall structure of this region does not appear
to be significantly affected, given the good positional
overlap between the side chains of critical amino acids
like neighboring Arg5 and also Phe9 and His13. The loca-
tion of site 4 at the beginning of the helix is perhaps allow-
ing some distortion without significantly affecting the
position of critical amino acids.

Homo s.

Pan t.

Gorilla g.

Pongo p.

Papio h.

Macaca m.
Cercopithecus a.
Miopithecus t.
Colobus g.
Trachypithecus f.
Pygathrix a.
Saquinus o.

Aotus t.
Saimiri s.

http://www.biomedcentral.com/1471-2148/7/167

Cluster-2 included four selected sites, type I sites 41 (Asp)
and 84 (His), type II sites 82 (Lys) and 93 (Gln), located
close or within the anti-parallel B-sheet formed by pB-
strands B1, B4 and B5. Sites 41 and 82 lie at the C-termi-
nal region of the active site, while sites 84 and 93 are
located further up, facing the exterior of the protein. Site
41, neighboring two important active site residues Lys40
[P, subsite] and Ile42 [B, subsite] (table 4), presented a
total of seven amino acid properties suffering drastic
changes, namely properties pertaining polarity and size/
molecular weight. As for site 82, located close to another
residue of the B1 subsite Thr80, four properties were
detected concerning mostly the acid-base characteristics
and the buriedness of the residue. The second site under
positive selection in strand B4, site 84, presented a total of
six properties under selection related with polarity, acid-
base properties and conformational properties. Finally,
site 93 (located between two important structural sites
Cys92 and Tyr94; table 4) had a total of five properties
detected pertaining to acid-base, size and conformation-
related characteristics.

5152 63 66 82 103

Elirl=l=EEEEEEEE =

[ Polar positive Wl Polar negative | Polar negative [] Non-polar aliphatic @l Non-polar aromatic @ P.G

Figure 4

Multiple sequence alignment of amino acid sequences for sites under positive selection.
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Miopithecus t.

—1] Cobbusg.
_[ Pygathrix a.
Trachypihecus f.

Cercopithecus a.

http://www.biomedcentral.com/1471-2148/7/167

-E] Macaca m.
Papio h.

Pongo p.

Figure 5

C, trace and relevant side chains of 3-D structure models at the cluster-1 region. Phylogenetic tree obtained from
ancestral reconstruction in PAML (A) and superimposed 3D models for colored nodes and species (B), represented as Ca
trace with the relevant side chains visible. Each amino acid is numbered in colors according to the site category: type | sites are
numbered in red and type Il in pink; other sites are shown in black.

Overall, the results for the two clusters located in the
active site region suggest that selective forces act in several
of the more permissive sites of subsites P, and B1, shaping
the local chemical and conformational environment
without significantly interfering with the position critical
residues, which are probably subject to purifying selec-
tion.

The nucleolar targeting sequence

The nucleolar import of ANG was mapped in the position
3IRRRGL35 [20], a region encompassing the c-terminal
region of helix H2 and the beginning of loop L2. ANG
import was further shown to be independent of the classic
nuclear localization signal-importin a/f pathway with a
proposed mechanism involving import through passive
diffusion and retention in the nucleus/nucleolus medi-
ated by the NTS region [44].

Cluster-3 of sites under positive selection is located in this
region with a type I site 34 (Gly) and a type Il site 32 (Arg).
Analysis of drastic changes in amino acid properties for
site 32 resulted in a total of five properties indicative of
changes in polarity and helical conformation. Site 34 had
an elevated number of drastic changes in properties as a
result of the broad diversity of amino acid substitutions
(figure 4). The chemical and structural divergence
observed for these two sites will surely influence the inter-
actions with other proteins mediated through this region.

However, further clarification of the pathway for nuclear
import or retention and the amino acid sites involved in
both partners would be required in order to fully assess
the impact and possible causes for positive selection in
this region.

The cell-binding site

A putative 'cell-binding' site was first mapped to the
region between residues 60 and 68, as the proteolytic
cleavage of peptide bonds 60/61, 67/68 or both, abol-
ished the angiogenic activity without significantly affect-
ing the enzymatic activity [18]. Mutation of Arg66 [45]
and the substitution of ANG residues 58-70 for their
RNase counterparts produced similar results. Deamina-
tion experiments pointed out a second important residue,
Asn61, and also a possible second region containing
Asn109 [19]. The 'cell-binding' site was implicated in the
binding to a-actin [46,47], in particular residues Asn61
and Gly62, conserved in angiogenins [48]. However, the
interacting region remains elusive in other identified
interacting proteins as a putative 170 kDa receptor [49] or
a-2-actinin [50].

Cluster-4 of sites under positive selection partly overlaps
with the cell-binding site, including two type 1 sites: 63
(Asn) and Arg66 and a type II site: Val103. For the first of
these sites, a total of nine properties were subjected to
drastic changes: four chemical properties, four structural
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Table 4: Functional information for sites within or neighboring positive selection clusters
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Site Functional information Selection
Ser4 None ++
Arg5 *Conserved site, unique to ANG (RNase counterpart is Ala4), has been implicated in the formation of hydrogen bonds with
the P, phosphate and appears to be the critical residue in this subsite [42] [45] [76].
*Involved in the contacts of the complex ANG-Ribonuclease Inhibitor (RI) [77].
Thr7 None +
His8 «Structural counterpart of the RNase A P, subsite residue Lys7 lays 45A apart from the P, phosphate group in +
superimposed structures, too far to interact with it. Forms H-bonds with Arg33 [42].
*Involved in the contacts of the complex ANG-RI [77].
Phe9 *Part of the hydrophobic nucleus. Forms m-7 interactions with catalytic residue His|3 [78].
LeulO *Mutation to proline disrupts ribonucleolytic activity (disrupts interaction 9—13) [78].
Thrll «Structural counterpart of the RNase A P, subsite residue Argl0, but lays too far from the P, phosphate group in +
superimposed structures to form interactions [42].
GInl2 *Structural analogue of the RNase A P, subsite residue Ginl | [42].
*Mutation to proline disrupts ribonucleolytic activity (disrupts interaction 9—13) [78].
*Mutation to Leu found in two ALS patients of Scottish/Irish descent [13].
His13 *Member of the catalytic triad — general base catalysis [42].
Arg3l Region 31-35 constitutes a nuclear location signal *Mutation to alanine significantly reduces nuclear
responsible for the nucleolar location of angiogenin [20]. translocation efficiency.
eInvolved in the contacts of the complex ANG-RI [77].
*Mutation to Leu found in one ALS patients of Irish/English
descent [13].
Arg32 eInvolved in the contacts of the complex ANG-RI [77]. +
Arg33 *Mutation to alanine disrupts nuclear translocation [20] and
reduces ribonucleolytic activity by 7 fold [45].
*Interacts with Phe45 and shields Met30 and Cys26 from
solvent [78].
*H bonds with Thrl | and Tyr|4 and Ser28 [42].
Gly34 ++
Leu35
Lys40 *Member of the catalytic triad — donates H bond to the pentavalent transition state. Conservative replacement with arginine
causes a 50 fold reduction in activity [79].
*Involved in the contacts of the complex ANG-RI [77].
*Mutation to lle found in three ALS patients of Irish/Scottish descent [13].
Asp4l *Involved in the contacts of the complex ANG-RI [77]. ++
lle42 *Structural counterpart of the RNase A B, subsite residue Val43 [42].
Asn43  sStructural counterpart of the RNase A Bl subsite residue Asn44 [42].
Arg51 *Flexible residue [42]. +
*Appears disordered in the ANG-RI complex x-ray structure [77].
Ser52 *Forms H-bonds with Asnél [42]. +
lle53 *Part of the hydrophobic core, essential to the ribonucleolytic activity [78].
Asné | The region from Lys-60 to Asn-68 constitutes a critical cell-  *Deamination abolishes angiogenic activity [19].
binding site, distinct from the catalytic site [18]. *Conserved throughout angiogenins, considered essential
for actin binding [48].
*Forms H-bonds with Ser 52 and 74 [42].
Gly62 *Conserved throughout angiogenins, considered essential
for actin binding [48].
Asné3 *Forms H-bonds with Gly62 [42]. ++
Pro64
His65
Argéé ++
Glué7 *Involved in the contacts of the complex ANG-RI [77].
Thr80 «Structural counterpart of the RNase A Bl subsite residue
Asp83 [42].
Lys82 None +
His84 *The region 84-89 is involved in the contacts of the complex ANG-RI [77]. ++
Cys92 *Forms an S-S bond with Cys39 [42].
GIn93 *Involved in the contacts of the complex ANG-RI [77]. +
Tyr94 *Forms H-bonds with Lys-40 and is part of the hydrophobic core, mutation to asparagine abolishes ribonucleolytic activity
[78].
Vall03  +Part of the hydrophobic core, mutation to Asp abolishes ribonucleolytic activity [78]. +

Sites under positive selection are indicated in the last column, (++) type | sites, (+) type Il sites.
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properties and one uncategorized property. These are
mostly related to polarity and volume/spatial occupation.
Site 66 presented the highest number of properties subject
to drastic changes in this analysis with a total of 16 out of
31 properties — nine chemical and seven structural. Over-
all, the evolutionary changes observed for sites 63 and 66
influence the interactions performed by this region. How-
ever, further information about the interactions between
this region of ANG and other proteins would be required
in order to further evaluate the effects of positive selection
in this region.

Site 103 (Val) is a buried residue, but was also included in
this cluster, since its a-carbon is relatively close to sites 63
and 66 (93-63: 10.84 A; 93-66: 12.84 A; 63-66:9.98 A).
This site is part of the hydrophobic core of the enzyme
(table 4) and only one structural property was detected.
The observed amino acid changes (figure 4) were replace-
ments between branched-chain amino acids, conservative
in terms of hydrophobicity.

Clusters outside know functional regions

Cluster-5 had two type II sites, 51 (Arg) and 52 (Ser),
located in helix 3 outside of the main functional regions.
The support for site 52 as being under selection was weak,
only obtained with the NJ topology in PAML. As for site
51 no particular functional or structural information was
available, besides being a rather flexible residue (table 4)
that is exposed to the solvent. It has a total of five proper-
ties with drastic changes, mostly concerning acid-base and
conformational characteristics.

Driving forces for diversifying selection

Previous work by Zhang and Rosenberg [29] had reported
positive selection in the primate ANG gene and analyzed
its effects in terms of charge-altering substitutions. In this
study we present a more extensive analysis at the gene and
protein level and obtain evidence for positive selection in
all the ANG regions considered essential for angiogenesis,
a good indication that this is the main underlying process
for diversifying selection in this gene. However, it remains
elusive on whether it is physiological or pathological ang-
iogenesis that drives ANG evolution.

Two events are generally used as reference for physiologic
and pathologic angiogenesis: placentation and cancer. All
the primate groups analyzed in this study have hemocho-
rial placentas, the most invasive form of placentation,
where a direct contact between the placental and maternal
circulations is established. Expression studies are only
available for human placentas and indicate significant
increases in the ANG levels in last trimester placentas, cor-
relating well with the dramatic increase in placental vessel
density and in fetal growth that occurs in this period [51].
Further ANG expression studies on other primate placen-
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tas, in particular those of lemurs and lorises that have
non-invasive epithelichorial placentation could help to
evaluate the existence of a connection between ANG lev-
els, placentation type and positive selection on this gene.
Even if such a connection is established, the apparent
increasing gradient of placentation invasiveness over the
primate phylogeny must be seen with caution, given that
studies on mammalian placenta evolution [52,53] have
shown that the Eurtherian ancestral already had a deeply
invasive placenta and that the different forms of placenta-
tion currently observed were the result of clade-specific or
convergent evolution.

As for cancer, the overexpression of ANG has been docu-
mented in many tumors and appears to correlate well
with disease establishment, progression and in some cases
aggressiveness (reviewed in [3]). Many authors suggest
that tumor cells might increase ANG (and other ang-
iogenic factors) expression to guarantee the blood supply
of the growing tumor, however, there is little information
on the genetic changes underlying this overexpression and
mutations in the ANG gene predisposing to cancer are
unknown.

It is noteworthy that invasive placentation and cancer pro-
gression share many features, like the invasive cell pheno-
type, vessel reorganization and neovascularization at the
site of implantation. Therefore, any evolutionary changes
that impact placentation are likely to have implications in
cancer. Previously, Zhang and Rosenberg [29] suggested,
based on the importance of ANG in pregnancy to embryo
vascularization, that diversifying selection could result
from an evolutionary 'conflict of interests' between moth-
ers and fetuses. The same authors also compared ANG
evolution to another cancer-related protein under positive
selection BRCA1 [54], and suggested that the selective
pressures acting in these genes were more likely related
with the physiological functions of their encoded proteins
and not with cancer. The hypothesis of evolutionary con-
flict was recently analyzed by Crespi and Summers in rela-
tion to cancer [55]. These authors suggested that the
particular incidence of positive selection in cancer-related
genes is motivated by the strong ongoing selection gener-
ated by evolutionary conflict (antagonistic coevolution).
This hypothesis is based on the fact that the physiological
processes that involve antagonistic coevolution, like
resource acquisition and use, cellular replication and tis-
sue growth are also critical to cancer predisposition. The
strong selection due to antagonistic coevolution would
drive the changes in conflict-related genes, and the pleio-
tropic effects of these changes would increase cancer risk.

The association between ANG mutations and disease has
only recently been observed in amyotrophic lateral sclero-
sis (ALS) patients [13], mostly from Irish and Scottish
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descent. Seven different mutations where described in 15
individuals with both sporadic and familial forms of the
disease. These affected mostly conserved amino acids of
functional or structural importance like Arg31Lys(NLS),
Cys39Trp (S-S bond) or catalytic Lys40lle (table 4), that
should result in moderate or severe impairment of ANG
function and therefore did not coincide with any of the
sites found to be under positive selection. The implication
of ANG in this disease is still obscure, given that these
mutations are rare, inexistent in other populations [56]
and, in fact, a moderate increase in ANG expression has
been documented in ALS patients [57].

Although angiogenesis appears to take centre stage as a
driving force for positive selection in the ANG gene, it is
still possible that there are other processes contributing to
selective pressures. Several lines of evidence have accumu-
lated supporting the existence of other ANG functions: (i)
the expression of ANG mRNA is low in the developing
fetus, reaching maximum levels in the adult, a pattern not
temporarily related to vessel development [58] and has a
widespread pattern of expression in many human cell
types [59]; (ii) ANG is a component of normal serum that
is upregulated in acute phase responses, suggesting an
involvement in host injury response [7]; (iii) human ANG
antimicrobial activity was also demonstrated in vitro
[11,12], but it is still elusive whether this is a result of the
ribonucleolytic activity or some other effect. The possible
ANG involvement in injury response and innate immu-
nity constitutes another intriguing hypothesis for a selec-
tion driving force. The constant "arms-race" between host
and pathogens is a well known for maintaining a strong
selective pressure in immunity-related genes. A similar
possibility was raised in the mouse [24], whose six paral-
ogous ANG genes were shown to be under positive selec-
tion, two of which presenting an antimicrobial activity
(ANG1 and ANG4). The role of ANG4 in gut innate
immunity was characterized in vivo [11]. Further charac-
terization of human/primate ANG anti-microbial effects
is required in order to assess this hypothesis. Nonetheless,
this is yet another possibility that is compatible with the
theory of evolutionary conflict.

Finally, it is also important to consider the role that inter-
acting proteins and ligands may have in the evolution of
ANG. We evaluated the solvent exposure of the residues
detected to be under positive selection by analyzing the
accessible surface area (ASA) using GETAREA (figure 6).
This program estimates if a residue is exposed at the sur-
face or buried in the protein, based on the ratio between
side-chain ASA and the "random coil" values per residue.
Eleven of the fifteen sites presented an ASA ratio equal or
above 50% (7, 8, 32, 34, 41, 51, 63, 66, 84, and 93), three
above 40% (4, 11, and 52) and only one bellow 20%
(103). The majority of the sites is therefore exposed to the
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exterior of the protein and can a priori modulate the inter-
actions with other proteins or ligands. It is also notewor-
thy that some of the sites detected under positive selection
in this study were found to be involved in contacts with
the ribonuclease inhibitor (RI) in the crystal structure of
the ANG-RI complex (table 4). Furthermore, ANG has
been shown to stimulate rRNA production [60], possibly
mediated by binding to a specific rDNA non-transcribed
sequence [61]. More precise structural characterizations of
the interactions performed by ANG and its partners are
still lacking and will be essential to further assess which
are the critical amino acids and regions of the protein.

Conclusion

In this work we aimed at evaluating in detail the amino
acid sites under positive selection in the primate ANG
gene, including its possible structural and functional
impacts. Using a maximum-likelihood gene level analysis
we obtained evidence for positive selection on the ANG
gene. Posterior site specific analyses allowed the identifi-
cation of 15 sites with strong evidence of positive selec-
tion, further corroborated by a protein level analysis that
showed that five of these sites also had an elevated
number of amino acid properties suffering radical
changes. The mapping of these sites in the ANG 3D-struc-
ture revealed five clusters in specific regions within the
main functional regions of the protein. In the active site
region, positive selection appears to modulate the chemi-
cal and structural characteristics of a few permissive sites
without affecting the position of the critical residues. Sig-
nificant chemical and structural divergence is further
observed in two other regions, the nucleolar location sig-
nal and 'cell-binding' site, clearly having a potential to
influence the interactions performed through them.

Given that evidence of positive selection was detected in
all ANG functional regions required for angiogenesis, it is
tempting to indicate angiogenesis as the process underly-
ing selection. It is unclear, however, if it is physiologic or
pathologic involvement of ANG in angiogenesis that dic-
tates the selective pressures. The two prototypical situa-
tions, placentation and cancer, share common features in
the primate species analyzed and the hypothesis of selec-
tive pressures motivated by antagonistic coevolution
appears to set a common ground explanation on how the
evolutionary changes motivated by physiologic processes
involving ANG can lead to an increased risk of cancer.
However, other processes may also influence ANG's adap-
tative evolution, and the possible involvement in innate
immunity is particularly interesting since the host-patho-
gen 'arms-race' is a common origin for selective pressure.
Also, one must consider the possibility of ANG/ligands
co-evolution given that most sites under selection are
exposed in the surface of the protein and can mediate
interactions. Future experimental characterizations of
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Figure 6

Exposure of residues to the exterior of the protein. Plot of the ASA ratio calculated between the side-chain and the
'random coil' value of each residue. Sites with a ratio above 50% are considered to be exposed to the exterior whereas sites
under 20% are considered buried. The localization for sites under positive selection is shown in red on a wireframe represen-

tation of ANG.

ANG function, physiologic mechanism and interactions
will allow further evaluation of these hypotheses.

Methods

Sequence data

ANG coding sequences were retrieved from GenBank for
14 different species representative of the two main
branches of the simian primates: Platyrrhini (new world
monkeys) and Catarrhini (old world monkeys and homi-
nids). Reference sequences were available for Homo sapi-
ens and Pan troglodytes, the remaining primate sequences
had been previously published [29,31] (see table 1 for
species and sequence reference numbers). In all alignment
and figures the names of the species were abbreviated as
the genus plus the first initial of the specific epithet and
the human amino acid sequence was used as reference for
sites.

Sequence alignments and phylogenetic trees

A protein based coding sequence alignment was con-
structed by aligning translated protein sequences using
the Clustal W algorithm [62] with default settings, in
MEGA version 3.1 [63] and retrieving the corresponding
DNA sequence. The alignment was straightforward, with
the introduction of a single 3 bp gap corresponding to an
insertion of an arginine residue in the Hominid lineage.
Gaps were removed from analyses. Phylogenetic trees
were constructed using three distinct algorithms: neigh-
bor-joining (NJ) [64] with 1,000 bootstrap replicates [65]
in MEGA version 3.1; Maximum likelihood (ML) in Paup
4.0b10 [66] using PaupUp graphical interface [67] and
Bayesian analysis (BY) in MrBayes 3.1.2 [68]. For ML the
best substitution model was evaluated using Modeltest
3.7 [69] that determined SYM + G as the best-fit model,
according to Akaike's information criterion (AIC). The
best phylogenetic tree was determined using heuristic
search with nearest-neighbor interchange (NNI) and
nodes support was evaluated by bootstrapping with 1,000
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replicates. For Bayesian analysis the best substitution
model was evaluated through MrModelTest v2.2 [70], a
modified version of David Posada's Modeltest 3.6 rewrit-
ten to compare all of the 24 models that can be imple-
mented in MrBayes version 3, which also selected SYM+G
as the best-fit model (AIC).

Evolutionary analyses

Alignments and the NJ/ML/BY trees were used for poste-
rior molecular evolution analyses. Evidence for positive
selection on ANG was first evaluated using likelihood
ratio tests using the CODEML algorithm of the PAML
3.14b package [33]. We tested Branch models, the most
simple (one ratio) of which admits a single o ratio for the
entire tree and the most general (free-ratios) which allows
a o ratio for each branch. We also tested two ratios models
allowing a background o ratio and a different o for the
branch being tested, done for all the branches presenting
a ® > 1 in the free-ratios models. As null hypothesis we
used the one ratios model and two ratios models with a
fixed ® = 1 in the branch under analysis. The level of sig-
nificance for these LRTs was calculated using a chi-square
approximation given that twice the difference of log like-
lihood between the models (2AInL) will asymptotically
have a 2 distribution, with a number of degrees of free-
dom corresponding to the difference of parameters
between the nested models. We then used site models that
compare the fit of two nested site specific models to the
data - a neutral model that does not admit positive selec-
tion (o < = 1) and a more general, alternative model that
admits positive selection (o > 1). The one ratio model
(MO0) and three pairs of site specific models were used, as
suggested in the PAML user's guide: M1a (NearlyNeutral)
versus M2a (PositiveSelection); M7 (Beta) versus M8
(Beta&m) and M8a (Beta&w, = 1) versus M8 (Beta&o).
The significance of the LRT between the neutral and alter-
native model was assessed as described before and due to
possible complications with non-estimable parameters,
the following degrees of freedom were used, as they are
expected to be conservative [58]: M1a vs. M2a df = 2; M7
vs. M8 df = 2; M8a vs. M8 df = 1. Similar results were
obtained for all methods of tree reconstruction, reflecting
the robustness of PAML in respect to the phylogenetic tree
used.

A protein level analysis was performed using TreeSAAP
3.2 [37]. This program calculates the goodness-of-fit
between an observed distribution of changes in amino
acid physiochemical properties and an expected distribu-
tion that each amino acid replacement is equally likely
under selective neutrality. These are analyzed based on the
ancestral reconstruction inferred from the coding
sequence alignment and corresponding phylogenetic tree
using the CODEML algorithm. The program categorizes
the range of changes in amino acid properties in eight
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magnitude categories from conservative to radical and cal-
culates a z-score that indicates the direction of selection.
We chose to monitor positive radical variations (+6, +7
and +8. magnitudes) as they are expected to result in sig-
nificant structural and functional changes on the protein,
thereby correlating with molecular adaptation and posi-
tive selection [71,72]. The number of properties under
positive selection per site was determined by summing the
number of unique properties in these magnitude catego-
ries per branch. All the 31 properties in TreeSAAP were
used and, in order to facilitate functional analyses, catego-
rized in three groups: chemical, structural and others (see
additional file 3). Codon numbering is according to the
coding sequence alignment. Amino acid numbering is
according the coding sequence numbering minus the 24
amino acids of the signal peptide.

The conservation of the sites detected under selection in
the RNase A family was tested using the ConSurf web
server [38]. This program calculates conservation scores
for sites in a protein, based on a sequence alignment and
phylogenetic trees, through an empirical Bayesian
approach. Clustal-W alignments of the 14 primates
sequences used in this study and a pool of 168 non-ang-
iogenin RNase sequences (obtained by 6 psi-blast itera-
tions using the Homo sapiens sequence as query) were
submitted to the server. The 2ANG pdb file was used as
reference and the phylogenetic tree was the one generated
by ConSurf. Confidence intervals for the conservation
scores estimations are calculated and when the number of
sequences is small, the confidence interval tends to be
large. Amino acid positions that are assigned confidence
intervals that are too large are considered to be below the
confidence cut-off. This was the case for sites 32, 34 and
52 in the primate ANG alignment.

Structural analysis and homology modeling

The main functional regions and sites under positive
selection were mapped on the X-ray crystallographic struc-
ture of Human ANG, retrieved from the Protein Databank
as 2ANG [40]. Visualization and editing of the structure
were performed using pyMOL (DeLano Scientific, San
Carlos, CA, USA). Homology modeling was performed
for ancestral and current sequences, whereas the ancestral
sequences were reconstructed using PAML [33]. 2ANG
was used as template for Swiss-model [39] using the
project mode in DeepView/Swiss-pdb viewer. Briefly, the
pdb x-ray coordinates file 2ANG (without waters and het-
eroatoms) and the sequence to model were loaded in
DeepView and the resulting alignment manually cor-
rected. This project was then submitted to the Swiss-
Model server for automated model generation and energy
minimization, thereby creating the final optimized
model. The model quality was assessed by What-Check
[73] through Swiss-Model. Furthermore, given the high
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degree of homology between sequences, the quality of the
models is expected to be high and depending mostly on
the quality of the alignment [74].

The surface exposure of amino acids was assessed using
GETAREA 1.1 [75] web interface. This program performs
analytical calculation of solvent accessible surface area
based on the atom coordinates of a PDB file and provides
an estimate of the solvent exposure based on the ratio of
the side-chain surface area to "random coil" value per res-
idue. The "random coil" value of a residue x is the average
solvent-accessible surface area of x in the tripeptide Gly-X-
Gly in an ensemble of 30 random conformations. Resi-
dues are considered to be solvent exposed if the ratio
value exceeds 50% and to be buried if the ratio is less than
20%

Abbreviations
ECP - Eosinophil cationic protein

EDN - Eosinophil derived neurotoxin
LRT - Likelihood ratio test
UTR - Untranslated region

Competing interests
The author(s) declare that there are no competing inter-
ests.

Authors' contributions

DSO performed all phylogenetic, evolutionary and struc-
ture-function analyses and drafted the manuscript, AA
participated in the genetic analyses, design, drafting and
coordination of the study, MJR participated in the drafting
and coordination of the study. All authors read and
approved the final manuscript.

Additional material

Additional file 1

Neighbor-Joining phylogenetic tree of the primate species analyzed show-
ing branch labeling as used in the PAML branch analyses.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2148-7-167-S1.png]

Additional file 2

Likelihood ratio tests for PAML branch models.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2148-7-167-S2.doc]

http://www.biomedcentral.com/1471-2148/7/167

Additional file 3

Categorization of TreeSAAP properties. TreeSAAP properties divided in
three categories based on their nature: chemical, structural or others.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2148-7-167-S3.doc]

Acknowledgements

We would like to thank Eva Cunha (currently at the Johns Hopkins Univer-
sity, Baltimore, USA) for the critical discussions and support throughout
this work, Rute da Fonseca (currently at the University of Copenhagen,
Denmark), Alexandra Marques and Ricardo Branco for their help with the
methodologies used and Nuno Osorio (Life and Health Sciences Research
Institute, University of Minho, Portugal) for the helpful discussions and sug-
gestions throughout the drafting of this manuscript. This work was sup-
ported in part by the project PTDC/BIA-BDE/69144/2006 from the
Portuguese Foundation for Science and Technology. Comments made by
two anonymous referees improved a previous version of this manuscript.

References

I.  Carmeliet P: Angiogenesis in life, disease and medicine. Nature
2005, 438(7070):932-936.

2. Fett)W, Strydom D), Lobb RR, Alderman EM, Bethune JL, Riordan JF,
Vallee BL: Isolation and characterization of angiogenin, an
angiogenic protein from human carcinoma cells. Biochemistry
1985, 24(20):5480-5486.

3. Tello-Montoliu A, Patel ]V, Lip GY: Angiogenin: a review of the
pathophysiology and potential clinical applications. | Thromb
Haemost 2006, 4(9):1864-1874.

4. FettJW, Olson KA, Rybak SM: A monoclonal antibody to human
angiogenin. Inhibition of ribonucleolytic and angiogenic
activities and localization of the antigenic epitope. Biochemis-
try 1994, 33(18):5421-5427.

5. Olson KA, French TC, Vallee BL, Fett JW: A monoclonal antibody
to human angiogenin suppresses tumor growth in athymic
mice. Cancer Res 1994, 54(17):4576-4579.

6.  Olson KA, Byers HR, Key ME, Fett JW: Inhibition of prostate car-
cinoma establishment and metastatic growth in mice by an
antiangiogenin monoclonal antibody. Int | Cancer 2002,
98(6):923-929.

7. Piccoli R, Olson KA, Vallee BL, Fett JW: Chimeric anti-angiogenin
antibody cAb 26-2F inhibits the formation of human breast
cancer xenografts in athymic mice. Proc Natl Acad Sci U SA 1998,
95(8):4579-4583.

8. Olson KA, Byers HR, Key ME, Fett JW: Prevention of human
prostate tumor metastasis in athymic mice by antisense tar-
geting of human angiogenin. Clin Cancer Res 2001,
7(11):3598-3605.

9. Olson KA, Fett JW, French TC, Key ME, Vallee BL: Angiogenin
antagonists prevent tumor growth in vivo. Proc Natl Acad Sci U
S A 1995, 92(2):442-446.

10. Kao RY, Jenkins JL, Olson KA, Key ME, Fett JW, Shapiro R: A small-
molecule inhibitor of the ribonucleolytic activity of human
angiogenin that possesses antitumor activity. Proc Natl Acad Sci
U S A 2002, 99(15):10066-10071.

I1. Hooper LV, Stappenbeck TS, Hong CV, Gordon JI: Angiogenins: a
new class of microbicidal proteins involved in innate immu-
nity. Nat Immunol 2003, 4(3):269-273.

12.  Bedoya VI, Boasso A, Hardy AW, Rybak S, Shearer GM, Rugeles MT:
Ribonucleases in HIV Type | Inhibition: Effect of Recom-
binant RNases on Infection of Primary T Cells and Immune
Activation-Induced RNase Gene and Protein Expression.
AIDS Res Hum Retroviruses 2006, 22(9):897-907.

13. Greenway M), Andersen PM, Russ C, Ennis S, Cashman S, Donaghy C,
Patterson V, Swingler R, Kieran D, Prehn ], Morrison KE, Green A,
Acharya KR, Brown RH, Hardiman O: ANG mutations segregate
with familial and 'sporadic’ amyotrophic lateral sclerosis. Nat
Genet 2006, 38(4):411-413.

Page 15 of 17

(page number not for citation purposes)


http://www.biomedcentral.com/content/supplementary/1471-2148-7-167-S1.png
http://www.biomedcentral.com/content/supplementary/1471-2148-7-167-S2.doc
http://www.biomedcentral.com/content/supplementary/1471-2148-7-167-S3.doc
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16355210
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4074709
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4074709
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16961595
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16961595
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7514035
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7514035
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7514035
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8062244
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8062244
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8062244
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11948474
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11948474
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11948474
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9539780
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9539780
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9539780
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11705882
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11705882
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11705882
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7831307
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7831307
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12118120
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12118120
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12118120
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12548285
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12548285
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12548285
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16989616
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16989616
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16501576
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16501576

BMC Evolutionary Biology 2007, 7:167

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.
34.

35.

36.

Lambrechts D, Lafuste P, Carmeliet P, Conway EM: Another ang-
iogenic gene linked to amyotrophic lateral sclerosis. Trends
Mol Med 2006, 12(8):345-347.

Kurachi K, Davie EW, Strydom D), Riordan JF, Vallee BL: Sequence
of the cDNA and gene for angiogenin, a human angiogenesis
factor. Biochemistry 1985, 24(20):5494-5499.

Strydom D), Fett JW, Lobb RR, Alderman EM, Bethune L, Riordan JF,
Vallee BL: Amino acid sequence of human tumor derived ang-
iogenin. Biochemistry 1985, 24(20):5486-5494.

Shapiro R, Riordan JF, Vallee BL: Characteristic ribonucleolytic
activity of human angiogenin. Biochemistry 1986,
25(12):3527-3532.

Hallahan TW, Shapiro R, Vallee BL: Dual site model for the orga-
nogenic activity of angiogenin. Proc Natl Acad Sci U S A 1991,
88(6):2222-2226.

Hallahan TW, Shapiro R, Strydom DJ, Vallee BL: Importance of
asparagine-61 and asparagine-109 to the angiogenic activity
of human angiogenin. Biochemistry 1992, 31(34):8022-8029.
Moroianu , Riordan JF: Identification of the nucleolar targeting
signal of human angiogenin. Biochem Biophys Res Commun 1994,
203(3):1765-1772.

Harper JW, Vallee BL: A covalent angiogenin/ribonuclease
hybrid with a fourth disulfide bond generated by regional
mutagenesis. Biochemistry 1989, 28(4):1875-1884.

Moroianu |, Riordan JF: Nuclear translocation of angiogenin in
proliferating endothelial cells is essential to its angiogenic
activity. Proc Natl Acad Sci U S A 1994, 91(5):1677-1681.

Shapiro R, Vallee BL: Site-directed mutagenesis of histidine-13
and histidine-114 of human angiogenin. Alanine derivatives
inhibit angiogenin-induced angiogenesis. Biochemistry 1989,
28(18):7401-7408.

Cho S, Beintema J), Zhang J: The ribonuclease A superfamily of
mammals and birds: identifying new members and tracing
evolutionary histories. Genomics 2005, 85(2):208-220.

Cho S, Zhang J: Ancient expansion of the ribonuclease A super-
family revealed by genomic analysis of placental and marsu-
pial mammals. Gene 2006, 373:116-125.

Rosenberg HF, Dyer KD: Eosinophil cationic protein and eosi-
nophil-derived neurotoxin. Evolution of novel function in a
primate ribonuclease gene family. | Biol Chem 1995,
270(37):21539-21544.

Zhang |, Dyer KD, Rosenberg HF: Evolution of the rodent eosi-
nophil-associated RNase gene family by rapid gene sorting
and positive selection. Proc Natl Acad Sci U S A 2000,
97(9):4701-4706.

Singhania NA, Dyer KD, Zhang ], Deming MS, Bonville CA, Doma-
chowske JB, Rosenberg HF: Rapid evolution of the ribonuclease
A superfamily: adaptive expansion of independent gene clus-
ters in rats and mice. | Mol Evol 1999, 49(6):721-728.

Zhang ], Rosenberg HF: Diversifying selection of the tumor-
growth promoter angiogenin in primate evolution. Mol Biol
Evol 2002, 19(4):438-445.

Wildman DE, Uddin M, Liu G, Grossman LI, Goodman M: Implica-
tions of natural selection in shaping 99.4% nonsynonymous
DNA identity between humans and chimpanzees: enlarging
genus Homo. Proc Natl Acad Sci U S A 2003, 100(12):7181-7188.
Zhang J, Zhang YP: Pseudogenization of the tumor-growth pro-
moter angiogenin in a leaf-eating monkey. Gene 2003,
308:95-101.

Rosenberg NA: The probability of topological concordance of
gene trees and species trees.  Theor Popul Biol 2002,
61(2):225-247.

Yang Z: PAML: a program package for phylogenetic analysis
by maximum likelihood. Comput Appl Biosci 1997, 13(5):555-556.
Yang Z, Wong WS, Nielsen R: Bayes empirical bayes inference
of amino acid sites under positive selection. Mol Biol Evol 2005,
22(4):1107-1118.

Berlin S, Smith NG: Testing for adaptive evolution of the
female reproductive protein ZPC in mammals, birds and
fishes reveals problems with the M7-M8 likelihood ratio test.
BMC Evol Biol 2005, 5:65.

Suzuki Y, Nei M: False-positive selection identified by ML-
based methods: examples from the Sigl gene of the diatom
Thalassiosira weissflogii and the tax gene of a human T-cell
lymphotropic virus. Mol Biol Evol 2004, 21(5):914-921.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.
49.

50.

51,

52.

53.

54.

56.

57.

58.

59.

http://www.biomedcentral.com/1471-2148/7/167

Woolley S, Johnson |, Smith MJ, Crandall KA, McClellan DA: Tree-
SAAP: selection on amino acid properties using phyloge-
netic trees. Bioinformatics 2003, 19(5):671-672.

Landau M, Mayrose |, Rosenberg Y, Glaser F, Martz E, Pupko T, Ben-
Tal N: ConSurf 2005: the projection of evolutionary conser-
vation scores of residues on protein structures. Nucleic Acids
Res 2005, 33(Web Server issue):W299-302.

Guex N, Peitsch MC: SWISS-MODEL and the Swiss-Pdb-
Viewer: an environment for comparative protein modeling.
Electrophoresis 1997, 18(15):2714-2723.

Chatani E, Hayashi R: Functional and structural roles of constit-
uent amino acid residues of bovine pancreatic ribonuclease
A. | Biosci Bioeng 2001, 92(2):98-107.

Acharya KR, Shapiro R, Allen SC, Riordan JF, Vallee BL: Crystal
structure of human angiogenin reveals the structural basis
for its functional divergence from ribonuclease. Proc Nat/ Acad
Sci U S A 1994, 91(8):2915-2919.

Leonidas DD, Shapiro R, Allen SC, Subbarao GV, Veluraja K, Acharya
KR: Refined crystal structures of native human angiogenin
and two active site variants: implications for the unique func-
tional properties of an enzyme involved in neovascularisa-
tion during tumour growth. | Mol Biol 1999, 285(3):1209-1233.
Reiersen H, Rees AR: The hunchback and its neighbours: pro-
line as an environmental modulator. Trends Biochem Sci 2001,
26(11):679-684.

Lixin R, Efthymiadis A, Henderson B, Jans DA: Novel properties of
the nucleolar targeting signal of human angiogenin. Biochem
Biophys Res Commun 2001, 284(1):185-193.

Shapiro R, Vallee BL: Identification of functional arginines in
human angiogenin by site-directed mutagenesis. Biochemistry
1992, 31(49):12477-12485.

Hu GF, Chang SI, Riordan JF, Vallee BL: An angiogenin-binding
protein from endothelial cells. Proc Natl Acad Sci U S A 1991,
88(6):2227-2231.

Hu GF, Strydom D), Fett JW, Riordan JF, Vallee BL: Actin is a bind-
ing protein for angiogenin. Proc Natl Acad Sci U S A 1993,
90(4):1217-1221.

Strydom DJ: The angiogenins. Cell Mol Life Sci
54(8):811-824.

Hu GF, Riordan JF, Vallee BL: A putative angiogenin receptor in
angiogenin-responsive human endothelial cells. Proc Natl Acad
Sci U S A 1997, 94(6):2204-2209.

Hu H, Gao X, Sun Y, Zhou |, Yang M, Xu Z: Alpha-actinin-2, a
cytoskeletal protein, binds to angiogenin. Biochem Biophys Res
Commun 2005, 329(2):661-667.

Rajashekhar G, Loganath A, Roy AC, Wong YC: Expression and
localization of angiogenin in placenta: enhanced levels at
term over first trimester villi. Mol Reprod Dev 2002,
62(2):159-166.

Wildman DE, Chen C, Erez O, Grossman LI, Goodman M, Romero
R: Evolution of the mammalian placenta revealed by phylo-
genetic analysis. Proc Natl Acad Sci U S A 2006, 103(9):3203-3208.
Vogel P: The current molecular phylogeny of Eutherian mam-
mals challenges previous interpretations of placental evolu-
tion. Placenta 2005, 26(8-9):591-596.

Huttley GA, Easteal S, Southey MC, Tesoriero A, Giles GG, McCredie
MR, Hopper JL, Venter D): Adaptive evolution of the tumour
suppressor BRCAI in humans and chimpanzees. Australian
Breast Cancer Family Study. Nat Genet 2000, 25(4):410-413.
Crespi BJ, Summers K: Positive selection in the evolution of
cancer. Biol Rev Camb Philos Soc 2006/06/10 edition. 2006,
81(3):407-424.

Del Bo R, Scarlato M, Ghezzi S, Martinelli-Boneschi F, Corti S, Loc-
atelli F, Santoro D, Prelle A, Briani C, Nardini M, Siciliano G, Mancuso
M, Murri L, Bresolin N, Comi GP: Absence of angiogenic genes
modification in Italian ALS patients. Neurobiol Aging 2006.
Cronin S, Greenway M, Ennis S, Kieran D, Green A, Prehn JH, Hardi-
man O: Elevated serum angiogenin levels in ALS. Neurology
2006, 67(10):1833-1836.

Weiner HL, Weiner LH, Swain JL: Tissue distribution and devel-
opmental expression of the messenger RNA encoding ang-
iogenin. Science 1987, 237(4812):280-282.

Moenner M, Gusse M, Hatzi E, Badet |: The widespread expres-
sion of angiogenin in different human cells suggests a biolog-
ical function not only related to angiogenesis. European journal
of biochemistry / FEBS 1994, 226(2):483-490.

1998,

Page 16 of 17

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16843725
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16843725
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2866795
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2866795
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2866795
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2866794
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2866794
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2424496
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2424496
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2006161
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2006161
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1380830
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1380830
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1380830
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7945327
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7945327
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2719939
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2719939
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2719939
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8127865
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8127865
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8127865
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2479414
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2479414
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2479414
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15676279
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15676279
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15676279
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16530354
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16530354
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16530354
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7665566
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7665566
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7665566
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10758160
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10758160
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10758160
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10594173
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10594173
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10594173
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11919285
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11919285
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12766228
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12766228
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12766228
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12711394
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12711394
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11969392
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11969392
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9367129
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9367129
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15689528
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15689528
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16283938
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16283938
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15014169
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15014169
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15014169
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12651734
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12651734
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12651734
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15980475
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15980475
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9504803
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9504803
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16233067
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16233067
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16233067
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8159679
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8159679
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8159679
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9918722
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9918722
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9918722
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11701327
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11701327
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11374889
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11374889
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1281426
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1281426
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2006162
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2006162
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7679494
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7679494
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9760990
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9122172
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9122172
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15737636
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15737636
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11984825
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11984825
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11984825
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16492730
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16492730
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16085037
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16085037
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16085037
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10932184
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10932184
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10932184
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16762098
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16762098
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17130418
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2440105
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2440105
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2440105
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7528139
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7528139
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7528139

BMC Evolutionary Biology 2007, 7:167

60.

6l.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

Xu ZP, Tsuji T, Riordan JF, Hu GF: The nuclear function of ang-
iogenin in endothelial cells is related to rRNA production.
Biochem Biophys Res Commun 2002, 294(2):287-292.

Xu ZP, Tsuji T, Riordan JF, Hu GF: Identification and characteri-
zation of an angiogenin-binding DNA sequence that stimu-
lates luciferase reporter gene expression. Biochemistry 2003,
42(1):121-128.

Thompson JD, Higgins DG, Gibson T): CLUSTAL W: improving
the sensitivity of progressive multiple sequence alignment
through sequence weighting, position-specific gap penalties
and weight matrix choice. Nucleic Acids Res 1994,
22(22):4673-4680.

Kumar S, Tamura K, Nei M: MEGA3: Integrated software for
Molecular Evolutionary Genetics Analysis and sequence
alignment. Brief Bioinform 2004, 5(2):150-163.

Saitou N, Nei M: The neighbor-joining method: a new method
for reconstructing phylogenetic trees. Mol Biol Evol 1987,
4(4):406-425.

Felsenstein J: Confidence limits on phylogenies: An approach
using the bootstrap. Evolution : 1985, 39:783-791.

Swofford DL: PAUP¥*. Phylogenetic Analysis Using Parsimony
(*and Other Methods). Version 4. Sunderland, Massachusetts ,
Sinauer Associates; 2000.

Calendini F, Martin JF: PaupUP v1.0.2032.22590 Beta. A free
graphical frontend for Paup* Dos software. Program distrib-
uted by the authors; 2005.

Ronquist F, Huelsenbeck JP: MrBayes 3: Bayesian phylogenetic
inference under mixed models. Bioinformatics 2003,
19(12):1572-1574.

Posada D, Crandall KA: MODELTEST: testing the model of
DNA substitution. Bioinformatics 1998, 14(9):817-818.

Nylander JAA: MrModeltest v2.2. 2004 [http://www.ebc.uu.se/
systzoo/staff/nylander.html]. Program distributed by the author. Evo-
lutionary Biology Centre, Uppsala University

Marques AT, Antunes A, Fernandes PA, Ramos M): Comparative
evolutionary genomics of the HADH2 gene encoding Abeta-
binding alcohol dehydrogenase/l 7beta-hydroxysteroid dehy-
drogenase type 10 (ABAD/HSD10). BMC genomics 2006, 7:202.
da Fonseca RR, Antunes A, Melo A, Ramos MJ: Structural diver-
gence and adaptive evolution in mammalian cytochromes
P450 2C. Gene 2007, 387(1-2):58-66.

Hooft RW, Vriend G, Sander C, Abola EE: Errors in protein struc-
tures. Nature 1996, 381(6580):272.

Marti-Renom MA, Stuart AC, Fiser A, Sanchez R, Melo F, Sali A:
Comparative protein structure modeling of genes and
genomes. Annu Rev Biophys Biomol Struct 2000, 29:291-325.

Robert Fraczkiewicz WB: Exact and efficient analytical calcula-
tion of the accessible surface areas and their gradients for
macromolecules.  Journal of Computational Chemistry 1998,
19(3):319-333.

Russo N, Acharya KR, Vallee BL, Shapiro R: A combined kinetic
and modeling study of the catalytic center subsites of human
angiogenin. Proc Natl Acad Sci U S A 1996, 93(2):804-808.
Papageorgiou AC, Shapiro R, Acharya KR: Molecular recognition
of human angiogenin by placental ribonuclease inhibitor--an
X-ray crystallographic study at 2.0 A resolution. Embo J 1997,
16(17):5162-5177.

Smith BD, Raines RT: Genetic selection for critical residues in
ribonucleases. | Mol Biol 2006, 362(3):459-478.

Shapiro R, Fox EA, Riordan JF: Role of lysines in human ang-
iogenin: chemical modification and site-directed mutagene-
sis. Biochemistry 1989, 28(4):1726-1732.

http://www.biomedcentral.com/1471-2148/7/167

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and publishedimmediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here: O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 17 of 17

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12051708
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12051708
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12515546
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12515546
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12515546
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7984417
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7984417
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7984417
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15260895
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15260895
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15260895
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3447015
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3447015
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12912839
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12912839
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9918953
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9918953
http://www.ebc.uu.se/systzoo/staff/nylander.html
http://www.ebc.uu.se/systzoo/staff/nylander.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16899120
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16899120
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16899120
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17045425
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17045425
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17045425
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8692262
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8692262
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10940251
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10940251
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10940251
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8570639
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8570639
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8570639
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9311977
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9311977
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9311977
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16920150
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16920150
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2497770
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2497770
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2497770
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results and discussion
	Phylogenetic analyses
	Positive selection analyses
	Structure-function analyses
	The active site
	The nucleolar targeting sequence
	The cell-binding site
	Clusters outside know functional regions

	Driving forces for diversifying selection

	Conclusion
	Methods
	Sequence data
	Sequence alignments and phylogenetic trees
	Evolutionary analyses
	Structural analysis and homology modeling

	Abbreviations
	Competing interests
	Authors' contributions
	Additional material
	Acknowledgements
	References

