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Abstract
Background: Nuclear receptors (NRs) are important transcriptional modulators in metazoans
which regulate transcription through binding to the promoter region of their target gene by the
DNA binding domain (DBD) and activation or repression of mRNA synthesis through co-
regulators bound to the ligand binding domain (LBD). NRs typically have a single DBD with a LBD.

Results: Three nuclear receptors named 2DBD-NRs, were identified from the flatworm
Schistosoma mansoni that each possess a novel set of two DBDs in tandem with a LBD. They
represent a novel NR modular structure: A/B-DBD-DBD-hinge-LBD. The 2DBD-NRs form a new
subfamily of NRs, VII. By database mining, 2DBD-NR genes from other flatworm species (Schmidtea
mediterranea and Dugesia japonica), from Mollusks (Lottia gigantean) and from arthropods (Daphnia
pulex) were also identified. All 2DBD-NRs possess a P-box sequence of CEACKK in the first DBD,
which is unique to 2DBD-NRs, and a P-box sequence of CEGCKG in the second DBD.
Phylogenetic analyses of both DBD and ligand binding domain sequences showed that 2DBD-NR
genes originate from a common two DBD-containing ancestor gene. A single 2DBD-NR
orthologue was found in Arthropoda, Platyhelminths and Mollusca. Subsequent 2DBD-NR gene
evolution in Mollusks and Platyhelminths involved gene duplication. Chromosome localization of S.
mansoni 2DBD-NR genes by Fluorescent in situ hybridization (FISH) suggests that 2DBD-NR genes
duplicated on different chromosomes in the Platyhelminths. Dimerization of Sm2DBDα indicates
that 2DBD-NRs may act as homodimers, suggesting either that two repeats of a half-site are
necessary for each DBD of 2DBD-NRs to bind to its target gene, or that each 2DBD-NR can
recognize multiple sites.

Conclusion: 2DBD-NRs share a common ancestor gene which possessed an extra DBD that likely
resulted from a recombination event. After the split of the Arthropods, Mollusks and
Platyhelminths, 2DBD-NR underwent a recent duplication in a common ancestor of Mollusks, while
two rounds of duplication occurred in a common ancestor of the Platyhelminths. This
demonstrates that certain NR gene underwent recent duplication in Prostostome lineages after the
split of the Prostostomia and Deuterostomia.
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Background
Nuclear receptors (NR) regulate homeostasis, differentia-
tion, metamorphosis and reproduction in metazoans.
Members of the nuclear receptor superfamily are charac-
terized by a modular structure. Typical NRs contain an N-
terminal A/B domain, a C domain (DNA binding domain,
DBD), a D domain (hinge) and an E domain (ligand
binding domain, LBD). The most conserved region in NRs
is the DBD, which contains two zinc finger motifs (CI and
CII). There is a conserved sequence element in the DBD,
called the P-box, which confers target DNA binding spe-
cificity. Another moderately conserved region is the LBD
[1-3]. Two highly conserved regions are present within the
LBD. The first region is called the signature sequence of
LBD (Tau, Tτ), from the C-terminus of helix 3 to the mid-
dle of helix 4 [1,4]. The second conserved region is helix
12 which contains the activation function core motif
(AF2-AD) that is required for transcriptional activation
and co-regulator recruitment. NRs regulate transcription
through binding to the promoter region of their target
gene by the DBD and activation or repression of mRNA
synthesis through co-regulators bound to the LBD [5].

Recently, we isolated three partial cDNAs of nuclear recep-
tors which contain two DBDs in the flatworm Schistosoma
mansoni [6]. Typical NRs only have a single DBD with a
LBD, unusual nuclear receptors are known only to have
one DBD without a LBD [7-10] or to posses a LBD with-
out a DBD [11,12]. To determine the modular structure of
these novel nuclear receptors (that is, whether they con-
tain a LBD), cDNAs encoding the entire open reading
frame (ORF) of Sm2DBD-NRs were isolated. By data min-
ing, additional 2DBD-NRs were identified in species of
Mollusca, Arthropoda and other species of Platy-
helminths. The phylogenetic relationship of 2DBD-NRs
was constructed, the origin of 2DBD-NRs and their role in
understanding metazoan phylogeny is discussed.

Results and Discussion
A novel NR modular structure: A/B-DBD-DBD-hinge-LBD
cDNAs of three S. mansoni 2DBD-NRs (Sm2DBDα, 5144
bp, Sm2DBDβ, 5525 bp and Sm2DBDγ, 6374 bp) were
isolated. Each cDNA encodes a large protein: Sm2DBDα,
1527 amino acids; Sm2DBDβ, 1523 amino acids and
Sm2DBDγ, 1816 amino acids (Fig. 1A). Each protein
exhibits a modular structure characteristic of the nuclear
receptor superfamily with a divergent N terminal A/B
domain, a hinge region and a less well conserved LBD.
Remarkably, each possesses two DBDs in tandem (Fig.
1A). Thus the A/B-DBD-DBD-hinge-LBD organization
represents a novel NR modular structure. All the members
of this novel group have been placed in a new subfamily,
NR VII.

The LBD is conserved in all three proteins from helix 3 to
helix 12. The consensus signature sequence of the LBD
(Tτ), ((F, WY)(A, SI)(K, R, E, G)XXX(F, L)XX(L, V,
IXXX(D, S)(Q, K)XX(L, V)(L, I, F)) [1,4], is conserved in
each of them (Fig. 1B). A putative AF2 activating domain
core (AF2-AD), designated ΦΦXEΦΦ, where Φ represents
a hydrophobic amino acid [13-15], is highly conserved in
Sm2DBDα and Sm2DBDβ, but not in Sm2DBDγ. In
Sm2DBDγ, a glutamine is located in the position which is
normally conserved for a glutamic acid (Fig. 1B).
Sm2DBDα contains a large F domain. The function of the
F domain, which is known to be present in some but not
all nuclear receptors, is not well known (eg. [15-22]). The
hinge region of each protein is unusually large (Fig. 1A).
This trait has been observed in other Schistosoma NRs [15-
22]. The role of such a large hinge region is yet to be deter-
mined.

Identification of 2DBD-NR in other organisms
By an extensive search of whole genomic sequence (WGS)
databases extracted from NCBI, three 2DBD-NRs were
found in the freshwater turbellarian Schmidtea mediterra-
nea, two were found in the mollusk Lottia gigantean (owl
limpet) and one was found in the crustacean Daphnia
pulex (water flea) (Fig. 2 and additional file 1). No 2DBD-
NR or any sequence encoding a P-box sequence of
CEACKK, which is unique to the first DBD of 2DBD-NR
(see below and Fig. 3), was found in sponge (Reniera sp),
cnidarian (Hydra magnipapillata and Nematostella vecten-
sis), arthropod insects, sea urchin or vertebrate sequence
data bases. One additional 2DBD-NR was found in the
turbellarian Dugesia japonica in the NCBI EST database
(Fig. 2 and additional file 1).

Sequence analysis and phylogenetic tree construction
Alignment of the deduced DBD sequences showed that all
2DBD-NRs possess a P-box sequence, CEACKK, in the first
DBD, and the P-box sequence, CEGCKG, in the second
DBD (Fig. 2). A blast search against all available databases
showed that the P-Box sequence CEACKK is not present in
any other NR. This unique P-box present in the first DBD
of 2DBD-NRs suggests a novel target DNA specificity may
exist for the first DBD. The P-box sequence of second
DBD, CEGCKG followed by the amino acid sequence
FFRR (CEGCKGFFRR) is identical to that of most mem-
bers in NR subfamily I (NR I) suggesting that 2DBD-NRs
may have a close functional or evolutionary relationship
with receptors in NR subfamily I.

Both Maximum Likelihood method and Bayesian infer-
ence analysis show that the first DBD of 2DBD-NRs
belongs to one monophyletic group and the second DBD
belongs to a separate monophyletic group (Fig. 3). The
results suggest that 2DBD-NRs originated from a common
ancestor gene. Both the first and the second DBD are sister
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Functional domains of 2DBD-Nuclear receptors and sequence alignment of the LBD domainFigure 1
Functional domains of 2DBD-Nuclear receptors and sequence alignment of the LBD domain. A. Schematic rep-
resentation of functional domains of 2DBD-NRs isolated from the fluke Schistosoma mansoni. hRORα (human RAR-related 
orphan receptor, NM_002943) as an example that shows the 'typical' modular structure of nuclear receptors, which contain an 
A/B domain, a C domain (DNA binding domain), a D domain (hinge region) and an E domain (ligand binding domain). Three 
Sm2DBD NRs (Sm2DBDα, Sm2DBDβ and Sm2DBDγ) exhibit a novel modular structure with an AB domain, two tandem 
DNA binding domains (C1 and C2), a D domain and an E domain. Sm2DBDα possesses an F domain at the C-terminal end of 
the E domain. The size of each domain in amino acids is indicated. B. Alignment of sequences from Helices 3–12 of the LBD 
domain of three S. mansoni 2DBD-NRs with that of members in NR subfamily I. Helices described in [64] are boxed, the signa-
ture sequence of the LBD (Tτ) is boxed with dash line. The autonomous activation domain (AF2-AD) is indicated and the con-
served glutamic acids are shown in bold. Numbers at the end of each line indicate residue positions in the original sequence, 
amino acids of Sm2DBDα 1371–1527 and hRARα 453–462 are not shown in the alignment. Dark shaded areas show con-
served residues in the signature sequence of the LBD. The accession numbers of the aligned human nuclear receptors can be 
found in additional file 2.

A
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                                       H4          H5 

Sm2DBD   HMMNHFHMHAQQVVQFAKLVPGFNQLGITARSNLVREAMYSVLLLLLSRDYCPET-DEYN    1195 

Sm2DBD   QMMKHFETHSRFIVQFVKYIPGFCYLKISDQRQLVRSAMYPIMLLELSRDYVNEDRTRYN    1370 

Sm2DBD   HLMKYFESHIYEIIQFAQSIPNFQELSEFDMKILIQQSIYPIILIQLSQDFNNNKTKEYY    1715 

hRARa    KFSELSTKCIIKTVEFAKQLPGFTTLTIADQITLLKAACLDILILRICTRYTPEQ-DTMT    285 

hPPARa   CCQCTSVETVTELTEFAKAIPAFANLDLNDQVTLLKYGVYEAIFAMLSSVMNKDG-MLVA    333 

hVDR     HLADLVSYSIQKVIGFAKMIPGFRDLTSEDQIVLLKSSAIEVIMLRSNESFTMDD-MSWT    287 

hLXRa    HFTELAIVSVQEIVDFAKQLPGFLQLSREDQIALLKTSAIEVMLLETSRRYNPGS-ESIT    314 

hReverba DFSMSFTPAVREVVEFAKHIPGFRDLSQHDQVTLLKAGTFEVLMVRFASLFNVKD-QTVM    492 

hRORa    LCAIKITEAIQYVVEFAKRIDGFMELCQNDQIVLLKAGSLEVVFIRMCRAFDSQN-NTVY    380 

                    H6              H7               H8 

Sm2DBD   YFDFPAKEREVIMRHFPTFKRITEHLRVSGRIMHHLNLSLPELSLSCAAEILRNYCILEE   1255 

Sm2DBD   YFDFTPEEHAIILSHFPTFHKISGHLIRSGEFLTRLNLDNIELTLMCAQEVFKDRQGLDD   1430 

Sm2DBD   YFN--IQSQTSLINQFSVCKILFEQINLTNKLLKSLDLNETEIGLLCCVELFHT----DG   1769 

hRARa    F-SDGLTLNRTQMHNAGFG-PLTDLVFAFANQLLPLEMDDAETGLLSAICLICG----DR   339 

hPPARa   YGNGFITREFLKSLRKPFC-DIMEPKFDFAMKFNALELDDSDISLFVAAIICCG----DR   388 

hVDR     CGNQDYKYRVSDVTKAGHSLELIEPLIKFQVGLKKLNLHEEEHVLLMAICIVSP----DR   343 

hLXRa    F-LKDFSYNREDFAKAGLQVEFINPIFEFSRAMNELQLNDAEFALLIAISIFSA----DR   369 

hReverba FLSR-TTYSLQELGAMGMG-DLLSAMFDFSEKLNSLALTEEELGLFTAVVLVSA----DR   548 

hRORa    FDG--KYASPDVFKSLGCE-DFISFVFEFGKSLCSMHLTEDEIALFSAFVLMSA----DR   431 

                        H9                           H10        H11 

Sm2DBD   PTAKSTAELFVLAHHSLLNCMAKHSVPTVA--STQQRRTQLFALRKMIRVMDKEHHGILA   1313 

Sm2DBD   PVTP--AYLFNLVGLALT----EHIISVGY--SLEGRYAALSLISPMLEELNIEHHEVIA   1482 

Sm2DBD   KYLN-EPIKINEAYQTILQLLKEYETNQFN---SEKRFYKIISIKHNLDRMNKEHQEIIK   1831 

hRARa    QDLEQ-PDRVDMLQEPLLEALKVYVRKRRP--SRPHMFPKMLMKITDLRSISAKGAERVI   396 

hPPARa   PGLLN-VGHIEKMQEGIVHVLRLHLQSNHP--DDIFLFPKLLQKMADLRQLVTEHAQLVQ   445 

hVDR     PGVQD-AALIEAIQDRLSNTLQTYIRCRHPPPGSHLLYAKMIQKLADLRSLNEEHSKQYR   402 

hLXRa    PNVQD-QLQVERLQHTYVEALHAYVSIHHP--HDRLMFPRMLMKLVSLRTLSSVHSEQVF   426 

hReverba SGMEN-SASVEQLQETLLRALRALVLKNRP--LETSRFTKLLLKLPDLRTLNNMHSEKLL   607 

hRORa    SWLQE-KVKIEKLQQKIQLALQHVLQKN-H--REDGILTKLICKVSTLRALCGRHTEKLM   489 

         H11              H12 

Sm2DBD   DLRVLRS---DLRFPELYVEMFQLADSASALFSASAQAVTLACSGVLQSSLGSFQNSQLP   1370 

Sm2DBD   QLRQDRP---DLEFPQLYLEMFQLTDEEQRDLKCTNYDESDDNQ                   1523 

Sm2DBD   ILKHENH---YLPFSNLYIQLFQLNELHHLNPR                              1861 

hRARa    TLKMEIP----GSMPPLIQEMLENSEGLDTLSGQPGGGGRDGGGLAPPPGSCSPSLSPSS   452 

hPPARa   IIKKTES---DAALHPLLQEIYRDMY                                     468 

hVDR     CLSFQPE--CSMKLTPLVLEVFGNEIS                                    427 

hLXRa    ALRLQ-----DKKLPPLLSEIWDVHE                                     447 

hReverba SFRVDAQ                                                        614 

hRORa    AFKAIYPDIVRLHFPPLYKELFTSEFEPAMQIDG                             523 

                           AF2 

Sm2DBD

Sm2DBD

Sm2DBD

5481 98-175 362 

CAB D E

C1 C2 D E/FAB 

1 482-633 1150 1527 

C2 C1 D EAB 

1 81-239 1324 1523 

C1 C2 AB D E

1 394-546 1669 1861 

hROR
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groups to members of NR subfamily I, suggesting that the
common ancestral gene of 2DBD-NRs was close to a com-
mon ancestral gene of NR subfamily I genes and the extra
DBD was gained by a recombination event (Fig. 3).
Another phylogenetic tree was constructed employing
LBD sequences, the same result was obtained (Fig. 4). The
mRNA sequences reported here were deposited in Gen-
Bank under the accession numbers: Sm2DBDα [Gen-
Bank:AY688250], Sm2DBDβ [GenBank:AY688251] and
Sm2DBDγ [GenBank:AY698061]

Protein-protein interaction
NRs can regulate transcription as a homodimer or as a het-
erodimer with retinoid × receptor (RXR), another nuclear
receptor. To determine whether 2DBD-NRs may form
dimers and to begin to define the quarternary structure of
2DBD-NRs, the interaction of Sm2DBDα, SmRXR1 and
SmRXR2 was evaluated in a yeast two hybrid system.

Yeast transformed with pSV40/p53 (positive control),
pSV40/plamin C (negative control), pGBK-Sm2DBDα-C-

F/pACT-SmRXR1, pAS-SmRXR1-C-F/pGAD-Sm2DBDα,
pGBK-Sm2DBDα-C-F/pACT-SmRXR2, pAS-SmRXR2/
pGAD-Sm2DBDα and pGBK-Sm2DBDα-C-F/pGAD-
Sm2DBDα grew on SD/-trp-leu plate as expected (Fig. 5A-
a). If Sm2DBDα interacts with SmRXR1, SmRXR2 or with
itself, the Gal4 binding domain fusion partner bound to
the Gal1 UAS element will interact with the Gal4 activa-
tion domain to drive transcription of the reporter gene.
Yeast co-transformed with pGBK-Sm2DBDα-C-F/pGAD-
Sm2DBDα grew on SD/-trp-his-leu plus 3 mM 3-AT, indi-
cating that Sm2DBDα can act as a homodimer. Yeast co-
transformed with pGBK-Sm2DBDα-C-F/pACT-SmRXR1,
pGBK-Sm2DBDα-C-F/pACT-SmRXR2 or pAS-SmRXR1-C-
F/pGAD-Sm2DBDα and pAS-SmRXR2/pGAD-Sm2DBDα
did not grow on SD/-trp-his-leu plus 3 mM 3-AT plates,
indicating that Sm2DBDα did not interact with SmRXR1
nor SmRXR2 (Fig. 5A). The positive control plasmids,
pSV40/p53, grew on SD/-trp-his-leu plus 3 mM 3-AT
plates while the negative control plasmids, pSV40/plamin
C did not (Fig. 5A). The results show that Sm2DBDα can
interact as a homodimer, but can not interact with

Alignment of the deduced peptide sequences of DNA binding domains of 2DBD-NRsFigure 2
Alignment of the deduced peptide sequences of DNA binding domains of 2DBD-NRs. Each DBD is boxed with a 
solid line, P-box sequences (bold letters) are boxed with a dashed line. Stars identify the conserved cysteine residues that com-
prise the zinc finger of each DBD. Dashes indicate gaps in the sequence. The deduced amino acid sequence between DBDs for 
the NR from species other than S. mansoni is indicated with dots as we could not differentiate in the in silico analysis, exon 
sequence from intron sequence. All 2DBDs possess a P-box sequence of CEACKK in the first DBD and a P-box sequence of 
CEGCKG in the second DBD. Sm: flatworm Schistosoma mansoni, Se: flatworm Schmidtea mediterranea, Dj: flatworm Dugesia 
japonica, Lg: mollusk Lottia gigantea, Dp: arthropod Daphnia pulex.

The first DBD

The second DBD

P-box 

P-box 

Sm2DBD  CQVCGELAAG-FHHGAYVCEACKKFFMRHSMA--------DTKPTNVCPTGGNCIVAKGSRGKCQICRYRKCLLVGMKMKDPET

Sm2DBD  CQICGQPAVG-FHHRAYVCEACKKFFMRHTAARLRNSEIGSTVSESICPMGGRCRVEGPGRGKCPHCRYRKCLELGMTLTPPGG

Sm2DBD  CDICGDVAAG-FHCNAYVCEACKKFFIRSSKG--------ENFTKYTCTKSNTCEINKDTRTHCQRCRYQKCIRLGMVLPGAAV

Se2DBD  CQVCRESAAG-FHHGAYVCEACKKFFMRHNLN--------STKFTIPCPTGGQCAQLKTGRIKCQSCRFKKCVSIGM.......

Se2DBD  CQICTKNSVG-FHYGAYVCEACKKFFVRHASG--------VCRLYGSCQEKGKCDLNIDGRGKCQHCRYQRCNEIGM.......

Se2DBD  CDVCGDVSAG-FHCSAFVCEACKKFFIRSSKG--------DSYTKYSCTKNNNCEIVKDTRTHCQYCRFQKCLHLGMTLPGANL

Dj2DBD  CQICNKNAVG-FHYGAYVCEACKKFFVRHASG--------VCRLYGSCQEKGKCDLNIDGRGKCQHCRYKRCLEIGMNIDS--K

LgC464  CDVCGDKAAG-FYCGAFVCEACKKFFIRAAKQ--------G-EVKYKCLRDGNCTITKVNRIQCQFCRYQKCVALNM.......

lgC429                          FFIRCSKE--------D-VIYSKCR--GQCDITGENRIRCQYCRYQQCLKVGM.......

Dp2DBD  CKVCGEPASSGLNCGVVTCEACKKFFLRSVKG--------D-ALKYKCTRDKLCVITGATRTQCQYCRFVKCQEAGM.......

        *  *              *  *                         *     *         *  *

Sm2DBD  QSEIDISNIPCRVCGGRSSGFHFGALTCEGCKGFFRRTEGSSNSLV-—C---VGGQNACTIT-PRSRNACKSCRFRRCLAAGM

Sm2DBD  EAGCDISQIPCRVCSGPSSGFHFGALTCEGCKGFFRRTVLSNVRLE--C----PGNNDCPIT-PANRNMCKSCRFQRCLAVGM

Sm2DBD  FPVTDISEIPCRVCGAKSSGFHFGAITCEGCKGFFRRTINERESQRYTC----RNGGNCAVT-GATRNNCKSCRYRRCLAVGM

Se2DBD  ..........CRVCGGKSSGFHFGALTCEGCKGFFRRTESTKQHLA--C---ITGNNDCCLTGSSSRNLCKSCRFNRCLGVGM

Se2DBD  ..........CQVCGAKSSGLHFGCITCEGCKGFFRRMIKFKGSLV--C----FNDNKCKLD-LKNRSTCKSCRMNRCLSVGM

Se2DBD  NQNTDISLIPCRVCGAQSSGFHFGAITCEGCKGFFRRTINERENQKYTC----RNGGNCVIN-LATRNNCKSCRYKKCLAMGM

Dj2DBD  SSDYDLTAIPCQVCGAKSSGLHFGCITCEGCKGFFRRMIKFK

LgC464  ..........CQVCGAQSSGFHFGALTCEGCKGFFRRMAKERSSNSYIC----SKGNMCLVS-ISTRNSCKACRYQKCILVGM

lgC429  ..........CMVCGDLSNGIHFGVGTCEGCKKFFRRCLLESSK--LIC----VNERRCKIN-PKTRNRCRLCRYLKCLQVGM

Dp2DBD  ..........CSVCEAPASGYHYGAVTCEGCKGFFRPQHKNRASRSYVCNQGDNNDNDCPVG-HNSRIMCRSCRFKKCLDSGM

                  *  *             *  *                 *         *          *  *
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Maximum Likelihood phylogenetic tree derived from sequences of DNA binding domainsFigure 3
Maximum Likelihood phylogenetic tree derived from sequences of DNA binding domains. Amino acid sequences 
were aligned with ClustalW. Phylogenetic relationships were examined by the Maximum Likelihood (ML) method under Jones-
Taylor-Thornton (JTT) substitution model with a gamma distribution of rates between sites (eight categories, parameter alpha, 
estimated by the program) using PHYML (v2.4.4)). Support values for the tree were obtained by bootstrapping a 100 replicates 
and are indicated above each branch. Branches under the threshold value of 27 (this value was set to support subfamily II as a 
monophyletic group) were shown as polytomies. The same data set was also tested by Bayesian inference. The trees were 
started randomly with four simultaneous Markov chains running for 5 million generations. Bayesian posterior probabilities 
(PPs) were calculated using a Markov chain Monte Carlo (MCMC) sampling approach implemented in MrBAYES v3.1.1, the PPs 
values are shown below each branch or after the ML bootstrapping value separated by a slash. Star indicates the node obtained 
form by Bayesian inference which was different from that obtained by ML method. The accession number of each sequence 
used for the phylogenetic analysis can be found in additional file 2 and 3.
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Maximum Likelihood phylogenetic tree produced using sequences of NR ligand binding domainFigure 4
Maximum Likelihood phylogenetic tree produced using sequences of NR ligand binding domain. Phylogenetic 
relationship was examined by the Maximum Likelihood (ML) method as described for Fig. 3. Support values for the tree were 
obtained by bootstrapping a 100 replicates and are indicated above each branch. Branches under the threshold value of 46 (this 
value was set to support the subfamily IV as a monophyletic group) were shown as polytomies. Bayesian inference with the 
same methods as in Fig. 3, by running 3 million generations. The PPs are shown below each branch or after the ML bootstrap-
ping value separated by a slash. Star indicates the node obtained form by Bayesian inference which was different from that 
obtained by the ML method. The accession number of each sequence used for phylogenetic analysis can be found in additiona1 
file 2 and 3.
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SmRXR1 nor SmRXR2. As a strong dimer interface is
known to be located in the LBD [23,24], GST pull-down
experiments were performed (Fig. 5B). The results verified
that the LBDs of Sm2DBDα can form a homodimer in
vitro.

Nuclear receptors act on target genes by recognizing and
binding to specific DNA core motifs in the promoter
region of target genes via their P-box motif located in the
DBD. The DNA core motif is a typical consensus hexam-
eric sequence AGGTCA called a half-site. When NRs bind
to the half-site as a dimer, two P-boxes and a repeat of
half-site, with different orientations and spacings between
the half sites, are required. 2DBD-NR can interact as a
homodimer indicating that four P-boxes may be involved
in DNA binding, thus a novel mechanism of DNA bind-
ing, which requires two independent pairs of half-site
repeats, or four half-site repeats, each with unknown ori-
entations and spacing, are predicted to exist to allow
2DBD-NR to bind to target DNA cis-elements. The protein
of the first DBD, second DBD and the first DBD with sec-
ond DBD were tested for their ability to bind to a direct
repeat, an everted repeat and palindromes of the half-site
AGGTCA with 1–6 nucleotide spacings by electrphoretic
mobility shift assay (EMSAs). No binding compared to
controls was observed (data not shown). However, as the
flanking sequence of the AGGTCA motif and the spacing
between half sites also determines the protein binding to
the DNA element, further experiments will be performed
using different sets of templates and by determining DNA
binding sites using a PCR/EMSA-based approach.

Evolution of 2DBD-NRs
Metazoan phylogeny is still under debate [25-29]. In the
traditional view based on morphological and embryolog-
ical characteristics, Bilateria comprise Acoelomates (such
as flatworms), Pseudocoelomates (Nematodes) and Coe-
lomates (such as arthropods, mollusks and chordates)
[25,27,29] (Fig. 6A). A second view based on molecular
data (18S and 28S RNA genes, Hox genes, mitochondrial
gene order, concatenated mitochondrial genes and
myosin II heavy chain genes) support the Bilateria as com-
prising three clades: Deuterostomia, Lophotrochozoa and
Ecdysozoa [26,28,30-33]. In the molecular phylogeny
scheme, nematodes and arthropods are grouped into
Ecdysozoa, while flatworms and mollusks are grouped
into Lophotrochozoa (Fig. 6B). In an attempt to explain
the origin of the ancestor 2DBD-NR, both metazoan phy-
logenies were considered.

If the traditional phylogenetic scheme is correct, 2DBD-
NRs originated in a common ancestor of the Bilateria,
because 2DBD-NRs were found in both Acoelomates (flat-
worms) and Coelomates (mollusks and arthropods) (Fig.
6A). The 2DBD-NR was lost in Pseudocoelomates (nema-

todes) after the split of Pseudocoelomates and Coelo-
mates (Protostomes and Deuterostomes). As 2DBD-NRs
have not been found in Deuterostomes, they were lost in
the Deuterostome lineage after the split of Protostomes
and Deuterostomes (Fig. 6A).

If the molecular phylogeny hypothesis is correct, there
were two possibilities for 2DBD-NR origin. The 2DBD-NR
might originate in a common ancestor of Protostomes,
since 2DBD-NRs were identified both in Lophotrocho-
zoans (Platyhelminths and Molluscs) and in Ecdysozoans
(Crustaceans) (Fig. 6B). The other possibility is that
2DBD-NR might originate in a common ancestor of the
Bilateria and was lost in the Deuterostome lineage after
the split of Protostomes and Deuterostomes. 2DBD-NR is
absent in nematodes suggesting that this gene was lost
after the split of the nematodes and arthropods. In arthro-
pods, no 2DBD-NR was found in insects suggesting
2DBD-NR was lost after the split of insects and crusta-
ceans (Fig. 6B).

The phylogeny of the Platyhelminths has itself been under
debate (eg. [34-37]). The Platyhelminths have always
played a central role in hypotheses concerning metazoan
phylogeny and evolution. Recently, many platyhelminth
flatworms, previously regarded in the traditional phylog-
eny as basal bilaterians (Fig. 6A), are now placed within
the lophotrochozoan protostomates (Fig. 6B). Further-
more, the Acoelomorpha (Aceola + Nerertoderdermatida)
are no longer considered part of the Platyhelminths but
are still considered basal bilaterians [34-38]. Certainly,
further studies on nuclear receptor evolution in these taxa
can contribute to our understanding of the evolution of
the Metazoa and Bilateria, especially as nuclear receptors
have been identified in sponges [39], a group that is
hypothesized to have given rise to the hypothetical meta-
zoan ancestor [40].

The duplication of 2DBD-NRs was deduced from phyloge-
netic analysis employing the first and the second DBD
sequences as a unit. Maximum Likelihood method and
Bayesian inference were performed and the same result
was obtained (Fig. 7A). Since the results show that there is
only one Arthropod, Mollusk and Platyhelminth 2DBD-
NR orthologue, the duplication of the ancient 2DBD-NR
first occurred after the split of Arthropods, Mollusks and
Platyhelminths (Fig. 7B). The absence of a 2DBD-NR in
the insect and nematode lineages supports this hypothe-
sis, since it is likely that there was less of a chance for all
earlier duplicated genes to be lost in all the animals in
which no 2DBD-NR was found. The analysis also showed
that 2DBD-NRs underwent two rounds of duplication in a
common ancestor of the Platyhelminths that eventually
gave rise to three genes. The 2DBD-NRα and 2DBD-NRβ
are considered the most recently duplicated, since the
Page 7 of 15
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orthologue of 2DBD-NRγ is found in Crustacea and Mol-
lusca (Fig. 7A, B). Interestingly, a single gene is found in
the crustacean, one duplication event occurred in mol-
lusks and two duplications occurred in the Platy-
helminths.

S. mansoni bacterial artificial chromosome (BAC) clones
containing Sm2DBDα (BAC: CHOR-18I10) were identi-
fied by screening the S. mansoni CHOR-1 BAC library.
BAC clones containing Sm2DBDβ (BAC: SmBAC1
54O21) and Sm2DBDγ (BAC: SmBAC1 18F9) were iden-

Protein-protein interaction of Sm2DBDαFigure 5
Protein-protein interaction of Sm2DBDα. A. Yeast two hybrid assays show that S. mansoni 2DBD-NR (Sm2DBDα) can 
act as a homodimer but not as a heterodimer with SmRXR1 and SmRXR2. Yeast AH109 was transformed with 1 μg of the fol-
lowing co-transformats: 1) pGBK-Sm2DBDα-C-F/pACT-SmRXR1, 2) pGAD-Sm2DBDα/pAs-SmRXR1-C-F, 3) pGBK-
Sm2DBDα-C-F/pGAD-Sm2DBDα, 4) negative control plasmid pSV40/plamin C, 5) positive control plasmid pSV40/p53, 6) 
pGBK-Sm2DBDα-C-F/pACT-SmRXR2, 7) pGAD-Sm2DBDα/pAS-SmRXR2. Transformed yeast were plated on SD/-trp-leu 
and SD/-trp-his-leu-ade plus 3 mM 3-amino-1,2,4-triazole (3-AT). The results show that Sm2DBDα can form a homodimer but 
not a heterodimer with SmRXRs. B. GST pull down verified that the S. mansoni 2DBDα-E-F domain, in which the dimer inter-
face is located, can form a homodimer in vitro.
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Origin and duplication of 2DBD-NRs in metazoansFigure 6
Origin and duplication of 2DBD-NRs in metazoans. A. Deduction from traditional view of metazoan phylogeny. The 
common ancestor of 2DBD-NR originated from DBD duplication in a common bilaterian ancestor (red branch). The fact that 
2DBD-NRs are present in both Acoelomates and Coelomates supports this view. Star indicates duplication event(s). B. 
Deduction from the molecular view of metazoan phylogeny. The common ancestor of 2DBD-NR might originate in a common 
Protostome ancestor (red branch). The fact that 2DBD-NRs are present in both Ecdysozoa and Lophotrochozoa supports this 
view. Another possibility is that 2DBD-NR might originate in a common ancestor of the Bilateria and was lost in the Deuteros-
tome lineage after the split of Protostomes and Deuterostomes (blue branch). Ac: Acoelomates, Ar: Arthropoda, B: Bilateria, 
C: Chordates, Ce: Caenorhabditis elegans, Cn: Cnidarians, Co: Coelomates, De: Deuterostomes, Dp: Daphnia pulex, Dr: Dro-
sophila, E: Ecdysozoans, Ec: Echinoderms, Lg: Lottia gigantean, Lo: Lophotrochozoans, M: metazoa, Pl: Platyhelminths, Po: Porif-
erans, Pr: Protostomes, Ps: Pseudocoelomates, Se: Schmidtea mediterranea, Sm: Schistosoma mansoni, Ec: Echinoidea.  
indicates 2DBD-NR, the number of  indicates the number of 2DBD-NRs found in that taxon.
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Duplication of 2DBD-NRsFigure 7
Duplication of 2DBD-NRs. A. Maximum Likelihood phylogenetic tree derived from sequences in the first and the second 
DBD of 2DBD-NRs. Phylogenetic relationship was examined by the Maximum Likelihood method as described for Fig. 3. Sup-
port values for the tree were obtained by bootstrapping a 100 replicates and are indicated above each branch. Branches under 
the threshold value of 45 were shown as polytomies. Bayesian inference with the same methods as in Fig. 3 running 5 million 
generations. The PPs are shown below each branch or after the ML bootstrapping value separated by a slash. B. Figure shows 
that the common ancestor gene of 2DBD-NRs underwent duplication after the split of the Arthropods, Molluscs and Platy-
helminths. In Mollusks, the orthologue gene (γ) underwent a duplication giving rise to the α/β gene. In Platyhelminths, the 
orthologue gene (γ) underwent a duplication giving rise to a new gene, this new gene underwent a recent duplication to give 
birth to the two present genes (α and β genes). All three genes are present in the flatworm S. mansoni and the planarian S. med-
iterranea suggesting that the two rounds of 2DBD-NR duplication occurred in a common ancestor of the Platyhelminths.
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tified by blast searching databases of S. mansoni BAC ends
and verified by PCR. Sm2DBDα, Sm2DBDβ and
Sm2DBDγ were localized on chromosomes by FISH using
BAC DNA as the probe (Fig. 8). The results show that
Sm2DBDα localized to chromosome 1. Sm2DBDβ is
located on sex chromosomes Z and W and chromosome 3
indicating that there are two copies of Sm2DBDβ. How-
ever, there are other possibilities. It could be a fourth gene.
However, we do not think that it is a fourth gene as we
should have found it in our search of the genome
sequence. It might be a pseudogene or a second copy of
the 2DBDβ gene. We favor a second copy of the genes as
the probe hybridizes to the euchromatic region of the Z
and W. However, we cannot rule out that it is an artifact
due to hybridization of a repetitive sequence in the BAC
clone. Sm2DBDγ is localized on chromosome 4. In figures
9a and 9c a repeat sequence in the BAC clones that com-
monly hybridizes to the W chromosome is shown as well.
The results suggest that 2DBD-NRs duplicated among dif-
ferent chromosomes in a common ancestor of the Platy-
helminths.

Analysis of the NR superfamily, mainly in Drosophila and
vertebrates supports the hypothesis that evolution of
nuclear receptors occurred by two serial rounds of dupli-
cation [41-45]. The duplication of 2DBD-NRs suggests
that certain NR genes have undergone recent duplication
in invertebrates after the divergence of various clades
within the Bilateria. Our previous study of S. mansoni NRs
supports this hypothesis [6]. NRs in insects seem to have
undergone extensive gene loss. For example, a recently
identified estrogen receptor in the mollusk Aplysia califor-
nica [46] and two thyroid hormone receptors in the Platy-
helminth S. mansoni [6,47] are missing in the insect
genera Drosophila and Anopheles. To address the impor-
tance of gene duplication in NR evolution, more inverte-
brates NR complements await to be analyzed.

Developmentally Regulated Expression
Quantitative real-time RT-PCR was performed to evaluate
mRNA expression of Sm2DBDα, Sm2DBDβ and
Sm2DBDγ. Normalized gene expression (ΔΔCT) [48] was
standardized to the relative quantities of S. mansoni α-
tubulin. Sm2DBDα was detected in secondary sporocysts,
cercariae, 21-day schistosomules, 28-day schistosomules,
female and male worms. Sm2DBDβ was expressed rela-
tively high in eggs, secondary sporocysts, cercariae and
male stages. Sm2DBDγ was only detected in cercariae and
28-day worms. The results indicate that the three genes are
developmentally regulated and thus have a role in differ-
ent development stages (Fig. 9). It is of note that
Sm2DBDγ, the putative ancestral gene is only expressed in
2 of the developmental stages studied and that both
Sm2DBDα and Sm2DBDβ show sex-specific gene expres-
sion.

Conclusion
A protein modular structure containing an AB domain,
two DNA binding domains in tandem, a hinge region and
a ligand binding domain (A/B-DBD-DBD-hinge-LBD)
represents a novel NR modular structure, and is named
2DBD-NR. 2DBD-NRs were identified from mollusks,
arthropods (crustaceans) and flatworms. 2DBD-NRs may
act as homodimers. 2DBD-NRs share a common ancestor
gene which possessed an extra DBD that likely resulted
from a recombination event. 2DBD-NRs were found in
flatworms, mollusks and arthropods whose phylogeny is
still under debate [30,31,33] (Fig. 6A and 6B). Further
studies of 2DBD-NR gene subfamily may contribute to
our understanding of gene duplication as an evolutionary
force and to the phylogeny of the Metazoa. The conserved
zinc finger motifs in each of the two DBDs are the most
readily recognized features of 2DBD-NRs. The P-box
sequences in the first DBD and the second DBD give
members of the 2DBD-NR their unique feature. This fea-
ture makes 2DBD-NRs an interesting gene subfamily for
studies of metazoan phylogeny.

Methods
Isolation of 2DBD-NR cDNAs in the Platyhelminth S. 
mansoni
cDNAs encoding the entire open reading frame (ORF) of
three S. mansoni 2DBD-NRs (Sm2DBDα, Sm2DBDβ and
Sm2DBDγ) were isolated by a PCR strategy using a S. man-
soni female worm cDNA library (pBluescript SK (+/-)
phagemid) pool as template DNA [6,22]. The PCR prim-
ers for one end (either 5' or 3' end) were designed accord-
ing to a fragment encoding the previously identified DBD
region of these genes [6]. The primer for the other end
(either 5' or 3' end) was a vector universal primer (M13-
Rev and T3, or M13-For and T7 primers). PCR products
were separated on 1.2% agarose gels, ligated into pCR2.1
TOPO vector (Invitrogen) and sequenced. After the cor-
rect fragments were identified, the cDNA sequence con-
taining the 5' UTR, ORF and 3' UTR were obtained by
PCR. The cDNAs were shown to be related to a single
mRNA species by sequencing the PCR products obtained
from single-stranded cDNA using primers located within
the 5'UTR and 3'UTR of each gene.

Data mining
Whole genomic sequences (WGS) were extracted from the
GenBank public ftp site [49] (up to October 2005) and
imported into StarBlast program (DNASTAR) to build a
local database which was screened by tblastn using the
sequence of the first and second DBD of Sm2DBDα as the
query. Any sequence that contained a zinc finger structure
of the DBD (Cys-X2-Cys-X13-Cys-X2-Cys or Cys-X5-Cys-
X9-Cys-X2-Cys) was retained. Sequence walking was car-
ried out to assemble the contigs. Website databases of
GenBank (nr, EST_human, EST_mouse and EST_other
Page 11 of 15
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databases) [50], European Bioinformatics Institute [51]
and Swiss-Prot [52] were also mined by tblasn or blastp
using the same query sequence as above.

Phylogenetic tree construction
Phylogenetic trees were constructed from deduced
sequences of the DBD and the LBD, respectively.
Sequences were aligned with ClustalW [53]. Phylogenetic
analysis of the data set was carried out using the Maxi-
mum Likelihood method under Jones-Taylor-Thornton
(JTT) substitution model [54] with a gamma distribution
of rates between sites (eight categories, parameter alpha,
estimated by the program) using PHYML (v2.4.4)) [55].
Support values for the tree were obtained by bootstrap-
ping a 100 replicates. The same data set was also tested by
Bayesian inference using MrBAYES v3.1.1 with a mixed
amino acid replacement model + invgamma rates
(Huelsenbeck and Ronquist, 2001). The trees were started
randomly; four simultaneous Markov chains were run for
5 million generations for the DBD data set and 3 million
generations for the LBD data set, respectively. The trees
were sampled every 100 generations. Bayesian posterior
probabilities (PPs) were calculated using a Markov chain
Monte Carlo (MCMC) sampling approach implemented
in MrBAYES v3.1.1, with a burn-in value setting at 12,500

for DBD data set and 7,500 generations for the LBD data
set, respectively.

Protein-protein interaction
Yeast two-hybrid Assay: cDNA encoding Sm2DBDα was
inserted into the activation domain vector pGAD-T7 to
form pGAD-Sm2DBDα. Since Sm2DBDα-AB domain can
self-activate as previously determined (data not shown),
cDNA encoding Sm2DBDα C-F domain was inserted into
pGBK-T7 to form pGBK-Sm2DBDα-C-F. Previously con-
structed SmRXR1, SmRXR1-C-F and SmRXR2 in activa-
tion domain vectors (pACT-SmRXR1 and pACT-
SmRXR2), and in DNA binding domain vectors (pAS-
SmRXR1-CF and pAS-SmRXR2-AF) were employed
[17,18,56,57]. Yeast AH109 were transformed with 1 μg
of the following co-transformants: pGBK-Sm2DBDα-C-F/
pACT-SmRXR1, pGAD-Sm2DBDα/pAs-SmRXR1-C-F,
pGBK-Sm2DBDα-C-F/pACT-SmRXR2, pGAD-
Sm2DBDα/pAS-SmRXR2, pGBK-Sm2DBDα-C-F/pGAD-
Sm2DBDα, positive control plasmid pSV40/p53 and neg-
ative control plasmid pSV40/plamin C. Transformations
were performed using the Frozen-EZ transformation II kit
(Zymo Research). Transformed yeast were plated on SD/-
trp-leu and SD/-trp-his-leu-ade plus 3 mM 3-amino-1,2,4-
triazole (3-AT, an inhibitor to prevent the leaky expres-
sion of the HIS3 gene).

Chromosome localization of S. mansoni 2DBD-NRsFigure 8
Chromosome localization of S. mansoni 2DBD-NRs. S. 
mansoni 2DBD-NRs are located on different chromosomes as 
determined by FISH mapping using BAC DNA as a probe. a. 
Sm2DBDα (BAC: CHOR-18I10), b. Sm2DBDβ (BAC: 
SmBAC1 54O21), insert is the Z chromosome, c. Sm2DBDγ 
(BAC: SmBAC1 18F9). Chromosome numbers are indicated.

Quantitative real-time RT-PCR shows mRNA expression of S. mansoni 2DBD-NRsFigure 9
Quantitative real-time RT-PCR shows mRNA 
expression of S. mansoni 2DBD-NRs. Normalized gene 
expression (ΔΔCT) of Sm2DBDα, Sm2DBDβ and Sm2DBDγ 
were standardized to the relative quantities of S. mansoni 
tubulin. For graphical representation of expression, the nor-
malized expression was recalculated by dividing the expres-
sion level for each gene in each stage by the expression level 
of Sm2DBDβ from sporocysts, the highest expression level. 
egg: eggs, sp: daughter sporocysts, cer: cercariae, 21d: 21-day 
worms, 28d: 28-day worms, f: adult female worms and m: 
adult male worms.
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GST Pull-down: cDNA encoding Sm2DBDα E-F domain
was inserted into pGEX-4T-1 and pCITE-4a vectors to
form pGEX-Sm2DBDα-E-F and pCITE-Sm2DBDα-E-F,
respectively. E. coli AD 494 (DE3) pLys S competent cells
(Novagen) were transformed with pGEX-Sm2DBDα-E-F
and the GST fusion proteins were purified by passage over
a glutathione-Sepharose column according to standard
protocols. To produce 35S labeled protein, pCITE-
Sm2DBDα-E-F was transcribed and translated using the
Single Tube Protein System (Novagen) following the
manufacture's protocol. For pull-down experiments, a 50
μl reaction that contained 2 μl of the in vitro translation
reaction, Sm2DBDα-E-F GST fusion protein or GST pro-
tein (as negative control) affixed to glutathione-Sepharose
beads (about 2 μg) and binding buffer (50 mM Tris-HCl,
pH 7.5, 100 mM NaCl, 10% glycerol, 0.15% Nonidet
P40) was used [58]. The reaction was incubated overnight
at 4°C, washed three times with binding buffer and the
bound proteins were analyzed by 10% SDS-PAGE and
autoradiography.

BAC clone screening and localization of 2DBD-NRs on 
chromosomes of S. mansoni
S. mansoni BAC clones containing Sm2DBD-NRs were
identified by screening the S. mansoni CHOR-1 BAC
library with methods previously described [59] or by blast
searching databases of S. mansoni BAC end sequences in
TIGR [60] and verified by PCR. Fluorescent in situ hybrid-
ization (FISH) was performed on S. mansoni sporocyst
metaphase chromosome spreads with BAC DNAs that
each contained one of the three S. mansoni 2DBD-NRs
(Sm2DBDα, Sm2DBDβ and Sm2DBDγ). FISH was per-
formed using techniques previously described [61,62].

Quantitative real-time RT-PCR
mRNA expression levels of three Sm2DBD-NRs
(Sm2DBDα, Sm2DBDβ and Sm2DBDγ) were tested in
eggs, daughter sporocysts, cercariae, 21-day, 28-day, adult
female and adult male worms. A Puerto-Rican strain of S.
mansoni was maintained in snails(Biomphalaria glabrata)
and Syrian golden hamsters (Mesocricetus auratus). Cercar-
iae were released from infected snails and harvested on
ice. Schistosome worms of different ages (21–45 day-old)
were harvested from infected Syrian golden hamsters. Sin-
gle-sex worms were obtained by separating adult worm
pairs. Parasite eggs were obtained from livers of infected
hamsters. Total RNA was extracted from the above devel-
opmental stages using TRIzol reagent (Invitrogen). All
RNA samples were treated with RNase-free DNaseI (RQ1
DNase; Promega) and reverse transcribed using a random
hexamer and SuperScript Reverse Transcriptase II (SSRTa-
seII; Invitrogen) as previously described [6]. Primers spe-
cific for Sm2DBDα (forward: 5'-
CCGCTGCATCAATCACCTATT-3', reverse: 5'-TGCG-
CAAAATGTAGCCGAT-3'), Sm2DBDβ (forward: 5'-

TGCACTGACTCCCACCACA-3', reverse: 5'-AGCAGT-
GGATGACGTCGGA-3')and Sm2DBDγ (forward: 5'-GAA-
CATCGTGAATCAATTTTACATTCAG-3', reverse: 5'-
ATGTACTGTTTCATTGCATTCATTTG-3') were designed
using Primer Express Program (Applied Biosystems™).
Primers specific for S. mansoni α-tubulin [GenBank:
M80214] were according to [63]. Reverse-transcribed
cDNA samples were used as templates for PCR amplifica-
tion using SYBR Green Master Mix® (Invitrogen) and BIO-
RAD IQ™5 Real-Time PCR Detection System. The
efficiency for each primer set is evaluated and recorded
during assay development by iQ5 application (cDNA
diluted to x1, x10, x100 and x1000 folds). Normalized
gene expression (ΔΔCT) [48] of Sm2DBDα, Sm2DBDβ
and Sm2DBDγ were standardized to the relative quantities
of S. mansoni tubulin using BioRad IQ™5 Optical System
software V1.1 with the Normalized Expression calcula-
tions implemented in iQ5. For graphical representation of
the expression, the normalized expression was recalcu-
lated by dividing the expression level of each stage of the
all gene by the highest expression level.

List of abbreviations
2DBD-NR: nuclear receptor containing two tandem DNA
binding domains, BAC: bacterial artificial chromosome,
DBD: DNA-binding domain, FISH: Fluorescent in situ
hybridization, LBD: ligand binding domain, NR: nuclear
receptor, WGS: whole genomic sequence.
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