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Abstract

Background: Distance matrix methods constitute a major family of phylogenetic estimation
methods, and the minimum evolution (ME) principle (aiming at recovering the phylogeny with
shortest length) is one of the most commonly used optimality criteria for estimating phylogenetic
trees. The major difficulty for its application is that the number of possible phylogenies grows
exponentially with the number of taxa analyzed and the minimum evolution principle is known to
belong to the -hard class of problems.

Results: In this paper, we introduce an Ant Colony Optimization (ACO) algorithm to estimate
phylogenies under the minimum evolution principle. ACO is an optimization technique inspired
from the foraging behavior of real ant colonies. This behavior is exploited in artificial ant colonies
for the search of approximate solutions to discrete optimization problems.

Conclusion: We show that the ACO algorithm is potentially competitive in comparison with
state-of-the-art algorithms for the minimum evolution principle. This is the first application of an
ACO algorithm to the phylogenetic estimation problem.

Background
The Minimum Evolution (ME) principle is a commonly
used principle to estimate phylogenetic trees of a set Γ of
n species (taxa) given an n × n symmetric matrix D = {dij}
of evolutionary distances. First introduced by Kidd and
Sgaramella-Zonta [1] and subsequently reinterpreted by
Rzhetsky and Nei [2,3], the ME principle aims at finding a
phylogeny characterized by minimal sum of branch
lengths, under the auxiliary criteria that branches have a
positive length and the pair-wise distances on the tree are
not smaller than the directly observed pair-wise differ-
ences. Its biological justification is based on the fact that,

when unbiased estimates of the true distances are availa-
ble, the correct phylogenetic tree has an expected length
shorter than any other possible tree [2,3] compatible with
the distances in D. More formally, the ME principle can be
expressed in terms of the following optimization prob-
lem:

Problem 1. Minimum Evolution under Least Square (LS)
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where || · ||1 is the -vector norm; v is a vector of the 2n

- 3 edge lengths; X is a n(n - 1)/2 × (2n - 3) topological
matrix[4] encoding a phylogenetic tree as an unrooted

binary tree with the n taxa in Γ as terminal vertices (leaves);
 is the set of all the topological matrices; finally, f(· , ·

, ·) defines the level of compatibility among the distances
in D and the distances induced by the phylogenetic tree
edges. Any optimal solution (X*, v*) of problem (1) defines
a phylogenetic tree satisfying the minimum evolution
principle. A topological matrix X is an Edge-Path incidence
matrix of a Tree (EPT) (see [5], and additional files 1 and
2) that encodes a tree as follows: any generic entry xij,k is

set to 1 if the edge k belongs to the path from the leaf i to
the leaf j, 0 otherwise. In the rest of the paper we refer to
problem (1) as the ME problem.

The distance matrix D of problem (1) is estimated from
the dataset, e.g., accordingly to any method described in
[6-12]. Condition f(D, X, v) = 0 typically imposes that, for
any given EPT matrix X, v minimizes the (weighted) sum
of the square values of the differences between the dis-
tances in D and the corresponding distances induced by
the phylogenetic tree edges [6,13]. In particular, under the
unweighted least-square (also called Ordinary Least-
Squares (OLS)) [2]:

v = X†DΔ (1)

where X† is the Moore-Penrose pseudoinverse of X, and
DΔ is a vector whose components are obtained by taking
row per row the entries of the strictly upper triangular
matrix of D.

Others [14] and [15] have suggested the use of a Weighted
Least-Squares (WLS) function:

v = (XtWX)-1XtWDΔ (2)

where W is a strictly positive definite diagonal matrix
whose entries wij represent weights associated to leaves i
and j. Finally, Hasegawa et al. [16] introduced a General-
ized Least-Squares (GLS) function in which v is computed
using:

v = (XtC-1X)-1XtC-1DΔ (3)

where C is a strictly positive definite symmetric matrix
representing the covariance matrix of D. To avoid the
occurrence of negative branch lengths [14,17], problem
(1) can be modified as follows:

Problem 2. Minimum Evolution under Linear Programming
(LP)

Unfortunately, both problems (1) and (2) are -hard

[18]. In this context, let us observe that, given Γ, the cardi-
nality of  is:

| | = (2|Γ| - 5)!! = (2n - 5)!! (4)

where n!! is the double factorial of n. Hence, the number
of topological matrices grows exponentially with the
number of leaves ([6], p. 25, and see additional files 1 and
2).

Problem (1) has received great attention from the scien-
tific community such that exact and approximate algo-
rithms to solve it have been developed. Exact algorithms
for solving problem (1) are typically based on an exhaus-
tive approach (i.e., enumerating all possible trees X). As
an example, PAUP* 4.0 [19] allows exhaustive search for
datasets containing up to 12 taxa. A number of heuristics
were also developed in the last 20 years. E.g., Rzhetsky and
Nei [2,3] (i) start from a Neighbor-Joining (NJ) tree
[20,21], (ii) apply a local search generating topologies
within a given topological distance (see [2]) from the NJ
tree, and (iii) return the best topology found. Kumar [22]
further improved the approach as follows: starting from a
topology, a leaf l is selects at each step and all possible
assignments of l on the topology are tested. Despite that
the neighborhood size in Kumar's approach is larger than
in Rzhetsky and Nei's algorithm, it requires examining a
number of topologies that is, at most, an exponential
function of the number of leaves n: (n - 1)!/2, and gener-
ates solution in a shorter computing time. Finally, Bryant
and Waddell [4] implemented programming optimisa-
tion and Desper and Gascuel [23] introduced a greedy
search that both improved speed and accuracy of the
search.

Here, we introduce the Ant Colony Optimization (ACO)
algorithm for estimating phylogenies under the mini-
mum evolution principle, and show that ACO has the
potential to compete with other widely-used methods.
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ACO (see [24,25] for an introduction, and [26,27] for
recent reviews) is a widely-used metaheuristic approach
for solving hard combinatorial optimization problems.
ACO is inspired from the pheromone trail laying and fol-
lowing behavior of real ants. ACO implements indirect
communication among simple agents, called (artificial)
ants. Communication is mediated by (artificial) pherom-
one trails implemented as a probabilistic model to which
the ants adapt during the algorithm's execution to reflect
their search experience. ACO has proven a successful tech-
nique for numerous -hard combinatorial optimiza-
tion problems (see [28]), although no application to the
ME phylogeny problem is currently known. Our specific
implementation of the ACO algorithm exploits a stochas-
tic version of the Neighbor-Joining (NJ) algorithm [20,21]
to explore tree space.

Results and Discussion
Iterative addition

Given a set Γ of taxa, let us define a partial tree as a m-leaf

tree whose leaves are taxa of a subset Γ' ⊂ Γ, with m = |Γ'|.
Moreover, given a partial tree, with node set V and edge set

E, let us say that we add/insert a leaf i (not yet in Γ') on the

edge (r, s) ∈ E (i.e., the edge joining the nodes r, s ∈ V),

and generate a new partial tree with node set  = V ∪ {i,

t} and edge set  = E ∪ {(r, t), (t, s), (t, i)}\{(r, s)}. In
other words, we add a leaf i on an edge, divide that edge
with a new node t, and join the leaf i to t. All algorithms
described here build complete phylogenetic trees by itera-
tively adding one leaf at a time on the edges of a partial
tree.

Primal bound
To generate a first upper bound [5] of the ME problem, we
adapted the Sequential Addition (SA) greedy algorithm [6].
The Sequential Addition algorithm is less prone, than NJ,
to generate a systematic local optimum at the end of the
search (i.e., starting from "too good" a primal bound may
lead to inefficient results [29]).

The pseudo-code of our version of the Sequential Addi-
tion algorithm is presented in Figure 1. In the initializa-

tion step, we arbitrarily chose a subset Γ' ⊆ Γ of m ≤ n
leaves, and we generate as initial m-leaf partial tree, i.e., an
optimal solution of the problem (1) when only m leaves
are considered. A each iteration, we join the leaf i to all

possible leaves already present in Γ', and choose the solu-
tion that minimize tree length (we break possible ties ran-
domly), hence, generating a new partial tree and new set

Γ' = Γ' ∪ {i}. We iterate the procedure until a tree with n

leaves is obtained. Finally, fixing the topology matrix ,

we determine the optimal edge weights by imposing f (D,

, v = 0, and return the length of the tree, i.e., the upper

bound on the optimal solution of the ME problem.

Unfortunately, the computation complexity of our heuris-
tic is O((2m - 5)!! + n(n - m)2). AT each iteration, given a
partial tree, i.e., a k-leaf phylogenetic tree of the leaves in
Γ' ⊂ Γ with k = |Γ'|, and a leaf i not in Γ', the procedure
generates all the different (k + 1)-leaf partial trees that can
be obtained by adding the leaf i in each edge of the current
partial tree.

The ant colony optimization algorithm
The specific ACO algorithm for the minimum evolution
problem (hereafter ACO-ME) that we introduce here (cf.
pseudo-code in Figure 2), is a hybrid between the Max-
Min Ant System (MMAS) [30,31] and the Approximate
Nondeterministic Tree Search (ANTS) [32]. Both methods
are modifications of the original Ant System approach
[33].

The core of the ACO-ME algorithm is the iteration phase,
where the ants generate a set  of trees. Then, starting

from the trees in , a local search is performed until a
locally optimal tree is found and compared with the cur-
rent-best tree. If stopping conditions are met the proce-
dure ends, otherwise the iteration phase is repeated.

Each ant builds a phylogenetic tree by iteratively adding a
leaf at a time to a partial tree. Following a relation-learning
model [34], the choices performed by an ant about (i)
which leaf to insert, and (ii) where to add it on the partial

tree are based of a set of parameters {τij} called pheromone

trails. The values of the pheromone trail parameters {τij}

represent a stochastic desirability that a leaf i shares a
direct common ancestor with a vertex j on a partial tree.
The ants generate a new set  of trees and the pherom-
one trail parameters are updated at the end of the main
iteration phase.

Let us now consider the algorithm in more details. It uses
two identical data structures: s* and sk. The former stores
the current-best complete reconstruction (solution)
known, whereas the latter stores the best complete recon-
struction obtained by the ants during iteration k. The algo-
rithm also uses a variable na, i.e., the number of artificial
ants. How to set the value of na is discussed in the Param-
eter settings section. In the initialization phase, s* is first
set to the reconstruction obtained by the Sequential Addi
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Principle of the ACO-ME algorithmFigure 1
Principle of the ACO-ME algorithm. The core iteration includes three main steps: (i) the pheromone update phase during which 
artificial ants walk on a graph with all possible connections among the n taxa and (n - 2) internal nodes, and lay a trail of volatile 
pheromone on the branches of the starting tree; (ii) the stochastic construction phase during which new trees are built using both 
the heuristic information of the pairwise distances and the stochastic process guided by the newly-updated pheromone trail 
matrix (ants follow a given edge with a probability which is a function of the amount of pheromone on that edge); and (iii) the 2-
OPT local search phase that corresponds to a local search using taxon swapping. The curved arrow indicates the stochastic jump 
of an ant from one edge to another. See text for details.
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High-level pseudo-code for the Sequential Addition heuristicFigure 2
High-level pseudo-code for the Sequential Addition heuristic.
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tion algorithm and sk is set to null, then the pheromone
trail parameters are updated. We implemented the MMAS
[30,31] method of pheromone update, where τmin ≤ τij ≤
τmax. Here, we set τmin and τmax to 0.0001 and 0.9999,
respectively [35]. In the initialization phase, the pherom-
one trail parameters {τij} are set to 0.5, i.e., all positions
for leaf insertion have the same desirability.

Before describing the iteration phase, let us introduce

some definitions. Let  be a partial tree with k leaves,

V( ) the set of vertices of , and  the set of leaves

of . Let us also use the recursive distance definition of

[23,36]: if A and B are two non-intersecting subtrees from
a tree , then the average distance between A and B is:

In the iteration phase, each artificial ant r generates a com-
plete phylogenetic tree using the ConstructCompleteRe-
construction(r) procedure, as illustrated in Figure 3: ant r

randomly selects four leaves from the set Γ, and builds a

partial tree , k = 4, then, ant r (i) chooses, among the

leaves not yet inserted in the partial topology, the leaf i

defining the smallest distance dij, j ∈ , and (ii) com-

putes the probability that i has a common ancestor with

the vertex j ∈ V ( ) using the formula suggested by

ANTS [32]:

 k

 k  k Γ k

 k



Δ A B A B
dij

i A j B
| | || | ,

.=
∈ ∈

∑
1

(5)

 k

Γ k

 k
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where ηij represents the "heuristic desirability" that leaf i

shares a common ancestor with a vertex j of V( )

(whereas τij represents the corresponding "stochastic

desirability"). Finally, α ∈ [01] allows the relative weight-
ing of heuristic and stochastic desirabilities. The heuristic

desirability ηij is computed as:

ηij = (Δij - ui - uj)-1 (7)

where , i.e., the sum of the dis-

tances from i to the leaves not yet inserted in the partial
tree divided the number of leaves inserted in the partial
tree.

Note that ηij, Δij, and ui correspond to the quantities used
in the Neighbor-Joining algorithm[20,21](see also[23]).
Hence, computation of the vector pi = {pij}, for all i ∈ Γ,
can be interpreted as the stochastic application of the
Neighbor-Joining algorithm. A possible problem (not
observed yet in practice in our analyses) is that ηij can take
negative values. Finally, ant r randomly chooses a vertex j
on the basis of the probabilities pi, and the leaf i is added
to the tree.

At the end of the construction phase, a set  of trees is
obtained and a 2-OPT local search (with best-improve-
ment and without candidate list [37,38]) is iteratively per-
formed on each tree: two randomly-chosen leaves are
swapped and the tree length is evaluated. Swap i is per-
formed on the new tree if swap i-1 generated an improve-
ment, otherwise it is performed on the old tree. To reduce
the 2-OPT computational overhead, we perform no more
than 10 swappings on each tree in . If the best tree gen-
erated by the 2-OPT local search is shorter than the tree in
s*, both s* and sk are updated, otherwise only sk is

updated.

The pheromone update completes the iteration phase:
each entry τij is updated following:

τij ← (1 - ρ)τij + εij (8)

where

where κ ∈ � and ρ, the pheromone evaporation rate, are two
tuning constants, sbest is one of the tree s* or sk (see below),

and  the length of sbest. When applying equation (8),

if τij is greater than τmax or smaller than τmin, then its value

is set to τmax or τmin, respectively. We set to ρ 0.1, κ to κρ ∈

[10-2, 10-1], and α to 0.7. Fine-tuning of these parameters
might have a significant impact on search efficiency but
such a systematic analysis is out of the scope of a proof-of
concept for the use of ACO-ME. Finally, if the objective
function does not decrease after 30 iteration, ACO-ME
chooses sk as sbest instead of s* for the pheromone updat-

ing; if the objective function does not decrease after 30

additional iterations, then all {τij} are reset to 0.5 and s*

is used for pheromone updating.

Parameter settings
We evaluated the performances of the ACO-ME algorithm
under different values of the parameter κ(0.1, 0.5, and 1),
and different numbers of ants (1 to 10). For each of the 30
possible combinations of these parameters values, we run
ACO-ME for 1000 iterations. As suggested elsewhere (see
[29]), we do not consider colony sizes larger than 10.

Relative performances are measured using a normalized
index as in [39-41]:

where  is the best solution found under parameter

value k using dataset j, whereas  and  are respec-

tively the best and worst solutions found on the instance
j using the parameter value k. By definition, performance
index values are in the interval [0, 1]. The optimal param-
eter value exhibits the smallest relative performance index
(see box-and-whisker plot histograms in Figure (4, 5, 6).
Figures 4, 5, and 6 indicate that, for small, medium, and
large datasets, the optimal combinations of number of

ants/κ are 7/1, 10/0.5, and 8/0.5, respectively. However,
differences of performances are not spectacular among
different combinations of parameter values (except that

p
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performances are generally very low when a single at is
used).

Experimental evaluation
We first used a set of distance matrices generated from real
datasets: the dataset "551314.nex" that includes 55 RBCL
sequences of 1314 nucleotides each, and the dataset
"Zilla500.nex" that includes 500 RBCL sequences of 1428
nucleotides each. These datasets are available at [42]. Note
that sequences in these datasets were aligned using Clus-
talX [43] and columns including gaps were excluded
before computing pairwise distances. Second, we gener-
ated (i) 10 artificial instances of 20 taxa (also called small
instances); (ii) 10 artificial instances of 50 taxa (also called
medium instances); and (iii) 10 artificial instances of 100
taxa (also called large instances). Each artificial instance
was generated by random sampling of taxa and partial
character reshuffling of the Zilla500.nex data set. More
explicitly, after random selection of the 20 or 50 or 100
taxa, we randomly reshuffled characters among taxa, for
50 percents of the aligned columns. As the reshuffling
makes the dataset prone to yield undefined pairwise dis-
tances [44], we simply used the absolute number of differ-
ences between sequence pairs for generating the distance

matrix. Edge lengths were computed using the standard
OLS because WLS and GLS can potentially lead to incon-
sistent results et al. [45]. All numerical experiments were
performed on a workstation Apple 64-bit Power Mac G5
dual processor dual core, with 8 Gb of RAM, and OS X.
The ACO-ME source code is written in C/C++ and com-
piled using IBM XL C/C++ compiler version 6.0. We com-
pared the quality (total length) of trees generated by the
ACO-ME algorithm to those obtained using a classical
hill-climbing algorithm (implemented in PAUP* 4.0
[19]) after a fixed run time of 1 minute. The starting tree
was generated using the Neighbor-Joining algorithm
[20,21], and the TBR branch-swapping operator [6] was
used for exploring the solution space. PAUP* 4.0 was used
with and without the "Steepest Descent" (SD) option.
When SD is activated, all possible TBR are tried, and the
rearrangement producing the largest decrease in tree
length is selected, inducing a computational overhead
similar to that of the 2-OPT local search implemented in
our ACO-ME algorithm. Each algorithm was run 30 times
on each of the two real datasets. Figure 7a and 7b show
that ACO-ME performances are intermediate between
hill-climbing with SD, and hill-climbing without SD. Fur-

Normalized ranking of the ACO algorithm performances with small datasets (20 taxa) and κ = 0.1 (a), κ = 05 (b), and κ = 1 (c) versus colony size naFigure 4
Normalized ranking of the ACO algorithm performances with small datasets (20 taxa) and κ = 0.1 (a), κ = 05 (b), and κ = 1 (c) 
versus colony size na.
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thermore, Figure 7a and 7b indicate that the relative per-
formances of ACO-ME, in comparison to hill climbing,
increase with larger datasets. Note that, contrary to our
simple implementation of ACO-ME, the implementation
of ME in PAUP* 4.0 [19] incorporates procedures [4,23]
that greatly speed-up the OLS (reaching a complexity
O(n2)). We trust that implementation of these procedures
in combination with further tuning of the ACO parame-
ters (number of ants, relative weights of the heuristic
information and stochastic pheromone parameters, etc)
would lead to better performances of the ACO-ME algo-
rithm. Figure 8a and 8b indicate that the relative perform-
ances described above are relatively stable trough time,
especially for large data sets (at any time during the run,
ACO-ME has similar performances than "hill-climbing
without SD" and better performances than "hill-climbing
with SD").

Conclusion
We introduce here an Ant Colony Optimization algo-
rithm (ACO) for the phylogeny estimation problem
under the minimum evolution principle and demonstrate
the feasibility of this approach. Although much improve-

ment in performances can probably be obtained through
(i) modification of the local search phase, (ii) tuning of
the ACO parameters (number of ants, relative weights of
the heuristic information and stochastic pheromone
parameters, etc), and (iii) implementation of speed-up
procedures and optimization of the code, the current
implementation of our algorithm already demonstrates
that the ant colony metaphor can efficiently solve
instances of the phylogeny inference problem.
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Normalized ranking of the ACO algorithm performances with medium datasets (50 taxa) and κ = 0.1 (a), κ = 0.5 (b), and κ = 1 (c) versus colony size naFigure 5
Normalized ranking of the ACO algorithm performances with medium datasets (50 taxa) and κ = 0.1 (a), κ = 0.5 (b), and κ = 1 
(c) versus colony size na.
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Normalized ranking of the ACO algorithm performances with large datasets (100 taxa) and κ = 0.1 (a), κ = 0.5 (b), and κ = 1 (c) versus colony size naFigure 6
Normalized ranking of the ACO algorithm performances with large datasets (100 taxa) and κ = 0.1 (a), κ = 0.5 (b), and κ = 1 
(c) versus colony size na.
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Comparison of performances between ACO-ME and hill-climbing (with and without Steepest Descent, SD) after a fixed run time of 1 minute on datasets of 55 (a) and 500 (b) taxaFigure 7
Comparison of performances between ACO-ME and hill-climbing (with and without Steepest Descent, SD) after a fixed run time 
of 1 minute on datasets of 55 (a) and 500 (b) taxa. A paired Wilcoxon test indicates that ACO-ME performances are significantly 
better (p-value = 3.92e-2 for 55 taxa dataset, and p-value = 6.821e-4 for 500 taxa dataset) than those of hill-climbing with SD, but 
significantly worst (p-value = 4.71e-3 for 55 taxa dataset, and p-value = 4.53e-4 for 500 taxa dataset) than those of hill-climbing with-
out SD.
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Comparison of score vs. running time for hill-climbing with steepest descent (line labeled "1"), hill-climbing without steepest decent (line labeled "2"), and ACO-ME (line labeled "3") on datasets of 55 (a) and 500 (b) taxaFigure 8
Comparison of score vs. running time for hill-climbing with steepest descent (line labeled "1"), hill-climbing without steepest 
decent (line labeled "2"), and ACO-ME (line labeled "3") on datasets of 55 (a) and 500 (b) taxa.
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