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Abstract
Background: The placental mammalian clade Afrotheria is now supported by diverse forms of
genomic data, but interordinal relationships within, and morphological support for, the group
remains elusive. As a means for addressing these outstanding problems, competing hypotheses of
afrotherian interordinal relationships were tested through simultaneous parsimony analysis of a
large data set (> 4,590 parsimony informative characters) containing genomic data (> 17 kb of
nucleotide data, chromosomal associations, and retroposons) and 400 morphological characters
scored across 16 extant and 35 extinct afrotherians.

Results: Parsimony analysis of extant taxa alone recovered the interordinal topology
(Afrosoricida, ((Macroscelidea, Tubulidentata), (Hyracoidea, (Proboscidea, Sirenia)))). Analysis
following addition of extinct taxa instead supported Afroinsectivora (Afrosoricida + Macroscelidea)
and Pseudoungulata (Tubulidentata + Paenungulata), as well as Tethytheria (Proboscidea + Sirenia).
This latter topology is, however, sensitive to taxon deletion and different placements of the
placental root, and numerous alternative interordinal arrangements within Afrotheria could not be
statistically rejected. Relationships among extinct stem members of each afrotherian clade were
more stable, but one alleged stem macroscelidean (Herodotius) never grouped with that clade and
instead consistently joined pseudoungulates or paenungulates. When character transformations
were optimized onto a less resolved afrotherian tree that reflects uncertainty about the group's
interordinal phylogeny, a total of 21 morphological features were identified as possible
synapomorphies of crown Afrotheria, 9 of which optimized unambiguously across all character
treatments and optimization methods.

Conclusion: Instability in afrotherian interordinal phylogeny presumably reflects rapid divergences
during two pulses of cladogenesis – the first in the Late Cretaceous, at and just after the origin of
crown Afrotheria, and the second in the early Cenozoic, with the origin of crown Paenungulata.
Morphological evidence for divergences during these two pulses either never existed or has largely
been "erased" by subsequent evolution along long ordinal branches. There may, nevertheless, be
more morphological character support for crown Afrotheria than is currently assumed; the
features identified here as possible afrotherian synapomorphies can be further scrutinized through
future phylogenetic analyses with broader taxon sampling, as well as recovery of primitive fossil
afrotherians from the Afro-Arabian landmass, where the group is likely to have first diversified.
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Background
The monophyly of the supraordinal placental mamma-
lian clade Afrotheria, whose living members include the
endemic Afro-Arabian aardvarks (order Tubulidentata),
elephant-shrews or sengis (order Macroscelidea), golden
moles (family Chrysochloridae), tenrecs (superfamily
Tenrecoidea), sea cows (order Sirenia), hyraxes (order
Hyracoidea), and elephants (order Proboscidea), is now
strongly supported by diverse forms of genomic data,
including indels [1,2], SINEs [3,4], "protein sequence sig-
natures" [5], chromosomal syntenies [6], and nuclear and
mitochondrial DNA sequences [2]. Although Afrotheria is
estimated to have had the longest stem lineage (about 25
Myr) of all extant placental supraordinal clades [[7], but
see [8]], morphological support for afrotherian mono-
phyly is elusive [9-11]. A few morphological features have
been mapped onto molecular phylogenies as synapomor-
phies of crown Afrotheria [12-15], but morphological
phylogenetic analyses of the placental mammal radiation
continue to favor afrotherian polyphyly [e.g., [16,17]].

An important first step in addressing the problem of mor-
phological character support for Afrotheria will be resolu-
tion of the phylogenetic position of tenrecs and golden
moles (order Afrosoricida) within that clade [18,19].
Afrosoricids stand apart from sengis, aardvarks, and pae-
nungulates (hyracoids, sirenians, and proboscideans) in
that the latter are all thought to be derived from "proto-
ungulate" or "condylarth" ancestors [20-24], whereas
afrosoricids – which were formerly placed in the order
Lipotyphla alongside hedgehogs, shrews, moles, and
solenodons (now Eulipotyphla) – share a number of
seemingly primitive morphological features with eulipo-
typhlans and Cretaceous stem placentals. Phylogenetic
analyses of the longest available concatenation of afroth-
erian DNA sequences [2] nevertheless nest tenrecs and
golden moles deep within Afrotheria, with Macroscelidea
and Tubulidentata placed as consecutive sister taxa to
Afrosoricida within a clade that has been named Afroin-
sectiphillia [25]. The monophyly of Afroinsectiphillia, but
not Afroinsectivora, is also supported by a single SINE [4]
and a unique chromosomal synteny [6], while Afroinsec-
tiphillia and Afroinsectivora, but not Afrosoricida, are
supported by a recent analysis of LINE-1 [26]. This phylo-
genetic pattern implies that the "proto-ungulate" features
shared by sengis, aardvarks, and paenungulates might
have evolved along the afrotherian stem lineage, and that
afrosoricid morphology represents a remarkable case of
taxic atavism [18,27].

Another outstanding problem in afrotherian phylogenet-
ics is the branching order among Hyracoidea, Proboscidea
and Sirenia within Paenungulata. Various types of
genomic data have been collected in an effort to resolve
paenungulate relationships [2,4,28,29], but this informa-

tion has consistently given either weak or contradictory
signals, ultimately leaving researchers with a seemingly
unresolvable trichotomy [30]. These results contrast with
morphological evidence, which most clearly supports a
sirenian-proboscidean clade (Tethytheria) within Pae-
nungulata [16,31-33]. Among other things, the mono-
phyly versus paraphyly of Tethytheria could have
important implications for our understanding of the
adaptations of the ancestral crown paenungulate, because
early fossil proboscideans and sirenians are generally
found in near-shore or marine deposits [34,35] that sug-
gest an early preference for semi-aquatic habitus. If Teth-
ytheria is monophyletic, this adaptive pattern is best
explained as having been due to common ancestry,
whereas if the group is paraphyletic, semi-aquatic habitus
either evolved convergently in early proboscideans and
sirenians, or was an ancestral feature of Paenungulata as a
whole.

The extant members of afrotherian orders differ dramati-
cally in their morphology and adaptations, and represent
the tips of long branches that extend well back into the
Paleocene and/or Late Cretaceous [7]. Extinct taxa should
play a critical role in efforts to resolve placental supraordi-
nal phylogeny because fossils exhibit unique combina-
tions of primitive and derived characters that help to
break up long branches [36] that otherwise might attract
due to homoplasy rather than homology. The only recent
phylogenetic analysis to have scored members of all
extant afrotherian orders included only two undoubted
fossil afrotherians, however, both of which were extinct
paenungulates [16]. Furthermore, a recent phylogenetic
analysis that included more fossil afrotherians [37], and
which recovered a macroscelidean-paenungulate clade to
the exclusion of perissodactyls and artiodactyls, did not
sample aardvarks, tenrecs and golden moles, which lack
some or all of the features that support the macros-
celidean-paenungulate clade recovered in that study.

This study includes 400 morphological characters scored
across 16 extant and 35 extinct afrotherians, and is com-
bined with chromosomal associations [6], retroposons
[4], and > 17 kb of nucleotide data [2] to create the single
largest phylogenetic data set (at least 4,590 parsimony
informative characters) that has yet been brought to bear
on the interrelationships of living and extinct afrothe-
rians. Included in the morphological partition are new
data on recently published afrotherian fossil material
from the Paleogene of north Africa [34,38,39] as well as
undescribed late Eocene hyracoids, macroscelideans, and
afrosoricids from Egypt. Parsimony analysis of these data
reveals a new hypothesis of relationships within Afrothe-
ria, and highlights a central role for Paleogene "elephant-
shrews" in afrotherian phylogenetics.
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Results
Phylogenetic analysis of extant taxa alone
Regardless of how morphological characters were treated
[i.e., with selected multistate characters either unordered
(= UA, unordered analysis), or ordered and scaled (= OSA,
ordered and scaled analysis)], simultaneous analysis of
extant taxa alone recovered Paenungulata, Tethytheria, a
Macroscelidea-Tubulidentata clade, and a Macroscelidea-
Tubulidentata-Paenungulata clade to the exclusion of
Afrosoricida (Fig. 1). Aside from monophyly of Paenun-
gulata, these results are at odds with the relationships
recovered by Amrine-Madsen et al. [2], although among
these supraordinal clades only Paenungulata had high
bootstrap support (Fig. 1). With Afrosoricida placed as the
sister group of all other afrotherians, there was only one
unambiguously optimized morphological synapomor-

phy of Afrotheria in the OSA (placement of the root of the
zygomatic lateral to M3), none in the UA, but 24 (UA) to
30 (OSA) ambiguous morphological synapomorphies of
that clade. The Macroscelidea-Tubulidentata-Paenungu-
lata clade was supported by 69 (OSA) to 71 (UA) ambig-
uously and 22 (UA) to 26 (OSA) unambiguously
optimized morphological synapomorphies.

Phylogenetic analysis following addition of extinct taxa
Parsimony analysis following addition of 35 extinct
afrotherian species recovered a supraordinal branching
pattern that is more consistent with Amrine-Madsen et
al.'s [2] tree based solely on molecular data. The Macros-
celidea-Tubulidentata clade recovered in the analysis of
extant taxa alone breaks down, and Macroscelidea joined
Afrosoricida, forming a weakly supported Afroinsectivora.
The primary differences from Amrine-Madsen et al.'s [2]
tree are the placement of aardvarks with Paenungulata
rather than Afroinsectivora, forming "Pseudoungulata"
[40], and of Hyracoidea as the sister group of Tethytheria
rather than of Proboscidea alone. Outside of Paenungu-
lata, the branching order among afrotherians was the
same as in Amrine-Madsen et al.'s [2] tree, but the root
was placed between Afroinsectivora and Pseudoungulata
rather than between Afroinsectiphillia and Paenungulata.
Inclusion of fossil taxa led to reduced bootstrap support
for both Paenungulata and Tethytheria, in the former case
due in part to the variable placement of the alleged stem
macroscelidean Herodotius, which in different equally par-
simonious trees emerged as the sister taxon of either Pseu-
doungulata, Tubulidentata, Paenungulata, or Hyracoidea,
but never as a sister group of crown Macroscelidea. The
lower support for Tethytheria can be explained by the
inclusion of primitive fossil proboscideans and sirenians,
which reveal that a number of the apomorphies that were
unambiguously optimized as tethytherian synapomor-
phies in the analysis of extant taxa alone are in fact more
parsimoniously explained as homoplasies rather than
homologies [e.g., [34,41]].

Although it is interesting that the addition of fossil taxa
led to an improved fit with the tree derived from maxi-
mum likelihood and Bayesian analysis of the molecular
data alone, closer examination reveals that this most par-
simonious topology is not particularly stable. For
instance, trees derived from analyses that were con-
strained to recover the interordinal arrangement (Afroso-
ricida, (Paenungulata, (Macroscelidea-Tubulidentata)))
were only two steps longer than the unconstrained tree,
and could not be statistically rejected; nor could the alter-
native arrangement of a monophyletic Afroinsectiphillia
containing Afroinsectivora (Table 1). None of the three
possible arrangements of the paenungulate orders were
either well supported or rejected by statistical tests, and
even afrosoricid diphyly (e.g., with either Tenrecoidea or

Estimate of afrotherian interordinal phylogeny based on data from extant taxa aloneFigure 1
Estimate of afrotherian interordinal phylogeny based 
on data from extant taxa alone. Strict consensus of 
results from parsimony analyses of extant taxa only with all 
characters unordered (1 most parsimonious tree (MPT), tree 
length (TL) = 18428, consistency index (CI) = 0.52, retention 
index (RI) = 0.39, rescaled consistency index (RCI) = 0.26) 
and with some multistate characters ordered and scaled (1 
MPT, TL = 18068, CI = 0.52, RI = 0.39, RCI = 0.26). Intraor-
dinal relationships are not shown, but in both trees are as in 
Fig. 2. Numbers above and below branches are bootstrap 
support values (1000 replicates) from analysis of the matrix 
with some multistate characters ordered and scaled (above) 
and with all multistate characters unordered (below).
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Phylogenetic relationships of living and extinct afrotheriansFigure 2
Phylogenetic relationships of living and extinct afrotherians. Adams consensus tree summarizing results from parsi-
mony analyses with all characters unordered (12 MPTs, TL = 19478, CI = 0.50, RI = 0.44, RCI = 0.28) and with some morpho-
logical characters ordered and scaled (1 MPT, TL = 18689.54, CI = 0.50, RI = 0.44, RCI = 0.28). Branches depicted with dashes 
break down in the strict consensus of all 13 trees. Values above and below branches are bootstrap support (1000 replicates) 
from analysis of the matrix with some multistate characters ordered and scaled (above) and with all multistate characters unor-
dered (below). Herodotiine taxa (alleged stem macroscelideans) are in bold face; asterisks identify "wild card" taxa whose var-
iable positions given different character treatments lead to decreased resolution in the strict consensus tree.
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Table 1: Tests of alternative interordinal hypotheses within Afrotheria

Number of 
trees

Assumption 
set

Tree length Consistency 
index

Retention 
index

Rescaled 
consistency 
index

Macroscelidea-
Tubulidentata?

Afroinsectivora? Tethytheria? Hyracoidea-
Proboscidea?

Hyracoidea-
Sirenia?

Templeton 
test (P)

Optimal topology 1 OS 18689.5 0.50 0.44 0.28 No Yes Yes No No -

12 U 19478 0.50 0.44 0.28 No Yes Yes No No -

Alternative 
hypothesis

Afroinsectiphillia 1 OS 18695 0.50 0.44 0.28 No Yes No No Yes 0.838

12 U 19484 0.49 0.44 0.28 No Yes No No Yes 0.738
Macroscelidea + 
Tubulidentata

1 OS 18691.7 0.50 0.44 0.28 NA NA Yes No No 0.722

6 U 19480 0.50 0.44 0.28 NA NA Yes No No 0.900
Afrosoricida + 
Tubulidentata

1 OS 18702.5 0.50 0.44 0.28 NA NA Yes No No 0.284

3 U 19490 0.49 0.44 0.28 NA NA Yes No No 0.440
Macroscelidea + 

Tenrecoidea
1 OS 18712.6 0.50 0.44 0.28 NA Yes No No Yes 0.415

43 U 19506 0.49 0.44 0.28 NA Yes No No Yes 0.194
Chrysochloridae 
+ Macroscelidea

1 OS 18701.2 0.49 0.44 0.28 NA No Yes No No 0.742

120 U 19503 0.49 0.44 0.28 NA No Yes No No 0.634
Herodotiinae + 
Macroscelidea

1 OS 18692.3 0.50 0.44 0.28 No Yes Yes No No 0.432

27 U 19481 0.49 0.44 0.28 No No Yes No No 0.702
Hyracoidea + 

Sirenia
1 OS 18693.6 0.50 0.44 0.28 No Yes NA NA NA 0.835

18 U 19481 0.49 0.44 0.28 Yes No NA NA NA 0.885
Hyracoidea + 
Proboscidea

1 OS 18693 0.50 0.44 0.28 Yes No NA NA NA 0.797

74 U 19483 0.49 0.44 0.28 Yes No NA NA NA 0.810

Statistics for most parsimonious trees derived from analyses that were constrained to agree with alternative phylogenetic hypotheses. Consistency index excludes uninformative characters. Value for Templeton test (P, calculated in 
PAUP 4.0b10) is the probability of finding a more extreme T-value under the null hypothesis of no difference between the two trees (two-tailed test), arbitrarily calculated by comparing the first tree in each of the two alternative tree 
lists. Results in bold are those that are present in the Adams consensus of all equally parsimonious trees. OS = ordered and scaled analysis; U = unordered analysis; NA = not applicable.
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Chrysochloridae placed as the sister taxon of Macros-
celidea) could not be rejected (Table 1). Furthermore, if
the well-known Oligocene embrithopod Arsinoitherium
was excluded from the analysis, Afrosoricida was again
placed as the sister group of a (Paenungulata, (Macros-
celidea, Tubulidentata)) clade, within which Hyracoidea
was placed as the sister taxon of Proboscidea to the exclu-
sion of Sirenia (Table 2). Such a major impact of a single
taxon such as Arsinoitherium is unsettling, given that it is a
highly autapomorphic late-surviving genus that evolved a
number of morphological convergences with proboscide-
ans [34] – some of which could be optimized as tethythe-
rian synapomorphies given Arsinoitherium's placement as
a stem sirenian in the present analysis. Deletion of basal
Eocene taxa, such as the herodotiines Chambius and Hero-
dotius, the hyracoids Microhyrax and Seggeurius, the pro-
boscidean Phosphatherium, and the sirenian Prorastomus
did not alter the optimal interordinal topology (Table 2),
but afrotherian interordinal phylogeny did prove to be
sensitive to placement of the root of the placental tree: if
Exafroplacentalia (Xenarthra + Boreoeutheria) was con-

strained to be monophyletic, Afroinsectivora again broke
down and Macroscelidea was placed as the sister taxon of
other afrotherians (Table 2). Interestingly, when the
monophyly of Atlantogenata (Xenarthra + Afrotheria) was
constrained, Afroinsectiphillia, Afroinsectivora, and a
hyracoid-sirenian clade were recovered in the OSA (Table
2).

Relationships among fossil taxa
The phylogeny of the diverse Paleogene paenungulate
radiation has never been analyzed within the context of
afrotherian monophyly. One of the novel results of this
analysis is the placement of enigmatic Arsinoitherium as a
stem sirenian rather than as a stem proboscidean
[16,42,43] or stem tethytherian [34]. Within Proboscidea,
most debate revolves around the placement of middle-
late Eocene Moeritherium, which is variously seen as a late-
surviving basal form or as more deeply nested within the
proboscidean radiation, sharing more recent common
ancestry with Oligocene-Recent elephantiforms than with
older taxa [44,45]. The results of the current analysis are

Table 2: Sensitivity of afrotherian interordinal phylogeny to alternative placements of the placental root, taxon deletion, and taxon 
addition

Hypothesis Afrotherian interordinal phylogeny

Exafroplacentalia OS (Macroscelidea, (Afrosoricida, (Tubulidentata, (Proboscidea, (Hyracoidea, Sirenia)))))
U (Macroscelidea, (Afrosoricida, (Tubulidentata, (Hyracoidea, (Proboscidea, Sirenia)))))*

Atlantogenata OS ((Tubulidentata, (Macroscelidea, Afrosoricida)), (Proboscidea, (Hyracoidea, Sirenia)))
U no change

Deleted taxon
Arsinoitherium OS (Afrosoricida, ((Macroscelidea, Tubulidentata), (Sirenia, (Hyracoidea, Proboscidea))))

U (Afrosoricida, ((Macroscelidea, Tubulidentata), (Sirenia, (Hyracoidea, Proboscidea))))
Chambius OS no change

U no change
Herodotius OS no change

U no change*
Microhyrax OS no change

U no change
Phosphatherium OS no change

U no change
Prorastomus OS no change

U no change*
Seggeurius OS no change

U no change
Added taxon Sister taxon Afrotherian interordinal phylogeny

Kelba OS Tubulidentata no change
U Tubulidentata no change

Widanelfarasia OS within Tenrecoidea no change
U within Tenrecoidea no change

Kelba +
Widanelfarasia OS no change no change

U no change no change

Interordinal relationships within Afrotheria from (above) analyses constrained to agree with the alternative hypotheses Exafroplacentalia 
(Afrotheria, (Boreoeutheria, Xenarthra)) and Atlantogenata (Boreoeutheria, (Afrotheria, Xenarthra)), and (below) analyses run following deletion 
or addition of various extinct taxa. Results followed by an asterisk are those that occur in the Adams consensus of all equally parsimonious trees 
(the strict consensus of which was less resolved than the optimal topologies based on analyses including all taxa). OS = ordered and scaled analysis; 
U = unordered analysis.
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more consistent with the stratigraphic succession of early
proboscideans in placing the oldest taxa (earliest Eocene
Phosphatherium and Daouitherium [34,46,47]) as the most
basal forms, slightly younger Numidotherium koholense
[48] as the sister group of middle Eocene-to-Recent pro-
boscideans, and Moeritherium in a more nested position.
Moeritherium's enigmatic contemporary Barytherium,
which was recently placed with Daouitherium in a more
restricted analysis [34], was placed as the sister group of
elephantiforms to the exclusion of all other Eocene taxa.

The hyracoid phylogeny recovered in this analysis is very
different from all previous estimates, none of which took
into account multiple afrotherian outgroups [49-51]. The
results are again consistent with stratigraphic succession
in placing the oldest (early and early middle Eocene,
respectively) taxa Seggeurius [52] and Microhyrax [37,51]
as the sister group of all younger hyracoids. In contrast to
previous studies that positioned Geniohyus as the sister
taxon of other hyracoid genera [51,53], in this study the
small-bodied Paleogene forms Thyrohyrax and Saghath-
erium are consecutive sister taxa of large-bodied forms
including Geniohyus. The genus Thyrohyrax was consist-
ently found to be polyphyletic, with only the type species
(Thyrohyrax domorictus) and Thyrohyrax meyeri forming a
clade along with extant Procavia. Geniohyus was found to
be nested deep within the Paleogene radiation in a clade
containing species of Bunohyrax and Pachyhyrax. A clade
containing Antilohyrax, Titanohyrax, and early Miocene
Afrohyrax was also well-supported, and placed as the sister
group of a Bunohyrax-Geniohyus-Megalohyrax-Pachyhyrax
clade.

The fossil record of non-paenungulate afrotherians is rel-
atively poor, although the Eocene herodotiines Chambius
and Herodotius are generally considered to be primitive
macroscelideans [20,21,37]. Undescribed new material of
late Eocene Metoldobotes, including cranial remains, helps
to place that genus as the sister taxon of crown Macros-
celidea with strong bootstrap support (Fig. 2), but Herodo-
tius was consistently placed alongside "pseudoungulates"
rather than macroscelideans (see discussion below). A
placement of both herodotiines as stem macroscelideans
could not be statistically rejected, however (Table 1).
Within Tenrecoidea, early Miocene Protenrec was placed as
a sister genus of extant Potamogale, suggesting that differ-
entiation of crown tenrecoids might have already
occurred by that time [54]. Addition of two enigmatic
African fossil placentals – early Miocene Kelba and late
Eocene Widanelfarasia – does not alter the scheme of inter-
ordinal relationships supported by the full taxon set.
Regardless of how characters are treated, Kelba is placed as
a stem member of Tubulidentata, lending support to a
previous suggestion that ptolemaiids might be aligned
with aardvarks [55], while Widanelfarasia nests within

crown Tenrecoidea as the sister taxon of Protenrec (Table
2).

Morphological character support for Afrotheria
Despite the placement of afrosoricids with macroscelide-
ans in the analysis of living and extinct taxa, under this
arrangement afrotherian monophyly is not unambigu-
ously supported by any of the "proto-ungulate" features
that macroscelideans share with aardvarks and paenungu-
lates. In fact the existence of any unambiguous morpho-
logical character support for Afrotheria given this tree is
dependent on whether delayed or accelerated optimiza-
tion is used; under delayed transformation, there are four
unambiguous synapomorphies of Afrotheria regardless of
how multistate characters are treated (presence of a navic-
ulocalcaneal facet, scattered vomeronasal organ blood
vessels [13], placement of the internal carotid lateral to
the anterior pole of pars cochlearis [13], and four allantoic
vessel chambers [15]). An additional four features [pres-
ence of a small P3 protocone, presence of well-developed
buccal cingula rather than stylar shelves, increase in lum-
bar vertebra number from 6 to 8, and testicondy (intrab-
dominal testes)] emerge as unambiguous
synapomorphies depending on treatment of certain
multistate characters. Under accelerated transformation,
there are no unambiguous afrotherian synapomorphies,
but there are 31 (OSA) and 33 (UA) ambiguous synapo-
morphies of that clade.

Given that there can be little confidence in any of the pro-
posed arrangements of Afrosoricida, Macroscelidea, or
Tubulidentata within Afrotheria, an alternative, and per-
haps more conservative, approach is to optimize charac-
ters onto an afrotherian phylogeny that is less resolved at
the supraordinal level. With Macroscelidea, Tubuliden-
tata, Afrosoricida, and Herodotius forming a basal poly-
tomy within Afrotheria, Kelba placed as a stem member of
Tubulidentata, Widanelfarasia nested within crown Tenre-
coidea, and with relationships among Hyracoidea, Sire-
nia, and Proboscidea unresolved, a total of 21
morphological features are identified as unambiguous
afrotherian synapomorphies across the different assump-
tion sets (Table 3). Of these characters, nine are congru-
ently optimized as afrotherian synapomorphies regardless
of how transformations are optimized (accelerated or
delayed) or how multistate characters are treated (ordered
and scaled or unordered).

Discussion
The instability of afrotherian interordinal relationships is
remarkable given that all of the analyses performed here
included at least 4,590 parsimony informative molecular
and morphological characters. Molecular divergence esti-
mates clearly indicate that cladogenesis among the stem
lineages of Tubulidentata, Macroscelidea, Afrosoricida,
Page 7 of 13
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and Paenungulata occurred rapidly, and probably in the
latest Cretaceous; according to the recent estimates pro-
vided by Murphy et al. [56], these clades had all diverged
within the first 5 million years of crown afrotherian evo-
lution. Morphological evidence for these supraordinal
divergences either did not accumulate along these short
internal branches, or was subsequently "erased" by evolu-
tion along the much longer branches leading to ordinal
crown clades.

Considerable ambiguity is introduced by missing data
and different methods for optimizing character states
onto slightly different afrotherian phylogenies, but it
remains distinctly possible that there are a number of
morphological synapomorphies of crown Afrotheria, and
that the ancestral crown afrotherian more closely resem-

bled a "proto-ungulate" than an "insectivore". For
instance, some of the only character transformations that
consistently optimized unambiguously onto the afrothe-
rian stem on the less resolved tree (Table 3) are related to
molarization of the premolars, which is seen in paenun-
gulates, early macroscelideans, herodotiines, and Kelba.
With characters unordered, the ancestral afrotherian is
also reconstructed as having no parastyles and well-devel-
oped buccal cingula rather than stylar shelves, which
again suggests that afrosoricids (which do have parastyles
and stylar shelves) have undergone reversals to the dental
character states observable in more primitive Cretaceous
placentals.

Of interest in this regard is the phylogenetic placement of
the alleged stem macroscelidean Herodotius, from the late

Table 3: Morphological character support for Afrotheria

Character number and 
state change

Description of character state transformation

35 (0=>3 or 0=>2) p4 paraconid small ==> p4 paraconid large and distinct (OSA_AT, UA_AT, UA_DT) or p4 paraconid small ==> p4 
paraconid variably large and distinct (OSA_DT)

36 (1=>2) p4 metaconid present but small relative to the protoconid ==> p4 metaconid present and approximately as large as 
the protoconid (OSA_DT, UA_DT)

37 (0=>2) p4 protolophid absent ==> p4 protolophid incipient (OSA_DT)
39 (0=>2 or 0=>1) p4 entoconid absent ==> p4 entoconid present, smaller than hypoconid (OSA_AT) or p4 entoconid absent ==> p4 

entoconid variably present, smaller than hypoconid (OSA_DT)
40 (1=>2) p4 hypoconid less than half the height of protoconid ==> p4 hypoconid large, greater than half the height of the 

protoconid (OSA_AT, OSA_DT, UA_AT, UA_DT)
41 (0=>1) p4 hypolophid absent ==> incipient p4 hypolophid variably present (OSA_DT)
45 (0=>2) p4 talonid narrower than trigonid ==> p4 talonid equal in width to the trigonid (OSA_AT, OSA_DT)

73 (0=>2 or 0=>1) Cristid obliqua on lower molars meets hypocristid at a sharp angle ==> junction between cristid obliqua and 
hypocristid more open, buccal aspect of hypoconid rounded (OSA_AT, UA_AT, UA_DT) or cristid obliqua on 
lower molars meets hypocristid at a sharp angle ==> junction between cristid obliqua and hypocristid variably 
more open, buccal aspect of hypoconid rounded (OSA_DT)

77 (2=>1) Lower molar entocristids present ==> lower molar entocristids variably absent (OSA_AT, OSA_DT)
115 (0=>2) P3 protocone absent or highly reduced ==> P3 protocone present and small (OSA_AT, OSA_DT, UA_AT, 

UA_DT)
129 (0=>4) P4 metacone absent ==> P4 metacone present, distinct, and differentiated from the paracone (OSA_AT, OSA_DT, 

UA_AT, UA_DT)
143 (0=>4) M1-2 mesial cingulum broken or absent ==> M1-2 mesial cingulum complete and well-defined across all or most of 

the mesial face of the teeth (OSA_DT, UA_DT)
150 (0=>4) Buccolingually extensive shelf present on buccal aspect of upper molars ==> distinct buccal cingulum on upper 

molars (UA_AT, UA_DT)
165 (2=>0) M1-2 parastyles small ==> M1-2 parastyles absent (UA_AT, UA_DT)
184 (6=>A) 6 lumbar vertebrae ==> 8 lumbar vertebrae (UA_AT, UA_DT)
218 (0=>4) Lunar-unciform contact present ==> lunar-unciform contact absent (OSA_DT, UA_DT)
267 (0=>1) naviculocalcaneal facet absent ==> naviculocalcaneal facet present (OSA_DT, UA_DT)
291 (0=>1) Vomeronasal organ blood vessels prominent ==> vomeronasal organ blood vessels scattered (OSA_AT, OSA_DT, 

UA_AT, UA_DT)
383 (0=>1) Internal carotid medial to anterior pole of pars cochlearis ==> internal carotid lateral to anterior pole of pars 

cochlearis (OSA_AT, OSA_DT, UA_AT, UA_DT)
388 (5=>0 or 3=>2 or 1=>0) Testes descend into a pendulous scrotum ==> testes intraabdominal and situated near kidneys (UA_AT, UA_DT) 

or testes pass into a cremasteric sac ==> testes migrate to or just through the ventral abdominal wall (OSA_AT) 
or testes migrate to near the bladder ==> testes intraabdominal and situated near kidneys (OSA_DT)

397 (0=>1) One allantoic vesicle chamber ==> four allantoic vesicle chambers (OSA_AT, OSA_DT, UA_AT, UA_DT)

Character state changes identified as unambiguous morphological synapomorphies of Afrotheria when relationships among Afrosoricida, 
Macroscelidea, Paenungulata, and Tubulidentata are depicted as unresolved. OSA_AT = ordered and scaled analysis, accelerated transformation; 
OSA_DT = ordered and scaled analysis, delayed transformation; UA_AT = unordered analysis, accelerated transformation; UA_DT = unordered 
analysis, delayed transformation.
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Eocene of Egypt, which consistently groups with paenun-
gulates or pseudoungulates to the exclusion of afroinsec-
tivorans, while an older and very similar herodotiine
(Chambius) is placed in Afroinsectivora with macros-
celideans. Herodotiine diphyly is probably an artifact of
missing data, but the distribution of herodotiines on both
sides of the afrotherian tree again lends some support to
the idea that the paenungulate-like dental morphology of
herodotiines may be primitive within Afrotheria. The
most likely explanation for herodotiine diphyly is that, in
known parts, Chambius and Herodotius overlap solely in
having very similar upper and lower molars and fourth
premolars, but Chambius is now known to have macros-
celidean-like astragalar and calcaneal morphology [38],
whereas Herodotius has somewhat paenungulate-like ante-
rior premolars and incisors (personal observation). If
some uniformity of herodotiine morphology is assumed
and Chambius and Herodotius are assigned the character
states of the herodotiine taxon that preserves those parts,
then these taxa together join Tubulidentata (OSA) or
Pseudoungulata (UA Adams consensus), but never Mac-
roscelidea, in parsimony analyses of the data set presented
here. Additional cranial or postcranial morphology of
herodotiines should play a key role in future efforts to
tease apart homology and homoplasy among early afroth-
erians: if herodotiines are in fact stem macroscelideans
within Afroinsectivora, then their detailed dental resem-
blances to paenungulates will either not be present in
older and more primitive stem macroscelideans, or these
features will emerge as plesiomorphic within Afroinsec-
tivora and Afrotheria and will support a proto-ungulate
origin for both clades.

Of the remaining morphological features that support
afrotherian monophyly on the less resolved tree, none
clearly point to either a "proto-ungulate" or "insectivore"
origin for the clade. Under delayed transformation, at
least one morphological feature that was previously
thought to be a synapomorphy of Paenungulata (loss of
lunar-unciform contact) [57] instead appears as a synapo-
morphy of Afrotheria as a whole. Other features that have
already been identified as probable afrotherian synapo-
morphies, such as increased lumbar vertebral number
[14], cranial soft tissue features [13], testicondy [12], and
aspects of placentation [15] also optimize unambiguously
as afrotherian synapomorphies across all or most assump-
tion sets. Presence of a contact between the navicular and
calcaneus, which occurs in proboscideans, Arsinoitherium,
and aardvarks as well as some macroscelideans, tenrecs,
golden moles, and fossil hyracoids, is here identified for
the first time as another possible morphological synapo-
morphy of crown Afrotheria.

There are a few obvious deficiencies of the present study,
some of which should be improved upon in future analy-

ses. One obvious improvement that can be made is greater
taxon sampling within Placentalia (and Mammalia more
broadly), including a greater diversity of Cretaceous mam-
mals, as all such taxa should help to clarify ancestral char-
acter states for crown Placentalia. One obvious criticism of
the equally-weighted total evidence approach taken here
is that "rare genomic changes" (RGCs) such as retro-
posons and chromosomal syntenies have been given
equal weight to point mutations in DNA sequences, the
latter of which are surely much more prone to homoplasy
[19]. Unfortunately there is no clear solution to this prac-
tical problem aside from arbitrary weighting of RGCs –
which, in the absence of a strong theoretical framework
for predicting the relative likelihood of, for instance, chro-
mosomal rearrangements relative to point mutations, is
here considered to be an untenable approach. The same
criticism can certainly also be raised regarding delimita-
tion and treatment of morphological characters (many of
which may be of low phylogenetic utility), however the
same problem holds [58]. Finally, the use of parsimony
rather than likelihood in the analysis of molecular and/or
morphological data is arguably not entirely satisfactory
and ideally will be addressed in future analyses using pro-
grams that allow for mixed models [59]; thus far, how-
ever, Bayesian analyses of the current data set have failed
to achieve convergence despite considerable computa-
tional effort, presumably due in large part to the numer-
ous genomic and morphological characters missing in
fossil taxa.

Conclusion
Simultaneous analysis of ≤ 4,590 parsimony informative
genomic and morphological characters scored across 16
extant and 35 extinct afrotherians recovers a mono-
phyletic Afroinsectivora (Afrosoricida + Macroscelidea),
Pseudoungulata (Tubulidentata + Paenungulata), and
Tethytheria (Proboscidea + Sirenia) within Paenungulata.
None of these supraordinal clades are well-supported,
however, and phylogenetic alternatives such as Afroinsec-
tiphillia, a (Paenungulata, (Macroscelidea, Tubuliden-
tata)) clade, an Afrosoricida-Tubulidentata clade,
afrosoricid diphyly, a Hyracoidea-Proboscidea clade, and
a Hyracoidea-Sirenia could not be statistically rejected.

Divergences among Afrosoricida, Macroscelidea, Paenun-
gulata, and Tubulidentata must have occurred very rapidly
in the Late Cretaceous, and unambiguous morphological
evidence for afrotherian supraordinal clades aside from
Paenungulata either does not exist or has been overwrit-
ten by subsequent evolution through the Cenozoic. On
the optimal topologies derived from these analyses, iden-
tification of unambiguous morphological support for
afrotherian monophyly is dependent on optimization
method, but on a less resolved interordinal phylogeny a
total of 21 unambiguous afrotherian synapomorphies are
Page 9 of 13
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identified, 9 of which appear as such across all character
treatments and optimization methods.

Relationships among early fossil members of each afroth-
erian order are generally consistent with stratigraphic suc-
cession; novel results are the placement of Arsinoitherium
as a stem sirenian, and the placement of the alleged mac-
roscelidean Herodotius with pseudoungulates. Additional
cranial and postcranial material of Eocene Chambius,
Herodotius, and other enigmatic early African taxa will be
of great importance for understanding afrotherian interor-
dinal phylogeny, and will help to test competing hypoth-
eses of a "proto-ungulate" versus "insectivore" origin for
that clade. Of utmost importance, however, is the recovery
of even earlier fossil afrotherians from previously unsam-
pled early Paleocene and Late Cretaceous horizons in
Afro-Arabia.

Methods
Morphological data
The 400-character morphological partition draws heavily
on previous phylogenetic investigations of afrotherian
orders [10,13,42-44,60-63]. Characters provided in these
sources were included so long as they were phylogeneti-
cally informative given the taxon sample, and could be
scored consistently across the range of taxa considered
herein. In many cases the morphologically diverse taxon
sample required that other authors' definitions of individ-
ual character states be modified to maintain phylogenetic
information. Other characters in the morphological data
set were either discovered while making observations on
original material, or were discussed in previously pub-
lished studies by authors who did not undertake phyloge-
netic analyses. Taxa expressing polymorphisms were
assigned an alternative character state rather than a stand-
ard polymorphic coding, as evidence from simulations
indicates that the former method may increase phyloge-
netic accuracy relative to the latter [64]. Ordered multi-
state characters were scaled so that those characters with
multiple alternative "polymorphic" states would not have
a disproportionate effect on phylogeny estimation.
Myrmecophagous taxa with highly modified teeth (e.g.,
aardvark and armadillo) were scored as "missing" for den-
tal cusp and crest characters. See Additional file 1 for addi-
tional information on character descriptions, methods,
and sources of character data.

Genomic data
The nucleotide partition employed in this analysis is
essentially that of Amrine-Madsen et al. [2], combining
the > 16.4 kb data set of Murphy et al. [65] with the more
recently published afrotherian sequences from the nuclear
apolipoprotein B locus [2]. As noted by Madsen et al. [1]
and Murphy et al. [66], the concatenations that were com-
bined to create the Murphy et al. [65] data set were aligned

using CLUSTAL [e.g., [67]], and in some cases modified
following manual inspection. Different sequence align-
ment and gap treatment options exist [68-70], but no
attempt was made to modify Murphy et al.'s [65] pub-
lished alignment. Following Scally et al. [71], individual
gap characters have been scored as missing rather than as
an alternative (fifth) character state because indels that are
two or more nucleotides in length are likely to be the
result of a single event. Following Murphy et al. [65],
regions of ambiguous alignment (designated as character
set "ambiguous" in their data set) were excluded from
analysis. In some cases molecular sequences are chimeric
in that data from more than one genus have been com-
bined to create a single intraordinal concatenation. Data
on chromosomal associations derive from various sources
[6,28,72] and retroposon data are from Nishihara et al.
[4]; some non-afrotherian outgroup species are assumed
to share the chromosomal association or retroposon pres-
ence/absence state of the closest ordinal relative for which
such data are available. Although an enormous amount of
genomic information has recently been gathered in an
attempt to resolve the interrelationships of the clades
Afrotheria, Xenarthra, and Boreoeutheria, there is still no
agreement on the early branching pattern within Placen-
talia [56,73,74]. Rather than incorporating these different
forms of data into the current analysis, the impact of the
competing Atlantogenata, Exafroplacentalia, and Epithe-
ria hypotheses on afrotherian interrelationships was
tested simply by constraining the included xenarthran
(Dasypus) to join Afrotheria or Boreoeutheria in secondary
analyses.

Character data were compiled in the program Nexus Data
Editor [75]. See additional file 2 for the complete data set.
Parsimony analyses were performed in PAUP 4.0 b10 [76]
using heuristic searches, random addition sequence, and
the tree bisection-reconnection branch swapping algo-
rithm across 1000 replicates. Comparisons of alternative
topologies to the optimal topology were also performed
in PAUP 4.0 b10 using Templeton (Wilcoxon signed-
rank) tests. All consistency indices reported herein were
calculated with uninformative characters excluded.

Taxon sampling
The taxon set includes extant representatives of all afroth-
erian orders and samples much of the morphological
diversity observable within ordinal crown clades. As one
of the primary goals of this study was to break up the
"long branches" that separate autapomorphic extant taxa
from supraordinal nodes, the oldest and most basal
extinct stem taxa of each afrotherian order were sampled,
most of which are Eocene in age (i.e., between 55 and 34
million years old). An attempt was also made to sample
most of the morphological diversity among Paleogene
afrotherians, because the intraordinal relationships
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among such taxa remain controversial [44,49,50]. All of
the extinct ingroup taxa are widely considered to be stem
members of afrotherian orders with the exception of Arsi-
noitherium, which has been placed as a stem probosci-
dean, stem tethytherian, or stem paenungulate
[33,42,43]. In unconstrained analyses, the oldest
undoubted aardvark (Myorycteropus) consistently emerged
as the sister taxon of the armadillo (Dasypus), in large part
because both taxa retain single-rooted anterior premolars
that have been lost (and thus cannot be scored) in the
extant aardvark Orycteropus. As Myorycteropus otherwise
exhibits a number of potentially informative character
states that have either been lost or transformed in the
highly derived genus Orycteropus, the two were con-
strained as sister taxa in all analyses. Outgroup taxa
include the extant marsupial Didelphis, the Early Creta-
ceous stem placentals Montanalestes [77] and Prokennal-
estes [78,79], the xenarthran Dasypus, the extant
euarchontans Lemur (order Primates) and Tupaia (order
Scandentia), and the extant eulipotyphlans Condylura
(family Talpidae) and Erinaceus (family Erinaceidae).
While it is not necessarily the case that the extant out-
groups adequately capture the primitive morphotype for
Boreoeutheria, when compared with stem placentals
these taxa are, in many ways, more generalized than the
highly specialized members of other boreoeutherian
clades that could have been sampled (such as Chiroptera,
Perissodactyla, Pholidota, Lagomorpha, and Rodentia).

A number of extinct taxa from the Paleocene and Eocene
of Laurasia (i.e., phenacodontids, phenacolophids, hyop-
sodontids, and apheliscids) have recently been identified
as afrotherians in phylogenetic analyses with relatively
limited character and/or taxon sampling [16,38,80], and
these results have been interpreted as providing evidence
for a Laurasian, rather than Afro-Arabian, origin of crown
Afrotheria. The morphological support for such hypothe-
ses is weak, however, and the best evolutionary explana-
tion for the detailed morphological similarities shared by
afrotherian paenungulates and laurasiatherian ferungu-
lates remains convergent acquisition in isolation, rather
than in sympatry [19]. One obvious possibility is that
some or all of the aforementioned extinct laurasian taxa
are in fact laurasiatherians, and this hypothesis was
recently supported by Wible et al.'s [17] relatively charac-
ter-rich phylogenetic analysis which found Hyopsodus,
Meniscotherium, and Phenacodus form a sister clade of
Cetartiodactyla rather than of Paenungulata (or any other
afrotherian clade). These enigmatic fossil taxa are not
included in the current analysis because competing
hypotheses of their afrotherian versus laurasiatherian
placement can only be tested through broader analyses
that include more morphological characters and a large
sample of living and extinct boreoeutherians (in particu-
lar perissodactyls and artiodactyls) [19].

In contrast, two enigmatic African fossil mammals with
no clear link to historically Laurasian clades – early
Miocene Kelba from east Africa and late Eocene Widanel-
farasia from Egypt – have recently been identified as pos-
sible or probable afrotherians, respectively, based on new
material [39,81]. Cote et al. [81] noted a few features that
Kelba shares with aardvarks, while Seiffert et al. [39] have
more strongly argued that Widanelfarasia represents a tri-
bosphenic stem tenrecoid. Both genera exhibit unique
constellations of morphological characters when com-
pared with other living and extinct afrotherians, and as
these character distributions could prove to be of use in
helping to unravel afrotherian phylogeny, Kelba and
Widanelfarasia were added to the matrix for secondary
analyses in order to determine 1) where these taxa are
placed if they are in fact afrotherians, and 2) whether their
unique morphological features have an impact on afroth-
erian phylogeny.
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