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Abstract

Background: A major cornerstone of evolutionary biology theory is the explanation of the
emergence of cooperation in communities of selfish individuals. There is an unexplained tendency
in the plant and animal world — with examples from alpine plants, worms, fish, mole-rats, monkeys
and humans — for cooperation to flourish where the environment is more adverse (harsher) or
more unpredictable.

Results: Using mathematical arguments and computer simulations we show that in more adverse
environments individuals perceive their resources to be more unpredictable, and that this
unpredictability favours cooperation. First we show analytically that in a more adverse environment
the individual experiences greater perceived uncertainty. Second we show through a simulation
study that more perceived uncertainty implies higher level of cooperation in communities of selfish
individuals.

Conclusion: This study captures the essential features of the natural examples: the positive impact
of resource adversity or uncertainty on cooperation. These newly discovered connections
between environmental adversity, uncertainty and cooperation help to explain the emergence and
evolution of cooperation in animal and human societies.

Background

The drive to understand the emergence of cooperation —
actions of benefit to both actor and recipient - in commu-
nities of selfish individuals has generated a large body of
theoretical and empirical research in recent decades [1-
14]. This research focuses on the dynamics of interactions
between individuals and pays relatively little attention to
the effects of the environment. However, evidence is
growing, in many taxa, that as the adversity (harshness)
and uncertainty of the environment increase cooperation
is enhanced and we present a model here that attempts to
explain this phenomenon as an adaptive facultative
response favoured by selection.

An organism's environment is more adverse if some qual-
ity such as resources, physical structure, climate, competi-
tors, parasites or predators changes in such a way as to
decrease darwinian fitness. Environmental adversity is
species-specific, e.g. high temperature may be adverse for
some organisms, but not for thermophilic bacteria. As an
example of the uncertainty or unpredictability of the envi-
ronment [15], feeding in a patchy area, where some places
are rich in food and others barren, results in greater uncer-
tainty of nutritional status compared to foraging where
food is distributed homogeneously. Uncertainty can be
measured as the variance of a distribution of environmen-
tal quality, and adversity as the mean [16]. Both adversity
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and uncertainty have been conceptualised as aspects of
environmental 'risk' [17].

At many levels of life, from plants to human societies,
cooperation thrives in conditions where the environment
is most adverse. Plants at lower temperatures and higher
altitudes, where abiotic stress is high, compete less and
cooperate more with their neighbours [18]; nematodes
Caenorhabditis elegans aggregate in response to stressors
[19]; animals form more cohesive or larger groups, with
consequent greater mutualistic benefits under greater pre-
dation risk [20-23]; mole-rats, a highly social species,
delay dispersion more in arid than in mesic habitats [24];
human in-group solidarity is greatest when the group is
under threat or in a harsh environment [25-28].

In humans there is also evidence for enhanced coopera-
tion where the environment is more uncertain. This holds
for common pool resource groups, such as fisheries [29],
for communal sharing of hunted meat in various societies
[30], and for sharing in laboratory experiments [31].
Examples of enhanced cooperation under adversity and
uncertainty are discussed further by Andras & Lazarus
[32].

We present a model to explain this increase in coopera-
tion under conditions of adversity and uncertainty. The
model has two parts. First, we show that adversity
increases the organism's uncertainty in its resource level,

http://www.biomedcentral.com/1471-2148/7/240

uncertainty being measured as subjectively perceived
resource variance (sub-section 2.1). We then show that
resource uncertainty increases cooperation, using a multi-
agent simulation (sub-section 2.2).

Results and Discussion

Adversity and uncertainty: analytical results

We consider the influence of adversity on the minimal
amount of a given resource that the individual finds
acceptable for survival. We assume that the marginal fit-
ness benefit of resource amounts decreases with the
amount of resources the organism already has. For exam-
ple, eating an extra food unit adds less to the fitness of a
well fed animal than to the fitness of a hungry animal
[32]. We also assume that the cost of acquiring resources
increases monotonically with the amount of resources
acquired. For example capturing a large prey takes more
energy than capturing a small prey (see also Fig 1 legend
for general argument). For the sake of simplicity we
assume that the cost function is linear (although we note
that in practice this may be depart from linearity in the
sense that acquiring a certain biomass of resources in the
form of five small prey items may be more expensive than
acquiring the same biomass in the form of a single large
prey item).

The cost of foraging for resources is assumed to increase
with adversity. For example, energy lost to foraging will be
more costly in colder environments, and time spent forag-

Benefit and Cost
Q

Resource amount

Figure |

The minimal acceptable level of resources. The incremental fitness cost (assumed to be straight lines for simplicity) and
benefit (curved line) are shown as a function of the resource amount gained, in a less adverse (continuous straight line) and a
more adverse (segmented straight line) environment (the slope of the two lines is the same). Cost increases with resource
amount since, optimally, more investment (cost) is made when the return (benefit) is greater. The resource amounts R, and
R, are assumed to be the minimal acceptable levels of resources in the two environments.
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ing (and not available for anti-predator vigilance) will be
more costly in environments with greater predation risk.
We are interested in finding the minimal level of a partic-
ular resource that it is profitable to exploit, considering
resource costs imposed by the environment (i.e. the min-
imal amount for which the benefits of acquiring the
resource are larger than the costs of acquiring the
resource). We term this level of resource the minimal
acceptable level of resource. Note that we are not looking
for the optimal level of resources, i.e., where the marginal
benefit equals the marginal cost.

We denote by D(R) the probability density function of the

distribution of resources (R - the amount of resources, R

> 0) in an individual's environment (i.e.
R,

P(R, <R<R,)= [ D(R)R is the probability that the
Rl

amount of resources in a resource item or in a resource

location is between the values R, and R,). Let us assume

that R,,; and R,,, are the minimum acceptable level of

resource in a less adverse (1) and a more adverse (2) envi-
ronment with the same resource distribution; we then get
R,,; <R, (Figure 1). In other words, the minimum accept-
able level of resources is greater in the more adverse envi-
ronment. This prediction is supported by field studies of
foraging in rodents, in which individuals select more prof-
itable foods under environmental conditions - e.g. open
habitat and moonlit nights - in which there is a greater
risk from nocturnal predators [33-36]. (Animals under
immediate predation risk, where anti-predator behaviour
competes directly with foraging, trade-off the two concur-
rent demands and reduce selectivity in feeding in order to
attend to the threat of predation [37-39], but this phe-
nomenon is not relevant to the long-term response to
adversity - and when prey are not under immediate threat
of predation - with which we are concerned here. This dis-
tinction can explain the contrasting results of the two sets
of studies.)

The minimum acceptable cut-off point means that all
resources below that limit are considered by the organism
to be equivalent to zero, accessing them being unprofita-
ble. This allows us to derive a relationship between adver-
sity and subjective resource uncertainty (i.e., the variance
of the resource distribution after ignoring the resources
below the minimum acceptable cut-off point - for exam-
ple the variance of the distribution of sizes of acceptable
food items, which are sufficiently big to be above the min-
imum acceptable cut-off point). Writing the formulae for
the subjective variances of resources in the two environ-
ments we get:
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+oo

v, = J R?D(R)dR — R} (1)
le
+oo

V, = I R’D(R)dR - R3 (2)
R

m2

where R,, R, are the respective means of the distribu-

tions of subjective acceptable resources. After algebraic
manipulations we get

R

jLR-(Tz1 +R, —R)-D(R)dR (3)
R

V,-V, =
ml

We assume that the minimum acceptable cut-off point R,

is such that the acceptable part of the resource distribution
includes more than half of the full distribution, i.e.,

Foo
_[ D(R)dR > . It can then be shown that
R

2-R>R,, (4)

where R is the mean value of the full (not truncated) dis-
tribution of resources. Consequently, if R,,; and R,,, are
such that the minimum acceptable cut-off point is less
than the mean value of the full resource distribution, and
R, <R,,, then

j D(R)dR > j D(R)dR > % (5)
le Rmz
R, >R, (6)

and consequently
R/ +R,-R>0 (7)
ifR,, <R<R,,.
It follows from (3) and (7) that
V,-V;>0. (8)
Thus in a more adverse environment the individual expe-

riences higher subjective variance (and therefore greater
uncertainty) in its resources (Figure 2) (see also Appendix
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1). The above discussion applies to the case when envi-
ronmental adversity is measured in terms of an environ-
mental quality (e.g., temperature, predation risk) different
from the quality (usually a resource) in terms of which we
measure the increased subjective environmental uncer-
tainty. In this case the objective distributions of the sec-
ond quality, resources, are the same in both
environments. If the same environmental quality is used
to measure both adversity and uncertainty we arrive at the
same conclusion.

We have been dealing so far with subjective uncertainties
that are naturally difficult to measure. For several reasons
it would be preferable to deal with objective measures of
uncertainty. First, it is objective measures that are
employed in the following model. Second, as outlined
above, we also wish to understand the possible direct
effects of environmental uncertainty - as well as adversity
- in enhancing cooperation. Last, if our conclusions are to
be tested, objective measures of uncertainty will probably
be required. Now, if the objective uncertainties of two
environments differ, while the adversity (i.e., the mean
value) of each is the same, then their consequent subjec-
tive uncertainties, as defined by a common minimal
acceptable cut-off point, will differ in the same direction.
This is because the proportion of the distribution that is
unacceptable (and thus equated with zero) increases with
objective variance. So, objectively more uncertain envi-
ronments with the same mean expectations are also sub-
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jectively more uncertain, and objective uncertainty can
stand proxy for subjective uncertainty in the model that
follows.

Uncertainty and cooperation: an agent-based simulation
We have shown how increased adversity leads to
increased subjective uncertainty, as measured by subjec-
tive variance. We have also shown that subjective and
objective variance will be positively correlated. We now go
on to show that an increase in objective variance in
resources enhances cooperation. It will therefore follow
that an increase in the subjective variance of resources will
also enhance cooperation. Finally, since adversity causes
an increase in subjective uncertainty we can conclude that
adversity will favour cooperation.

Using a Prisoner's Dilemma type game theory model we
built an agent-based simulation [40] to study the dynam-
ics of the level of cooperation in relation to resource
uncertainty. Our agents are generalised organisms that
own resources (R) that they spend on living costs and use
to generate new resources for the future. If the agent has
less resource than the amount of living costs the agent
dies. The agents live in a continuous two-dimensional
world (i.e. unlimited flat continuous space, not a grid),
each having a position (x, y) and change location by ran-
dom movements, i.e. (Xye Vyew) = (%, ¥) + (& &), where
& & are small random numbers. The agents have an incli-
nation toward cooperation or competition, expressed as p

0.00

n.oz

A A

Ram1Rm2

Resowrce amount

Figure 2

The distribution of resources in two environments having the same objective resource distribution. The

resource amounts R, and R, are the minimal acceptable amounts of resources in the two environments. The shaded areas
are the parts of the distributions ignored by animals living in the two environments. The larger the ignored area the higher is
the subjective variance of the distribution, with the condition that the ignored area is smaller than half of the area below the

curve of the distribution.
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the probability of cooperation of the agent with another
agent. If p < 0.5 they are more likely to compete than to
cooperate. They select their behaviour for each interaction
in a probabilistic manner biased by their inclination. This
is done by choosing a random number g from a uniform
distribution over [0,1]; if g <p they cooperate, otherwise
they compete.

Objective resource uncertainty was implemented as the
variance of the resource distribution that is used to deter-
mine the new amounts of resources of the agents. In each
time unit (the time is discrete in our simulation), each
agent randomly chooses an interaction partner from its
neighbourhood and the partners decide whether to coop-
erate or compete. The neighbourhood of an agent consists
of the ten closest agents, where closeness is measured in
terms of spatial distance between agents. The new
resource amounts for the agents are determined by taking

a sample from a normal resource distribution N( X, oy.

The mean value X is determined by the amount of owned
resources according to the payoff table shown in Table 1.
The variance oy is the objective resource uncertainty char-

acterising the environment. Varying the value of oy allows

us to investigate how the level of cooperation responds to
the environmental uncertainty.

The agents produce offspring asexually at the end of their
lifetime (unless they die because of lack of resources to
cover living costs) who inherit their parent's inclination
toward cooperation with some small random change (i.e.,
Poffspring= Pparen + & & € [-& €], and ¢is asmall number, e.g.,
¢ = 0.025). The number of offspring depends on the

Table I: The pay-off matrix for the cooperation/competition
game

Cooperate Compete
X
Cooperate a-fR), fiRy) + A
f(R1)+%/f(R2)+%
Compete f(R) + A, a-f(Ry) fR1): f(Ry)

Entries indicate the mean of the payoff distribution to the row player

followed by the column player. R, and R, are the amount of resources
owned by the row and column player respectively, and A = [f(R, + R,)
- f(R)) - f(Ry]+ (i-e., it takes only the positive values of the expression

in brackets and it is zero if the value of the expression is negative). The
function fis a diminishing return function, and R, and R, are typically in
the range where 2f(x) < f(2x), and 0 <a < I.
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amount of resources of the agent according to the equa-
tion

n=o- R=AR=p-oR) + 1,

OR

(14)

where R is the mean and oy, is the variance of the owned
resources in the population of agents, and o, 5 n, are

parameters. The offspring share equally the resources of
their parent. The offspring start their life from their par-
ent's last location with minor random changes, implying
that the offspring of each agent will be closely packed at
the beginning. The cluster of offspring diffuses with time,
as the offspring make their random movements.

We simulated the evolution of 20 agent populations at
each of three levels of environmental uncertainty. Each
population started with around 1500 individuals (1500
a small random element) and the simulation ran for 1000
time units, the agents' mean lifetime being 60 time units.
The inclination toward cooperation of the agents was set
randomly according to a uniform distribution over [0,1].
We calculated for each simulation, for each time unit, the
proportion of agents cooperating in cooperation-cooper-
ation and cooperation-competition interactions. We
focused on the proportion of agents participating in coop-
eration-cooperation interactions, which corresponds to
c2, where c is the proportion of cooperating agents in the
population. We found that as the objective resource
uncertainty level increases, the stable level of cooperation
in surviving populations also increases (Figure 3). We
note that in the simulations the likelihood of cooperation
is increased among clustered kin agents, which is due to
the fact that the offspring of an agent start their life as a
cluster of agents situated close to their parent's earlier
location. However, as the agents follow their diffusion
movement (a random walk) the clustering of kin agents is
reduced.

The results of our simulation study show that a high level
of objective resource uncertainty induces a high level of
cooperation in agent populations. We have no analytical
results that would explain our simulation results unam-
biguously. One possibility is that the payoff matrices of
games played deviate from the Prisoner's Dilemma
matrix, and this causes more cooperation as environmen-
tal risk increases [41]. Analysing our payoff matrix (see
Table 1) we can exclude this possibility. Our payoff matrix
is constructed such that in all cases the Prisoner's
Dilemma inequalities are satisfied, i.e., payoff(cheater) >
payoff (cooperation) > payoff(joint non-cooperation) >
payoff (sucker), and payoff(cooperation) > [(pay-
off(cheater) + payoff(sucker)]/2, if A>0, and we have
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Figure 3

The evolution of the proportion of cooperating agents. The graphs show the mean (+ SD) values of ¢2 (the proportion
of agents participating in cooperation-cooperation interactions, where c is the proportion of cooperating agents in the popula-
tion) in environments with various levels of uncertainty (see the numbers in the box).

equalities instead of inequalities if A = 0, except the case
of payoff(joint non-cooperation) > payoff (sucker), which
is always satisfied. The payoff generating function f is set
such that in most cases A>0, although the proportion of
cases with A = 0 increases as environmental risk increases.

In our view the phenomenological explanation is that
populations of agents survive in an uncertain environ-
ment only if the experienced individual uncertainties are
around a steady-state level. At the steady-state level of
experienced uncertainty the population maintains its size
without major variations. By cooperation agents share
individually perceived uncertainties, reducing their actual
experienced uncertainty (similar to the reduction of risk
on joining an insurance scheme). Higher environmental
uncertainty implies that more cooperation is needed to
reduce experienced individual uncertainties of agents in
order to keep these uncertainties around the steady-state
level. According to this argument, higher environmental
uncertainty implies the presence of more cooperation in

surviving populations, which is in good agreement with
our simulation findings. Some research works suggest that
above random level segregation of cooperating and non-
cooperating agents is a key mechanism in the develop-
ment of populations with high level of cooperation
[14,42-44]. In our case, as we noted above, the offspring
of reproducing agents form originally a cluster around the
earlier location of their parent, and later this cluster dif-
fuses as the agent follow their random walk. This indicates
that possibly the segregation mechanism contributes to
some extent in our simulation to the emergence of agent
populations that have sufficient level of cooperation that
makes the experienced uncertainty of agents stay around
the steady-state level.

Conclusion

The simulation study captures the essential features of the
natural examples: the positive impact of resource adver-
sity or uncertainty on cooperation. As our simulation is
based on a very limited set of assumptions, the results are
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likely to be of broad applicability and may explain why
cooperation flourishes in risky environments, whether
risk is conceptualised as adversity, objective environmen-
tal variance or subjective environmental uncertainty [17].
Elsewhere we demonstrate another way in which adversity
and uncertainty may enhance cooperation [32].

Social psychological influences of perceived threat on
group solidarity in humans [26-28] may seem removed
from conclusions concerning cooperative behaviour, and
outside the explanatory scope of models based on fitness
considerations. However, human cooperative tendencies,
and the associated prosocial cognitions and affective
states, evolved in the small groups of early human socie-
ties [32,45] - or earlier - where social responses to envi-
ronmental adversity [27] and uncertainty [31] will have
impacted directly on fitness. We should therefore expect
to find our predicted relationships between perceived risk
and behaviours broadly classifiable as cooperative in con-
temporary societies, as long as these contemporary per-
ceptions and behaviours are recognized and mediated by
the putative evolved cognitive mechanisms.

Methods
The methods are described in the main body of this paper
(Results and discussion section).

Appendix

We show, using an alternative route, that the subjective
variance of resources increases monotonically with the
increase of environmental adversity if the acceptable part
of the resource distribution includes more than half of the
full distribution, i.e.,

I D(R)AR > % (A1)
R

m

where R, is the minimum acceptable cut-off point.

Define R,, as the subjective mean of the resource distri-

bution:
+oo0 +o0 R,
R, = J RD(R)dR = J RD(R)dR + j R-8,dR
R, R, 0

(A2)

where ¢, is a Dirac-delta function centred on 0 such that

Rm Rm
[ 80dR = [ D(R)R.
0 0

Writing the subjective variance as a function of R,, we get
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V(R,) = j R2D(R)AR-R,, "
R

m

(A3)

We calculate the derivative of the subjective variance with
respect to the minimum cut-off point R,

2

+oo +oo
d d 2 d J’
—V(R,))==—— | R"D(R)dR— —— RD(R)dR | =
ok VR = 5 | RD@AR-—| | RD(R)
R R

m m

2R,D(R,)R,, ~ RZD(R,,) = R, D(R,,) (2R, — R,,)
(A4)

If condition (A1) is satisfied it can be shown that

2R, >R, (A5)

So, we can conclude that if condition (A1) is satisfied then

d
— V(R 0
o VB>

(A6)
This means that, given the condition (A1) being satisfied,
the variance is an increasing function of the minimum
cut-off point value, which increases with the adversity of
the environment. This implies that the subjective resource
variance of a more adverse environment is larger than the
subjective variance of a less adverse environment, if the
acceptable part of the resource distribution includes more
than half of the full resource distribution.
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