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Abtract
Background: The dinoflagellates Durinskia baltica and Kryptoperidinium foliaceum are distinguished
by the presence of a tertiary plastid derived from a diatom endosymbiont. The diatom is fully
integrated with the host cell cycle and is so altered in structure as to be difficult to recognize it as
a diatom, and yet it retains a number of features normally lost in tertiary and secondary
endosymbionts, most notably mitochondria. The dinoflagellate host is also reported to retain
mitochondrion-like structures, making these cells unique in retaining two evolutionarily distinct
mitochondria. This redundancy raises the question of whether the organelles share any functions
in common or have distributed functions between them.

Results: We show that both host and endosymbiont mitochondrial genomes encode genes for
electron transport proteins. We have characterized cytochrome c oxidase 1 (cox1), cytochrome
oxidase 2 (cox2), cytochrome oxidase 3 (cox3), cytochrome b (cob), and large subunit of ribosomal
RNA (LSUrRNA) of endosymbiont mitochondrial ancestry, and cox1 and cob of host mitochondrial
ancestry. We show that all genes are transcribed and that those ascribed to the host mitochondrial
genome are extensively edited at the RNA level, as expected for a dinoflagellate mitochondrion-
encoded gene. We also found evidence for extensive recombination in the host mitochondrial
genes and that recombination products are also transcribed, as expected for a dinoflagellate.

Conclusion: Durinskia baltica and K. foliaceum retain two mitochondria from evolutionarily distinct
lineages, and the functions of these organelles are at least partially overlapping, since both express
genes for proteins in electron transport.

Background
The endosymbiotic origins of plastids and mitochondria
share a number of characteristics in common, [1,2], but
differ in the complexity of their evolutionary history fol-
lowing their origin and initial integration. Whereas mito-
chondria originated once and have apparently never been

lost [3-5], plastids have spread between eukaryotic line-
ages several times in events referred to as secondary and
tertiary endosymbioses. Generally these secondary and
tertiary endosymbionts have degenerated so far that all
that remains is a plastid with extra membranes [6], but in
a few exceptional cases intermediate stages of reduction
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are known, and these may provide interesting glimpses
into how complexity is lost.

One of the characters that is absent from nearly all known
examples of secondary and tertiary endosymbionts is the
mitochondrion. This contrasts with the fact that mito-
chondria have never been lost in any other eukaryotic lin-
eage. Even in the most severely reduced, anaerobic
parasites which lack oxidative phosphorylation, highly
reduced organelles called mitosomes and hydrogeno-
somes are found [3-5]. Some of these have no direct role
in energy metabolism, but iron-sulfur cluster biosynthesis
is a common function [5,7,8]. These relict organelles sug-
gest mitochondria are resistant to outright loss, raising
questions about why mitochondria appear to be one of
the more dispensable features of algae taken up during
secondary and tertiary endosymbiosis events.

The single clear exception to this is found in a group of
related dinoflagellates that harbour a diatom tertiary
endosymbiont. This group contains several species (see
[9] for a recent summary), and here we have examined
two: Durinskia baltica [10] and Kryptoperidinium foliaceum
[11,12]. Several of these genera (including Durinskia and
Kryptoperidinium) have been shown to share a common
pennate diatom endosymbiont, arguing that the endo-
symbiosis is stable through evolutionary time [13,14].
Interestingly, this may not hold for the whole group, since
the endosymbiont of Peridinium quinquecorne is a centric
diatom [15], suggesting that the integration may have
spanned a long period of time and different transient
endosymbionts were ultimately fixed in these two sub-
groups. Nevertheless, the endosymbionts of D. baltica and
K. foliaceum are no longer transient in the short term, they
have lost motility and cell wall and, although some chro-
matin condensation occurs during sexual reproduction in
D. baltica, typical chromosomes are not found within the
endosymbiont nucleus at any stage of its life cycle [16,17].
During the endosymbiotic nuclear division, neither a
spindle apparatus nor any microtubules have been
observed [18], and the amitotic division of this nucleus
results in unequal daughter nuclei and significantly larger
amount of DNA in the nucleus than that reported in other
diatoms [19].

The endosymbiont has clearly been reduced in many
ways, but some of its most interesting characteristics are
what it has retained. This includes plastids surrounded by
endoplasmic reticulum (ER) that is continuous with the
outer membrane of the nucleus, a plasma membrane that
separates it from the host cytoplasm, a multi-lobed, prom-
inent nucleus with a genome, ribosomes, dictyosomes,
and mitochondria [16,20].

It is the retention of mitochondria that makes this endo-
symbiont stand out, in particular since D. baltica and K.
foliaceum host cells have also been reported to retain mito-
chondria. The loss of endosymbiont mitochondria in vir-
tually all known examples of secondary and tertiary
endosymbiotic events suggests retaining two mitochon-
dria is either unnecessary or even deleterious. The loss of
one of these organelles may be ongoing, but it is also pos-
sible that both compartments require mitochondrial
function or that they have distributed essential functions
between them. We have previously shown [9] that the K.
foliaceum endosymbiont mitochondrion contains a
genome and expresses genes for cytochrome c oxidase
subunit 1 (cox1), cytochrome c oxidase subunit 3 (cox3),
and cytochrome b (cob). However, no data are available
from the host mitochondrion, and with the function of
this organelle completely unknown we cannot address the
possibility that the two organelles have overlapping or dif-
ferentiated function.

In order to determine whether this unique mitochondrial
redundancy extends to the functional level, we character-
ized seven mitochondrial genes of D. baltica: five from the
endosymbiont (cox1, cox2, cox3, cob, and LSUrRNA) and
two from the host (cox1 and cob), and confirmed that cox2
and LSUrRNA from the endosymbiont and cox1 from the
host are also present in K. foliaceum. Most significantly, in
D. baltica, cox1 and cob are present and expressed in both
mitochondria, and those in the host are heavily edited, as
expected for a functional dinoflagellate mitochondrial
gene [21-23]. All available data therefore suggest that both
the host and endosymbiont mitochondria are actively
expressing genes functional in oxidative phosphorylation
and energy production.

Results and discussion
Characterization of endosymbiont mitochondrial genes 
and transcripts
PCR amplification using diatom-specific primers and
total D. baltica DNA (or RNA, see below), resulted in frag-
ments of the expected sizes for five genes: cox1, cox3, cob,
cox2, and LSUrRNA. Sequencing multiple clones yielded a
single copy of each gene. Only a short fragment of cox1
could be amplified from DNA, probably due to the pres-
ence of long type II introns such as those found in diatoms
Phaeodactylum tricornutum and Thalassiosira pseudonana
and the endosymbiont of K. foliaceum [9], so the remain-
der was recovered from RNA by RT-PCR. Diatom-derived
genes for cox1, cox3 and cob are already known from K.
foliaceum [9], so to complement the D. baltica data we also
amplified the K. foliaceum cox2 and LSUrRNA.

The phylogenies of all five genes (Fig. 1, 2, 3, 4, 5) gener-
ally resembled trees based on nuclear genes, with rela-
tively strong support for the monophyly of alveolates and
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Protein maximum likelihood phylogeny of cytochrome c oxidase 1 (cox1)Figure 1
Protein maximum likelihood phylogeny of cytochrome c oxidase 1 (cox1). Numbers at nodes indicate bootstrap 
support for major nodes over 50% from ML (top) and distance (bottom). A dash (-) indicates support less than 50%. Major 
groups are labeled to the right, with diatoms (red) and dinoflagellates (purple) indicated by a box and D. baltica and K. foliaceum 
genes in black.
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sister relationship between dinoflagellates and apicompl-
exans [24,25]. We also noted that haptophytes and cryp-
tophytes are sister groups with strong support in cob trees
(Fig. 4) and weakly so in cox1 and cox3 trees (Fig. 1 and 3),
as has been suggested in other analyses [26-29]. Most
importantly, however, in all five phylogenies the distinc-
tion between the expected positions of host and endosym-
biont-derived genes was unambiguous, and in all five
trees the D. baltica gene amplified with diatom-specific
primers branched within the diatom clade with strong
support (Fig. 1, 2, 3, 4, 5). Moreover, D. baltica consist-
ently grouped with K. foliaceum with strong support (with
the exception of distance analysis of cox1, where the over-
lap between the two sequences is relatively short). This is
in disagreement with the proposal that these dinoflagel-
lates are products of separate endosymbiotic events [30],
but consistent with the analyses of nuclear small-subunit
rRNA genes from the hosts in these two dinoflagellates
[14] and the hypothesis that these two species, and most
likely their other close relatives, resulted from a single
endosymbiotic event [13,15,31,32]. Together, D. baltica
and K. foliaceum branched specifically with pennate dia-

toms (i.e. Nitzschia or Cylindrotheca, Phaodactylum), which
is also consistent with evidence that the endosymbiont is
a descendent of a pennate diatom [9,14,33,34]. Overall,
these trees strongly support the conclusion that cox1, cox3,
cob, cox2, and LSUrRNA are all present in the mitochon-
drial genome of the endosymbiont.

To confirm that all five genes are actively expressed, each
was also amplified from RNA using RT-PCR. All diatom-
derived cDNA sequences were identical to their corre-
sponding genes, providing further evidence for these
genes being from the endosymbiont mitochondrion,
because the mitochondrial transcripts in dinoflagellates
are extensively edited [22,35,36].

Characterization of host mitochondrial genes and 
transcripts
The presence and expression of cox and cob genes in the
endosymbiont mitochondria suggests this organelle is
engaged in electron transport. The pressing question is
therefore the nature of the host organelle, but no data
have been gathered from it for comparison. Dinoflagellate

Protein maximum likelihood phylogeny of cytochrome oxidase 2 (cox2)Figure 2
Protein maximum likelihood phylogeny of cytochrome oxidase 2 (cox2). Numbers at nodes indicate bootstrap sup-
port for major nodes over 50% from ML (top) and distance (bottom). A dash (-) indicates support less than 50%. Major groups 
are labeled to the right, with diatoms (red) and dinoflagellates (purple) indicated by a box and D. baltica and K. foliaceum genes 
in black.
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mitochondrial genomes only encode three protein-coding
genes: cox1, cox3, and cob [23]. The LSU rRNA has been
extensively fragmented and rearranged [37], and cox2 has
been split and moved to the nucleus [38], so only cox1,
cox3, and cob were sought in the mitochondrial genome.
We used dinoflagellate-specific primers for all three genes
in RT-PCR with total D. baltica RNA, and identified frag-
ments of cox1 and cob. Using 3' RACE, we also recovered
the 3' end of the D. baltica cob gene. We also recovered 6
additional copies of cox1 transcripts (Fig. 6), each of
which contained inserts that differed in position, size, and
sequences, and disrupted the reading frame. Inserts
ranged from 81 to 453 bp. Two inserts at slightly different
positions of RNA2 and RNA3 were similar in size and
sequences, and both of these contained a 151 bp portion
of the cob gene flanked by two small (about 20 bp) non-
coding fragments (Fig. 6). Another insert contained a 75
bp fragment with over 90% identity to non-coding frag-
ments from the dinoflagellates Alexandrium catenella

(Genbank accession: AB265207) Gonyaulax polyedra (Gen-
bank accession: AF142472). We did not sequence a DNA
clone lacking an insert, but the mitochondrial genome of
other dinoflagellates is known to contain many copies of
each gene and many rearrangements [21,23], so the intact
copy of the gene was most likely simply not sampled.
Given the highly fragmented and divergent nature of
dinoflagellate mitochondrial rRNAs [37], it is possible
this 75 bp represents an as yet unidentified fragment of
either the LSU or SSU.

PCR using genomic DNA from D. baltica resulted in a sin-
gle cob gene fragment (12 identical clones were
sequenced), and six different cox1 fragments (seven differ-
ent clones were sequenced). As with cDNAs, each cox1
gene contained a unique insert (Fig. 6). Most inserts were
unique, but many contained small imperfect repeats in
common, and the positions of the inserts within cox1 were
variable and inevitably a portion of cox1 was missing at

Protein maximum likelihood phylogeny of cytochrome oxidase 3 (cox3)Figure 3
Protein maximum likelihood phylogeny of cytochrome oxidase 3 (cox3). Numbers at nodes indicate bootstrap sup-
port for major nodes over 50% from ML (top) and distance (bottom). A dash (-) indicates support less than 50%. Major groups 
are labeled to the right, with diatoms (red) and dinoflagellates (purple) indicated by a box and D. baltica and K. foliaceum genes 
in black.
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the point of insertion. One pair of DNA and cDNA clones
(Fig. 6, DNA1 and RNA3) were found to be identical, with
the exception of edited sites (see below).

A single transcript of the K. foliaceum cox1 was also recov-
ered from sequencing 15 identical clones. This transcript
also contained an insert, but without sequence similarity
to anything known and not at a position in common with
any D. baltica clone. We failed to identify cob, but consid-
ering its presence in D. baltica we feel it is unlikely to be
absent in K. foliaceum.

The many variants of the D. baltica host cox1 gene and the
insert in the K. foliaceum cox1 gene are both consistent
with the nature of mitochondrial genomes in other dino-
flagellates. This has been best described in Crypthecodin-
ium cohni and Amphidinium carterae, where protein-coding
genes are flanked by non-coding, repeat-rich sequences
and that the context of a gene can vary in different copies
due to homologous recombination [21,39], and in Oxyr-
rhis marina where protein coding genes are found in differ-
ent genomic contexts, and are often fragmented [23].

Protein maximum likelihood phylogeny of cytochrome b (cob)Figure 4
Protein maximum likelihood phylogeny of cytochrome b (cob). Numbers at nodes indicate bootstrap support for 
major nodes over 50% from ML (top) and distance (bottom). A dash (-) indicates support less than 50%. Major groups are 
labeled to the right, with diatoms (red) and dinoflagellates (purple) indicated by a box and D. baltica and K. foliaceum genes in 
black.
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Host mitochondrial transcripts are extensively edited
Dinoflagellate mitochondria possess a distinctive form of
RNA editing. Editing sites typically involve A to G, T to C,
and C to U changes at first and second positions, affecting
about 2% of positions in cox1 and cob genes [22,35,40].
The presence of such editing would provide further evi-
dence for the dinoflagellate mitochondrial location of the
cox1 and cob genes identified here, so all D. baltica gene
fragments were aligned to their respective transcripts and
conserved editing sites examined. In total, 786 bp of cox1
were comparable, and 352 bp of cob were comparable,
from which 11 and 7 edited sites were identified, respec-
tively. The nature of these edits was similar to that of other
dinoflagellates (Table 1) and, significantly, all but three of
the editing sites were conserved in other dinoflagellate
mitochondria [22,35,40]. Overall, the characteristics of
this editing are consistent with these genes and cDNAs
being located in the dinoflagellate host mitochondria.

Reduction and functional redundancy of mitochondria
Electron microscopy has shown that mitocondria exist in
both the host and endosymbiont cytosolic compartments
of D. baltica and K. foliaceum [11,12,16]. More recently
diatom-derived genes for cox1, cox3, and cob have been
shown to be expressed in K. foliaceum [9]. However, with-
out comparable data from the host mitochondria it is
impossible to determine whether the two organelles are
functionally redundant, or have distributed functions
between them. Here, we have shown that both organelles
contain at least two genes with central functions in elec-
tron transport, cox1 and cob. Accordingly, these two spe-

Schematic representation of cox1 gene and cDNA fragments characterised from Durinskia balticaFigure 6
Schematic representation of cox1 gene and cDNA fragments characterised from Durinskia baltica. The black rec-
tangles represent coding regions of the gene or the transcript. The white rectangles represent the inserts. The inserts that 
contain a fragment of another gene have been represented by gray rectangles. The scale is proportional to the number of 
nucleotides.
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cies are unique among eukaryotes in having retained
active, functional mitochondrial genomes from two dis-
tantly related eukaryotic lineages, the dinoflagellate host
and the pennate diatom endosymbiont. Moreover, these
organelles now appear to be at least partially functionally
redundant, since both express genes for proteins in the
electron transport chain.

Indeed, no characteristic of either host or endosymbiont
mitochondrial genes or genomes has so far been shown to
be significantly different from those of their dinoflagellate
or diatom relatives, which points to the conclusion that
neither organelle has been much affected by the presence
of the other. It seems unlikely that the two mitochondria
are retained due to functional differentiation, but their
genetic redundancy may be related to spatial differentia-
tion. If the membrane separating the host and the endo-
symbiont, which is thought to be derived from the diatom
plasma membrane [20], were deficient in transporters to
efficiently shuttle either substrates or products of mito-
chondrial reactions between the two compartments, then
neither compartment could eliminate those functions
without consequences. In other endosymbiotic events
such difficulties would have been overcome or made irrel-
evant by the continued reduction of the endosymbiont
and integration with the host. Whether the mitochon-
drion of D. baltica is a snapshot in the progression of
events that will ultimately lead to its loss, or whether the
process has been 'stuck' in some way is unknown. Simi-

larly, although it is generally assumed that the endosym-
biont will be reduced and the corresponding host feature
retained, this does not need to be the case. With the
already highly reduced and unusual nature of dinoflagel-
late mitochondrial genome [21,23,39], it is not unreason-
able to hypothesize that the host organelle may be lost as
easily as the relatively normal mitochondrion of the endo-
symbiont.

Conclusion
We have shown that two related dinoflagellates, D. baltica
and K. foliaceum, retain redundant genes in their host-
derived and endosymbiont-derived mitochondrial
genomes, including several genes related to electron trans-
port. Host-derived genes are edited at the RNA level and
subject to extensive recombination, as is expected for
dinoflagellate mitochondria. All genes characterized have
been shown to be expressed at the mRNA level, suggesting
the two organelles overlap in function, making these
unique among eukaryotes in retaining two partially
redundant mitochondria with different evolutionary ori-
gins.

Methods
Culture conditions and nucleic acid extraction
Cultures of Durinskia baltica (Peridinium balticum) CS-38
were obtained from CSIRO Microalgae Supply Service
(CSIRO Marine and Atmospheric Research Laboratories,
Tasmania, Australia) and maintained in GSe medium at

Table 1: Editing sites in the host mitochondrial mRNA of cox1 and cob in Durinskia baltica

Site Relative to Cc or Pp DNA RNA Codon Position Change aa Conserved in

cox1 330 A G 1st I – V Pp and Cc
cox1 351 T C 1st F – L Pp and Cc
cox1 469 C U 2nd T – I Unique1

cox1 481 C U 2nd S – F Pp and Cc
cox1 495 T C 1st F – L Pp and Cc
cox1 621 A G 1st I – V Pp and Cc
cox1 691 A G 2nd Y – C Pp
cox1 924 A G 1st I – V Pp and Cc
cox1 952 T C 2nd L – S Pp and Cc
cox1 1174 A G 2nd K – R Pp and Cc
cox1 1180 A G 2nd N – S Pp and Cc
cob 782 T C 2nd V – A Pp, Cc, Pmic, Km, Pmin, Ps, At
cob 788 G C 2nd G – A Pp, Pmic, Km, Pmin, Ps, At
cob 861 C U 3rd Silent Pmic, Pmin, Km
cob 883 A G 1st I – V Pmic, Pmin, K.m.
cob 904 A G 1st T – A Pmic and Pmin
cob 1064 G C 2nd G – A Unique2

cob 1081 C U 1st H – V Unique2

Column 1 is the site numbered according to genes from Crypthecodinium cohnii (cox1) or Pfiesteria piscicida (cob). Column 2 and 3 are pre-edited and 
post-edited states in D. baltica. Column 4 is the position within the codon. Column 5 is the amino acid change. Column 6 lists other dinoflagellates 
where the same editing is found. Abbreviations: Pp, Pfiesteria piscicida; Cc, Crypthecodinium cohnii; Pmic, Prorocentrum micans; Prorocentrum minimum; 
Km, Karlodinium micrum; Ps, Pfiesteria shumwyae; At, Alexandrium tamarense.
1 This change is absent in Pp and Cc.
2 These changes are absent in Pp and not sampled from Cc.
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22°C (12 : 12 light : dark cycle). Cultures of Kryptoperidin-
ium foliaceum CCMP 1326 were obtained from the Prova-
soli-Guillard National Center for Culture of Marine
Phytoplankton (West Boothbay Harbor, ME, USA) and
maintained in F/2-Si medium under the above-men-
tioned conditions. Cultures were grown both with and
without antibiotics to reduce the number of bacteria: 500
µg/ml penicillin G, 200 µg/ml ampicillin, 50 µg/ml strep-
tomycin sulphate, and 50 µg/ml neomycin, modified
from [19]. Cultures used in some molecular experiments
did not contain antibiotics, while others did. Exponen-
tially growing cells were harvested by centrifugation at
3,220 g for 5 min at 8°C, and the pellet was frozen and
ground under liquid nitrogen. The total genomic DNA
was extracted from about 100 mg of the ground cells using
DNeasy Plant DNA isolation kit (Qiagen, Mississauga,
ON). Total RNA was isolated using TRIzol Reagent (Invit-
rogen, Burlington, ON) from the pelleted cells following
manufacturer's instructions, and it was treated with Deox-
yribonuclease I (Invitrogen). PCR was carried out using
PuReTaq (Amersham Biosciences, Baie d'Urfé, QC) and
long range PCR using Elongase Enzyme Mix (Invitrogen).
RT-PCR was carried out using SuperScript III One-Step
System with Platinum Taq DNA Polymerase (Invitrogen).

Amplification and sequencing of mitochondrial genes and 
cDNAs
From genomic DNA of D. baltica, for amplification of the
endosymbiont genes we used the following primers: for
LSUrRNA gene, 5'-TTCTGCGAAATCTATTKAAGTA-
GAGCG-3' and 5'-CYGGCGTACCTTTTATCCRTTGMGC-
3'; for cob gene, 5'-CCCTTACAGCAATTCCATTCGGAG-
GTCAAA-3' and 5'-TTCGCCCTTCTGGAATACAATTAT-
CAGGAT-3'; for cox3 gene, 5'-
TTACAGGTGGTGTTCTTTATATGCACAAAA-3' and 5'-
AGCCGAAGTGGTGGGGTATTTGTTGAGTGGT-3'; for
cox2 gene, first we used the following two degenerate
primers, 5'-ATCGGGCATCAGTGGTAYTGGWSNTAYGA-
3' and 5'-GTTTATCCCGCAGATYTCNSWRCAYTGNCC-3'
and later the following specific primers, 5'-GTATTGGAG-
GTACGAGATTTCGGACTTTGA-3' and 5'-CGGAGCACT-
GACCAAAGAACATACCCACA-3'; for cox1 gene, 5'-
GTTGTTACCCACCTTCTCTTTTACTACTGAT-3' and 5'-
GCAACAACGTAATAAGTATCGTGAGGAGCA-3'. For
amplification of the host genes in D. baltica from genomic
DNA, and all the cox1 products containing an insert, we
used the following primers: for cox1, first we used the fol-
lowing two primers previously described [35], 5'-
AAAAATTGTAATCATAAACGCTTAGG-3' and 5'-TGTT-
GAGCCACCTATAGTAAACATTA-3', and later the follow-
ing two specific primers, 5'-
GCACTTCTTTCATGAGTTTATCACCTTCAAG-3' and 5'-
TTCTGAGCTGTAACAATGGCGGATTCCCA-3'; for cob,
initially the following two primers were used, 5'-GGGGT-
GCTACGGTTATTACGAACCTACTA-3' and 5'-

TGCCTAACAAAAATGCAGGATTCATAGTCT-3', and later
the following primer was used to amplify the 3' end of the
gene in 3' RACE using RLM-RACE kit (Ambion, Austin,
TX, USA) following the manufacturer's instructions, 5'-
GCATTAGAAGCTTGTGCATTACTTACTCCT-3'. From
genomic DNA of K. foliaceum, for amplification of the
endosymbiont genes we used the following primers: for
LSUrRNA gene, 5'-AACAGACAGTCCATGAGTGCTAA-
GATTCAT-3', and 5'-CACACAGAATTACCGGATCAC-
TATAACCGA-3'; for cox2 gene, we first used the following
two degenerate primers, 5'-GGGCATCAGTGGTATT-
GGWSNTAYGARWW-3' and 5'-GTTTATCCCGCA-
GATYTCNSWRCAYTGNCC-3', and later the following
two specific primers, 5'-GGGCATCAGTGGTATTGGTGG-
TACGAAAT-3' and 5'-GTTTATCCCGCAGATTTCGCT-
GCACTGGCC-3'. For amplification of the host cox1 in K.
foliaceum from total RNA, we used the two previously
described primers [35], 5'-AAAAATTGTAATCAT-
AAACGCTTAGG-3' and 5'-TGTTGAGCCACCTATAG-
TAAACATTA-3', using RT-PCR. Transcripts of all the genes
were characterized by RT-PCR using the same primers,
and all these amplifications were carried out with controls
lacking RT enzyme, from which no products were
acquired.

We also used three pairs of dinoflagellate-specific primers
to search for the host cob in K. foliaceum, which were based
on the most conserved regions of this gene found in dino-
flagellate mitochondria. Two pairs of these primers were
tested successfully to amplify this gene from D. baltica
(data not shown). However, no product was obtained
with any of these primers from the total DNA or RNA
extracted from K. foliaceum used in PCR and RT-PCR
respectively.

All PCR and RT-PCR products were gel purified and
cloned using pCR 2.1 TOPO Cloning kit (Invitrogen). In
each case, several clones were sequenced on both strands
using BigDye terminator chemistry. New sequences have
been deposited into GenBank as accessions EF434607–
EF434629.

Phylogenetic analyses
The conceptual translations of new cox1, cox2, cox3, and
cob, and DNA sequences for LSUrRNA from D. baltica and
K. foliaceum were aligned with homologues from public
database using ClustalX 1.83.1 [41] under the default gap
opening and gap extension penalties and the alignments
edited manually. Phaeodactylum tricornutum homologues
were kindly provided by Marie-Pierre Oudot-Le Secq from
the P. tricornutum genome sequencing project [42]. Phylo-
genetic analyses were carried out including a diversity of
eukaryotes to determine the overall position of new
sequences, and subsequently restricted to homologues
from chromalveolate taxa (dinoflagellates, apicomplex-
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ans, ciliates, heterokonts, haptophytes, and cryptomon-
ads), since both the host and endosymbiont are thought
to be members of this supergroup [43]. No LSUrRNA
sequences for dinoflagellates or apicomplexans were
included since these genes are fragmented, only partially
described to date, and highly divergent, so ciliates alone
represent alveolates. These alignments consisted of 52, 20,
20, and 26 amino acid sequences, and 17 DNA sequences
with 378, 109, 251, 372, and 1304 unambiguously
aligned sites for cox1, cox2, cox3, cob, and LSUrRNA,
respectively. For cox1 and cob sequences, several align-
ment alternatives were attempted, which were independ-
ently followed by phylogenetic analyses. These alternative
alignments differed only in the inclusion or exclusion of
missing sites. In order to make use of all the recovered
sequence data, the alignments of cox1 and cob that were
analysed included some missing data and either the 5' or
3' ends of certain D. baltica or K. foliaceum genes. Phylog-
enies of cox1 and cob were also performed using excluding
either host or endosymbiont genes, resulting in no signif-
icant differences (not shown). All alignments are available
upon request.

Phylogenetic trees were inferred using maximum likeli-
hood and distance methods. The proportion of invariable
sites (i) and shape parameter alpha (α) with 8 variable
rate categories were estimated from the data with PhyML
2.4.4 [44] under the Whelan and Goldman (WAG) model
of substitution for cox1, cox2, cox3, and cob phylogenies,
and under General Time-Reversible (GTR) model of sub-
stitution for LSUrRNA phylogeny with the frequency of
amino acid or nucleotide usage calculated from the data.
The i and α parameters estimated from the data were
0.000, 0.057, 0.004, 0.010, and 0.113, and 1.002, 1.297,
1.186, 1.402 and 1.002 for cox1, cox2, cox3, cob, and LSUr-
RNA, respectively. For all five data sets 1,000 bootstrap
replicates were analyzed using PhyML. For distance trees,
distances were calculated using TREE-PUZZLE 5.2 [45]
with 8 variable rate categories and invariable sites. The i
and α parameters were estimated by TREE-PUZZLE to be
0.00, 0.05, 0.00, 0.00, and 0.10, and 0.94, 1.18, 1.03,
1.12, and 0.91 for cox1, cox2, cox3, cob, and LSUrRNA,
respectively. Trees were constructed by weighted neigh-
bor-joining using WEIGHBOR 1.0.1a [46]. Distance boot-
strapping of 1,000 replicates was carried out using
PUZZLEBOOT (shell script by A. Roger and M. Holder).
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