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Abstract

Background: Stowaway elements are short, non-autonomous DNA transposons categorized as
miniature inverted-repeat transposable elements (MITEs). The high MITE copy number in grass
genomes suggests an active history of amplification and insertion, but ongoing MITE activity has only
rarely been seen, and ongoing Stowaway activity has never been observed. Thus, a phylogenetic
perspective on presence vs. absence of elements in an aligned data set can provide valuable
historical insights into the dynamics of MITE acquisition and loss.

Results: A Stowaway-like element resides within the fourth intron of a f-amylase gene in
representatives of five genera in the wheat tribe, Triticeae. Its presence vs. absence was examined
with reference to the -amylase gene tree topology, and in light of sequence comparisons of the
B-amylase elements to Triticeae Stowaway elements in the Entrez nucleotide database. Among the
sequences lacking the element, there are five distinct putative excision footprints (one widespread
and four restricted to unrelated lineages) and two flanking deletions. The sequences that do contain
elements are polyphyletic on the B-amylase tree, and their elements are divergent at the sequence
level. The B-amylase elements do not form a monophyletic group relative to other Stowaway
elements in Entrez; most are more similar to elements from other loci in other Triticeae genomes
than they are to one another.

Conclusion: Combined, the phylogenetic distribution, sequence variation, and Entrez database
comparisons indicate that a Stowaway-like element has undergone multiple deletions from and
insertions into the same site in -amylase intron 4 during the history of the tribe. The elements
currently at the site represent multiple, distinct lineages that transcend generic boundaries. While
patterns of Stowaway polymorphism across a phylogenetic data set do not allow evolutionary
mechanisms to be inferred with certainty, they do provide insights into the dynamics of element
evolution over an extended time scale. The historical perspective provided by a phylogenetic
approach is complementary to the few studies in which ongoing MITE activity has been
documented.
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Background

Transposable elements (TEs) are divided into two main
classes depending on their mode of transposition [1]:
class I elements transpose through an RNA intermediate
using a reverse transcriptase, while class II elements trans-
pose through a DNA intermediate. Class II elements are
further classified as either autonomous elements, which
include a gene encoding a transposase, or non-autono-
mous elements, which do not encode a functional trans-
posase. Miniature inverted-repeat (IR) transposable
elements (MITEs) are members of a highly repetitive cate-
gory of class II non-autonomous elements, and are
extremely abundant in plant genomes [2-4]. These small
(<500 bp) elements are recognized by their by short ter-
minal inverted repeats (TIRs), and 2-3 bp target site
duplications (TSDs).

MITEs are further grouped into families based on differ-
ences among their TIR sequences and TSDs, and on their
relationships to known autonomous elements from
which the families appear to have been derived [5]. The
subset of MITEs categorized as Stowaway elements [6]
share similar 10-bp TIRs (consensus CTCCCTCCRT), a 2-
bp target site preference (5'-TA-3'), and the potential to
form secondary structures [7,8]. Transposition of Stowa-
way elements is hypothesized to be associated with auton-
omous mariner-like elements based on their TIR
similarities [8], on the discovery of Stowaway elements
with open reading frames that share sequence similarity
with known mariner transposases [9-11], and on the
observed interaction between mariner-like transposases
and Stowaway MITEs in rice [12].

Because very few MITEs have been observed to be actively
transposing, the dynamics underlying their gain, loss, and
high copy number are not well understood [5]. Aligned
sequence data, however, can help clarify certain aspects of
MITE evolution over a longer time scale [13]. The present
study uses phylogenetic information to analyze patterns
of sequence diversity and presence vs. absence of Stowa-
way-like elements in the fourth intron of a f-amylase gene,
using aligned sequences from a broadly representative
sample of the wheat tribe, Triticeae. Two main observa-
tions reveal a complex history of multiple losses and mul-
tiple gains of the element. First, the sequence variation
adjacent to the empty sites, and its phylogenetic distribu-
tion, suggests numerous independent losses. There are
five distinct putative excision footprints: one that is wide-
spread throughout the sample, and four that are restricted
to unrelated lineages. Two additional empty sites, in unre-
lated sequences, are associated with deletions flanking
intron sequence. Second, the occurrence of divergent ele-
ments at the same site in the gene, and their phylogenetic
distribution, suggest multiple acquisitions of elements at
the site. The sequences that have elements, representing
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five Triticeae genera, are polyphyletic on the B-amylase
gene tree. More strikingly, four of the five B-amylase ele-
ments show greater similarity to elements in other genes
and in other Triticeae genomes than they do to one
another; i.e., the elements at this site do not form a mono-
phyletic group relative to other known Stowaway ele-
ments. Taken together, these sequence comparisons
highlight the complex evolutionary history of Stowaway-
like elements at this locus.

Results

Short, palindromic insertions were found in B-amylase
intron 4 in representatives of five Triticeae genera (Fig. 1).
They appear to be Stowaway elements, based on their size,
their conserved 10-bp terminal repeats, their palindromic
structure, and their TA insertion site [7]. From sequence
information alone, however, it is impossible to determine
whether these specific palindromic structures behave like
true Stowaway elements, i.e., whether they have the poten-
tial to be excised by mariner-like transposases, or whether
they occur in the very high copy numbers characteristic of
Stowaway elements. Based on results of searches of the
Entrez nucleotide database (see below), the five elements
vary in their frequency of occurrence at non-homologous
sites in Triticeae genomes, yielding between 3 and 81 hits
in the database. However, while Stowaway elements are
collectively numerous, there is no reason to assume that
every Stowaway variant will have a very high copy number.
This is a highly dynamic group of rapidly-evolving
sequences, and their history (in rice, at least) appears to
have involved several temporally-separated waves of
amplification [8]. Thus, abundances of different Stowaway
variants are expected to vary widely (and change through
time).

Although the characteristic TIRs and TSDs of the five f-
amylase elements are easy to align, the regions between
the TIRs (excluded from Fig. 1 alignment) are variable in
both length and sequence (Fig. 2). Australopyrum retrofrac-
tum and Au. velutinum have nearly identical 158-bp ele-
ments (98.7% sequence identity), Aegilops comosa
contains an 83-bp element, Peridictyon sanctum has an 82-
bp element, Henrardia persica has a 71-bp element, and
Crithopsis delileana contains a 100-bp element. (Aegilops
uniaristata contains a 38-bp partially degraded element
that is 94.7% similar to the 5' end of the Ae. comosa ele-
ment.) The Ae. comosa and P. sanctum elements are easy to
align (1 bp length difference; 89% identity), as are the C.
delileana and H. persica elements, though these differ in
length (29 bp length difference, 94.4% identity excluding
gaps; Fig. 2). Other pairwise combinations of the -amy-
lase elements cannot be unambiguously aligned (Fig. 2).

Most of the B-amylase sequences show evidence of ele-

ment excision and/or degradation, including several dis-
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Aegilops bicornis
Aegilops caudata a—c

+ + - TCTCAGTATATTCTA
« . . TCTCAGTATATTCTA

GTAGACAAGATTTGAAAAATC. . .
GTAGACAAGATTTGAAAAATC. . .

Aegilops comosa a

+ «  TCTCAGTACATTATACTCCCTCCGA // 63 bp // TCGGAGGGAGTA----GTAGACAAGATTAGAAAAATC. ..

Aegilops comosa g « « « TCTCAGTATATTATA. -GTAGACAAGATTACAARAATC. . .
Aegilops tauschii . . . TCTCAGT GAAAAATC. ..
Aegilops uniaristata . . . TCTCAGTATATTATACTCCCTCCGA // 29 bp // ==—————mmmmmmmeeee AGACAAGATTAGAAAAAGC. . .
Agropyron cristatum « « . TCTCAGTATATTC TA GTAGACAAGATTAGARAATTC. ..

Australopyrum retrofractum
Australopyrum velutinum
Crithopsis delileana

.+ . TCTCAGTATATTATACTCCCTCCGT // 138 bp // ACAGAGGGGGTACTCAGTAGACAAGATTAGAARRATC. . .
. . . TCTCAGTATATTATACTCCCTCCGT // 138 bp // ACAGAGGGAGTACTCAGTAGACAAGATTAGARARATC.. .
. . .TCTCAGTATGTCATACTCCCTCCAT // 80 bp // ACGGAGGGAGTA-—--GTAGACAAGATTACAAAAATC. . .

Dasypyrum villosum 1,2 « + . TCTCAGTATATTATA GTAGARAAAAATGTAAAAATC. . .
Eremopyrum bonaepartis . « . TCTCAGTATATTC TA. GTAGACAAGATTAGARAATTC. . .
Eremopyrum distans « + . TCTCAGTATATTCTA GTAGACAAGATTAGAARATTC. . .
Eremopyrum orientale « « . TCTCCGTATATTC TA. GTAGACAAGATTAGAAAATTC. ..
Henrardia persica . . . TCTCAGTATATCATACTCCCTCCGT // 51 bp // ACGGAGGGAGTA----GGAGATAAGATTAGAAAAATC...
Heteranthelium piliferum . + . TCTCAGTATATTATA GTAGACAAGATTAGAAAAATC, . .
Hordeum brevisubulatum a,d ... TCTCAGTATATTATA GTAGACAAGATTACAAAAATC. ..
Hordeum bulbosum . .. TCTCAGTATATTATA GTAGACAAGATTACAAAAATC. ..
Hordeum californicum « « « TCTCAGTATATTATA GTAGACAAGATTACAAAAATC. ..
Hordeum jubatum la,b; 2a,c .« . TCTCAGTATATTATA GTAGACAAGATTACAAAAATC. . .
Hordeum violaceum . .. TCTCAGTATATTATA GTAGACAAGATTACAAARAATC. . .
Peridictyon sanctum « « /TATCAGTATATTATACTCCCTCCGA // 62 bp // TCGGAGGGAGTA----GTAGACAAGATTAGAAAAATC. ..
Psathyrostachys fragilis « » . TCTCAGTATATTA GACAAGATTAGAAAAATC. . .
Psathyrostachys juncea « « « TCTCAGTATATTATATTC- AGTAGACAAGATTAGARAAGTC. . .
Pseudoroegneria spicata 1 . « . TCTCAGTATATTATACTCC. AGTAGACAAGATTAGAAATATA. . .
Pseudoroegneria spicata 2,4,6 ...TCTCAGTATATTATACTCC. AGTAGACAAGATTAGAAAAATA. . .
Pseudoroegneria stipifolia « « . TCTCAGTATATTATA GTAGACANGATTAGAAAAACA. ..
Secale anatolicum . . . TGTCAGTARATTATG GTAGACAAGATTAGAAAAATC. . .
Secale cereale a,b « «  TCTCAGTAAATTATG GTAGACAAGATTAGARAAATC. . .
Secale montanum « + . TCTCAGTAAATTATG- GTAGACAAGATTAGAAARAATC. ..
Taeniatherum caput-medusae 1—4 ...TCTCAGTATATTATA: GTAGACAAGATTACAAAAATC. ..
Thinopyrum bessarabicum . . .TATCAGTATAGTATA GTAGACAAGATTAGAAAAATC. ..
Thinopyrum elongatum . .. TCTCAGTATATTATACT- AGTAGACAAGATTACAAAAATC. ..
Triticum baeoticum « + « TCTCAGTATATTATA GTAGAAAAGATTGCAAAAATC. . .
Triticum monococcum . .. TCTCAGTATATTATA GTAGAAAAGATTGCARAAATC. ..
Bromus tectorum + + . GCTCAGTTTATTACA GTAGACAAGATTTGAAAAATC. . .

et

Figure |

Stowaway

Alignment of the region of 3-amylase intron 4 containing Stowaway elements. The 10-bp terminal repeats are
shown in underlined blue boldface. A widespread putative excision footprint is shown in underlined black italics; other hypoth-
esized footprints are shown in underlined red italics. The lengths of the internal portions of the elements are given within the
double slashes. Ae. uniaristata contains a partial element similar to the 5' end of the element from Ae. comosa. Where relevant,
numbers after taxon names distinguish individuals within species, and letters distinguish cloned sequences from within individu-

als.

tinct footprints that are consistent with the proposed
mechanism of excision of a rice Tc1/mariner element in an
experimental yeast system [14]. Nearly all of the empty
sites, and all of the element-containing sites, are flanked
by TA...GTA (Fig. 1, black italics). In addition to this wide-
spread footprint, sequences representing four genera have
distinct excision footprints consisting of short TIR frag-
ments (Fig. 1, red italics). These flank empty sites in Pseu-
doroegneria  spicata (footprint ~ TACTCC...AGTA);
Psathyrostachys juncea (TATCC...AGTA); Thinopyrum elong-
atum (TACT...AGTA); and a now-occupied site in Austral-
opyrum retrofractum and Au. velutinum (TACTC...AGTA).
Finally, two sequences lack the element along with por-
tions of the intron flanking the empty site (Fig. 1), includ-
ing Aegilops tauschii (missing 6 bp 5' and 10 bp 3' of the
putative insertion site), and Psathyrostachys fragilis (miss-

ing only the original TA insertion site). It is not clear
whether the deletions are associated with element loss.

Although the f-amylase elements differ from one another,
BLAST searches of the Entrez nucleotide database reveal
that each shows marked similarity to one or more putative
Stowaway elements at other loci in other Triticeae
genomes (Table 1). The Australopyrum elements yield 81
close matches (with "close match" defined here as a
sequence that covers 85-100% of the query sequence with
85-100% identity); this is the largest number of close
matches obtained. These are found at multiple loci in the
genomes of barley, wheat, rye, and in two diploid wheat
progenitors, thus illustrating the broad distribution of this
particular element type throughout Triticeae genomes.
Three of these are shown (Fig. 3a, Table 1), including one
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Aegilops

Peridictyon

Henrardia

Crithopsis

Figure 2

Alignment of the -amylase intron 4 Stowaway elements. The terminal portions (double arrows) of all five elements
are alignable, but straightforward alignments of the central portions are possible only between Aegilops and Peridictyon, and
between Henrardia and Crithopsis. Plain lines above the alignment correspond to the 10-bp TIRs.

near a powdery mildew resistance locus (M1a) in barley
(same length, 89.2% identity); one near an ADP-glucose
pyrophosphorylase gene (AGPase) in wheat (4 bp length
difference, 89.9% identity); and one near a phosphoglyc-
erate kinase gene (Pgkl) in rye (4 bp length difference,
89.9% identity). Similar elements were also found in
some diploid wheat relatives (not shown), including:
Triticum monococcum (AY951945, reverse complement
23114-23270; 1 bp length difference, 87.3% identity)
and Aegilops tauschii (AY534123, 69955-70115, 4 bp

length difference, 90.4% identity). Of only three close
matches to the Ae. comosa f-amylase element, the closest
is the P. sanctum B-amylase element (1 bp length differ-
ence, 89% identity), but the closest match (out of six) to
the P. sanctum element is from barley, near a hypersensi-
tive-induced response (HIR) gene (equal in length and
93.9% identity; Fig. 3b, Table 1). Of the 22 close matches
to the H. persica element, one of the closest is in a barley
gene for a putative RNA binding protein (1 bp length dif-
ference, 95.8% identity; Fig. 3¢, Table 1). The C. delileana

Table I: BLAST search results for f-amylase Stowaway-like elements; see Fig. 4 for alignments.

B-amylase element

BLAST matches to B-amylase elements!

Species, Genbank Genbank Accession, Genome Location E-value? Length Sequence
Accession, Range Range Difference Similarity3
Australopyrum velutinum AF427791 307-150 Hordeum vulgare Powdery mildew 3 x |04 0 89.2% (141/158)
AY821693, 1218-1375 resistance locus

Australopyrum velutinum AF536819 545-385 Triticum aestivum ADP glucose | x 1035 4 89.9% (142/158)
AY821693, 1218-1375 phosphorylase gene

Australopyrum velutinum AF343493 1375-1215 Secale cereale 3-phosphoglycerate kinase 2 x 10-3! 4 89.9% (142/158)
AY821693, 1218-1375 gene

Aegilops comosa AY821714 1200-1281 Peridictyon sanctum 3-amylase gene 4% 1012 0 89.0% (72/82)
AY821690, 1225-1307

Aegilops comosa AY 137517 5906-5825 Hordeum vulgare Hypersensitive-induced 2 x [0-!! | 86.6% (71/82)
AY821690, 1225-1307 reaction protein gene

Peridictyon sanctum AY137517 5825-5906 Hordeum vulgare Hypersensitive-induced | x 1027 | 93.9% (77/82)
AY821714, 12001281 reaction protein gene

Henrardia persica AY661558 108590 Hordeum vulgare Putative RNA binding 2 x |00 12 95.8% (68/71)
AY821703, 1195-1265 108671 protein gene

Henrardia persica AY821694 1203-1302 Crithopsis delileana B-amylase gene I x 105 29 94.4% (67171)
AY821703, I 195-1265

Crithopsis delileana AY133251 999-907 Hordeum vulgare Starch synthase Il gene 6 x 10-18 7 92.5% (86/93)

AY821694, 12031302

IIn most cases, numerous matches were found (see Results); examples of the closest matches are shown here.
2The number of comparable matches expected to be found in the Entrez database by chance alone. Very low E-values can be based on partial
matches, and thus do not correspond precisely to sequence similarity.

3Gaps are excluded from sequence similarity estimates between elements that differ in length.
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a. Australopyrum velutinum element in B-amylase intron 4 (AY821693, 1218-1375) vs.

Hordeum vulgare element near Mla locus (AF427791, reverse comp. 307-150)
CTCCCTCCGTTCCTAAATATAAGTCTTTTTAGAGATTTGAATATGGACTACATACGGATGAATATAGACGTATTTTAGAGT

A o o L

CTCCCTCCGTTCCTAAATATAAGTCTTTTAAGAAATTTCACTACAGACTATGTACGGATGTATATAGACATACTTTAGAGT

GTAGATTCACTCATTTTGCTCCGTATGTAGTCCATATTAGAATCTCTAAAAAGACTTATATTTAGGAACAGAGGGAG

LECCEVPEPEPEEEEEE PP e e et e Fer e e e Py

GTAGATTCACTCATTTTGCTCCGTATGTAGTCTATAGTTGAATCTCTTAAAAGACTTGTATTTAGGAACGGAGGGAG

Australopyrum velutinum element in B-amylase intron 4 (AY821693, 1218-1375) vs.

Triticum aestivumelement near AGP.S.1a gene (AF536819, reverse comp. 385-545)
CTCCCTCCGTTCCTAAATATAAGTCTTTTTAGAGATTTGAATATGGACTAC---ATACGGATGAATATAGACGTATTTTAG

L L LCLLEEEEEEEEE TECEE PR PR 0 L FEEEE TEEEEETEE FEEEEL T

TTTCTTCCGTTCCTAAATACAAGTCTTTTTAGAGATTTCAA-ATGAACTACCATATACGGATGTATATAGACGTATTTTAG

AGTGTAGATTCACTCATTTTGCTCCGTATGTAGTC-CATATTAGAATCTCTARRAAGACTTATATTTAGGAACAGAGGGAG
CECVVRPELEEEEEE PR E e Ceeee 0 e L FEEEee CEEEEE e e 1

AGTGTAGATTCACTCATTTTGCTCCGTATATAGTCACTTGTTGAAATCTICTACAAAGACCTATATTTAGGAACGGAGGGAG

Australopyrum velutinum element in f-amylase intron 4 (AY821693, 1218-1375) vs.

Secale cereale element in Pgk-1 gene (AF343493, reverse comp. 1215-1375)
CTCCCTCCGTTCCTARATATAAGTCTTTTTAGAGATTTGAATATGGACTACA -~ ~TACGGATGAATATAGACGTATTTTAG

RN R NN e e e Ay

CTCCCTCCGTTCCTAAATATAAGTCTTTTTAGACATTTCAA-ATGGACTACAACATATAGACATATGTAGACATATTTTAG

AGTGTAGATTCACTCATTTTGCTCCGTATGTAGTC-CATATTAGAATCTCTAAARAGACTTATATTTAGGARCAGAGGGAG
CEVEPEEEE PEEEEE R e e e et ee EEee e e P e e e e e

AGTGTAGATACACTCATTTTGCTCCGTATGTAGTCACTTGTTGGAATCTCTAGAAAGACTTATATTTGGGAACAGAGGGAG

b. Aegilops comosa element in f-amylase intron 4 (AY821690, 1225-1307) vs.
Peridictyon sanctum element in p-amylase intron 4 (AY821714, 1200-1281) vs.
Hordeum vulgare element near Hv-hir3 gene (AY137517, 5825-5906)
CTCCCTCCGATCCAAAATAAGCGTCGTGGTTTTACTTCAAAACTCTCACTCAAACCACGATGCTTATTTTGGATCGGAGGGAG
R e R

CTCCCTCCGATCCAAAATAAGCGTCGTGGTTTTAGTTCAAATTTGA-ACTAAAACCATGACGCTTATTTTAGATCGGAGGGAG

CECLLCRTECEEEEE e PEEE PP PP e FEEP et et TP T

TTCCCTCCGATCCAAAATAAGTGTCGTGGTTTTAGTACAAATTTGA-ACTAAAACCATGACACTTATTTTGGATCGGAGGGAG

¢. Hordeumvulgare in MLL gene intron (AY661558, 108590-108671) vs.
Henrardia persica element in B-amylase intron 4 (AY821703, 1195-1265) vs.
Crithopsis delileana element in p-amylase intron 4 (AY821694, 1203-1302) vs.
Hordeum vulgare element in SSIl gene (AY133251, reverse comp. 907-999)
CTCCCTCTGTCCCAAAATAAGTGACTCAACTTTGTACTAAAGTTAGTATARAGT TG~ === === —————eeu -AGTCACTTAATTTGGGACGGAGGGAG

FEEREEE PEEEEEEEEEEREEEE R Ry 1 (T CELCEEEEE FEEEEETEEEE L

CTCCCTCCGTCCCARAATAAGTGACTCAACTTTATACT - ———~— AAAGTTG AGTCACTTATTTTGGGACGGAGGGAG

CEEECERE FEERREEEEEREEE PREEEeeer 1 [ RN AR RARRRRARRA RN

CTCCCTCCATCCCRAAAATAAGTGTCTCAACTTTGTACTAACTTTAGTACARAGTTGTACTAAGCTCAAGACACAAGACACTTATTTTGGGACGGAGGGAG

FEEPEEEE FEEEEEEEEEE FEEEee e e e e e e e b eeer e e e Eeeeeeer Fer CEEEEEEEREERREE PEeeenn

CTCCCTCCGTCCCAAAATAACTGTCTCAACTTTGTACTAGCTCTAGTACAAAATTGTACTACGCTCA======~. -AGACACTTATTTTGGAACGGAGGGAG

Figure 3

BLAST search results. BLAST matches (black font) to each of the five distinct elements in -amylase intron 4 (red or blue
boldface font). a. Numerous close matches were found to the Australopyrum element; those shown are within or near three dif-
ferent loci in three different Triticeae genera: a powdery mildew resistance locus in H. vulgare; an ADP glucose phosphorylase
gene in T. aestivum; and a 3-phosphoglycerate kinase gene in S. ceredle. b. The closest match to the Ae. comosa f-amylase ele-
ment (blue) is the P. sanctum B-amylase element (red); the closest match to the P. sanctum element is near a Hordeum hypersen-
sitive-induced reaction protein gene (black). c. The H. persica (blue) and C. delileana (red) -amylase elements are similar in
sequence but differ in length by 29 bp. The H. persica element is more similar in both length and sequence to a Hordeum ele-
ment near a putative RNA binding protein gene (black, top line); the C. delileana 3-amylase element is more similar in length,
though slightly less similar in sequence, to an element in a Hordeum starch synthase Il gene (black, bottom line). Table | pro-
vides details about the length and sequence comparisons shown here.
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element is 95% identical to the H. persica element (Fig. 3¢,
Table 1), but is a full 29 bp longer. Because of the length
difference, it is not among the 14 closest matches as
defined above; one of these is near a barley starch syn-
thase (SSII) gene (7 bp length difference, 92.5% identity;
Fig. 3¢, Table 1).

The phylogenetic analysis of the P-amylase data set
yielded a single ML tree with a score of -InL = 8846.175
(Fig. 4) [15]. The branching pattern is consistent with the
recovery of a single B-amylase homolog, in that most of
the genera from which multiple accessions have been
sampled form monophyletic groups (Secale, Austral-
opyrum, Dasypyrum, Hordeum, Pseudoroegneria, and Taenia-
therum); this pattern is indicative of orthology. Most of the
non-monophyletic genera on this tree are non-mono-
phyletic on other gene trees (Eremopyrum, Aegilops, and
Thinopyrum) [15]; thus, their non-monophyly on the B-
amylase tree does not suggest paralogy. The polyphyletic
placement of H. jubatum reflects its tetraploid origin. The
most unexpected result is the placement of sequences
from Aegilops comosa and Ae. uniaristata far from their
expected relatives in Aegilops and Triticum. These outlying
copies were not recovered from any other Aegilops species,
despite repeated attempts. A duplication event deep
enough in the tree to explain the two Aegilops outliers as
paralogs (i.e., a basal duplication) should be apparent in
most, if not all, of the genera. Thus, as discussed earlier
[15], the Aegilops outliers are more consistent with intro-
gression than with ancestral duplication. The interpreta-
tion of the B-amylase tree with respect to the evolution of
the Triticeae, and relative to other molecular phylogenetic
analyses of the tribe, has been discussed [15]; the present
paper focuses on its significance with regard to the evolu-
tion of the Stowaway elements in intron 4.

Sequence variation among empty sites and among com-
plete elements, and their distributions on the B-amylase
tree (Fig. 4), suggest a complex history of acquisition and
loss. A single early acquisition of an element would
explain the broad phylogenetic distribution of footprints
and elements throughout the tribe, but would require as
many as 11 independent losses to explain the phyloge-
netic distribution of the widespread TA...GTA footprints,
in addition to the four losses leaving distinct footprints
(Pseudoroegneria spicata, Psathyrostachys juncea, Thinopyrum
elongatum, and Australopyrum retrofractum and Au. veluti-
num). A scenario involving multiple insertions into the
same site would require as many as five independent
acquisitions, or at least three if nodes with low bootstrap
support are discounted. If all of the sequences that may
have formerly had elements were included (those with
putative footprints or deletions of the flanking intron;
labeled in Fig. 4), then additional acquisitions (followed
by excisions) must be inferred. Note that this scenario
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Figure 4

Phylogenetic distribution of Stowaway elements and
empty sites. Maximum-likelihood (ML) estimate of Trit-
iceae relationships based on a previous analysis of $-amylase
gene sequences [15], showing the phylogenetic distribution
of intron 4 Stowaway elements and excision sites. Where rel-
evant, numbers after taxon names distinguish individuals
within species, and letters distinguish cloned sequences from
within individuals. Bayesian posterior probabilities > 0.95 are
shown above nodes, and ML bootstrap support > 75% is
shown below nodes. Blue boxes indicate partial and full ele-
ments; element lengths are given after the corresponding
taxon names. Green boxes indicate sequences with putative
excision footprints other than the widespread TA..GTA
footprint (Fig. 1). The blue and green box indicates an inser-
tion next to an existing footprint. Yellow boxes indicate
sequences lacking the element along with portions of the
flanking intron.

would explain only the phylogenetic pattern, and would
not account for the sequence differences among the ele-
ments, or their similarities to Triticeae Stowaway elements
at non-orthologous loci.

Discussion

The utility of phylogenetic information for understanding
the evolutionary dynamics of Stowaway excision was dem-
onstrated in another example from the Triticeae, which
provided evidence for multiple losses of an element from
a gene encoding a disrupted meiotic cDNA 1 (DMC1)
protein [13]. The present study, based on elements and
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excision footprints in the fourth intron of a B-amylase
gene, provides evidence that both losses and gains have
occurred repeatedly in this intron.

In general, multiple independent losses of Stowaway ele-
ments seem feasible, and even likely. First, the elements
are palindromes, and DNA palindromes have long been
recognized for their instability. Their tendency to form
hairpin structures appears to facilitate slipped-strand mis-
pairing by bringing short, terminal direct repeats into
close proximity [16-18]. Thus, their inverted-repeat struc-
ture may facilitate their degradation. Second, Stowaway
elements could be excised during transposition. Although
they do not encode a transposase, the resemblance
between the TIRs and subterminal sequences of Stowaway
MITEs and mariner-like class II elements [5,8], and the
demonstrated physical interaction between mariner-like
transposases and Stowaway MITEs from rice [12], support
a mechanism of Stowaway excision by a mariner-encoded
transposase [19]. No Stowaway elements have been dem-
onstrated to be currently active, but the DMC1 [13] and B-
amylase gene data sets, both of which sample broadly
throughout the Triticeae, reveal losses occurring over the
time scale of the tribe's history, which by one estimate
began between 13 and 25 million years ago [20]. The half-
element in Ae. uniaristata shows a clear case of degrada-
tion of an element similar to the one in Ae. comosa. Oth-
erwise, the inferred sites of element loss fall into two
categories: (a) five different apparent excision footprints,
consisting of 2-4 bp adjacent to the 5' terminal TA dupli-
cation, and 1-2 bp adjacent to the 3' TA duplication; and
(b) two small deletions of the intron sequence flanking
empty element sites.

Because active Stowaway excision has not been observed,
and MITE excision in general observed only rarely, exactly
what a Stowaway excision footprint should look like is not
known. Transposition footprints from the rice MITE
mPing, the only group of MITEs observed to be actively
transposing, have been characterized in several recent
studies [21-24]. However, mPing is associated with a dif-
ferent transposase superfamily (PIF/Harbinger) than is
Stowaway (Tc1/mariner); thus, mPing footprints might not
be good predictors of Stowaway footprints. Here, infer-
ences are drawn from historical losses of Stowaway from a
different Triticeae gene [13], and from observed excisions
of Osmar5, a rice Tc1/mariner element, in an experimental
yeast system [14]. The inferred Stowaway footprints from
the Triticcae DMC1 gene [13] are similar to those
observed in the B-amylase dataset, with 1-4 bp TIR frag-
ments internal to the terminal TA duplications. Like the -
amylase dataset, the DMC1 dataset includes several dis-
tinct footprints at orthologous sites within the gene; these
were interpreted as evidence of either multiple excisions,
or evolution of an ancestral footprint following a single
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excision event [13]. The putative footprints from both the
DMCI1 and B-amylase data sets are consistent with the
proposed mechanism of excision of the rice Osmar5 ele-
ment in yeast [14], which also yielded footprints with 1-
4 bp TIR fragments adjacent to the TA duplications.
Whether or not the two B-amylase sequences with dele-
tions adjacent to the empty sites represent additional
cases of element loss is not clear, although one case of
Osmar5 excision from yeast did involve deletions of flank-
ing sequence [14].

While multiple deletions of a transposon are to be
expected, there also appear to have been multiple inde-
pendent insertions of Stowaway elements into ortholo-
gous sites within intron 4. This would explain their
polyphyletic distribution on the B-amylase tree, their
sequence diversity, and their marked similarities to ele-
ments at non-homologous sites in other genomes. In
addition, the Australopyrum sequences provide clear evi-
dence of multiple insertions at the same site in the same
sequence: the current full element was inserted at the
same TA recognition site as an earlier element, which has
since been excised leaving a footprint. Transposons do not
generally integrate into random sites [25,26]; not only do
they insert at specific target site sequences, but available
target sites are not selected at random. Some Oryza and
Zea MITEs, for example, are more likely to be found
within other MITEs, and they sometimes target specific
sites within those MITEs [27]. Extreme specificity, involv-
ing multiple insertions into the exact same site in the
genome, has been demonstrated for a variety of trans-
posons. Cases involve both class I elements, including
SINEs in Peromyscus [28] and ingi LINEs and RIME SINEs
in Trypanosoma [29], and class II elements, including a
Pokey element in Daphnia [30], hobo elements in Dro-
sophila [31], and a striking example of six independent
insertions of two distinct PIF elements into the same loca-
tion in an r-gene in Zea [32]. Site-specific insertions by
members of the Tcl/mariner transposon family (which
includes Stowaway) have been associated with features
adjacent to preferred TA insertion sites, including the spe-
cific sequence immediately flanking the insertion site of
Tc1 in Caenorhabditis elegans [33], and the predicted defor-
mation of DNA at sites of Sleeping Beauty insertion during
interplasmid transposition in Hela cells, and into Mus
sequences [34]. Specific features associated with Stowaway
insertion site preference in the Triticeae might be clarified
by extensive comparisons among the sequences flanking
multiple non-homologous insertion sites. No Triticeae
species have been fully sequenced, but there is extensive
sequence data available from wheat, barley, and rye. Thus,
while it would not be possible to carry out as thorough a
genome-wide survey of Stowaway elements as was recently
done for rice [8], the large number of sequenced Triticeae
elements in Entrez should provide an excellent starting
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point for
sequences.

comparisons among Stowaway flanking

One alternative hypothesis to multiple gains is that there
was a single gain early in the history of the tribe, and that
the observed diversity among the B-amylase elements
arose at that site. Given the wide distribution of the
TA...GTA excision footprint, there probably was, in fact,
an ancestral element at the site, but that element is prob-
ably not ancestral to the present elements at the site. First,
all of the current elements are themselves enclosed within
TA...GTA footprints; thus, the putative earlier element was
excised, and did not evolve into the elements now in
place. Second, the five current elements are all palin-
dromes, with strong predicted secondary structure. If a
single ancestral palindrome has simply evolved very rap-
idly, the resulting sequences would not maintain any pal-
indromic structure. Similarly, if a large ancestral element
were to differentially decay into a series of independently
derived smaller elements, the derivatives would not be
palindromes. (One feasible exception to this assertion
would be a sequential deletion of the central portion of a
large palindrome, which would lead to a series of nested
palindromes of decreasing size, but this is not the pattern
seen here.) The second problem with the single-gain
hypothesis cannot be easily dismissed. The similarity of
the B-amylase variants to Stowaway elements at other loci
in other genomes, rather than to one another, strongly
refutes the monophyly of the B-amylase elements. Other-
wise, whatever process produced the five B-amylase ele-
ments from a single ancestor would have to have been
operating in parallel at multiple loci in multiple genomes.

The similarity among Stowaway elements from different
genomes (e.g., Australopyrum, Hordeum, Secale, and Triti-
cum; Fig. 3a), and diversity among elements within
genomes (e.g., the Hordeum elements in Fig. 3), highlight
a disconnect between the evolutionary relationships
among the elements and the relationships among the spe-
cies and genera that harbor them. This disconnect is con-
sistent either with the existence of multiple Stowaway
lineages in the ancestral Triticeae genome, or with hori-
zontal transfer of elements among Triticeae lineages. The
observed high level of diversity among the Stowaway ele-
ments suggests that some of the distinct Stowaway lineages
are old, and possibly already present in the ancestral Trit-
iceae genome. On the other hand, the close similarity
among some of the elements that are shared by phyloge-
netically distinct genera suggests recent movement of ele-
ments among genera. The history of hybridization and
introgression among divergent Triticeae lineages [35]
would facilitate horizontal transfer, and the spread of
Stowaway variants among species. Thus, ancestral poly-
morphism and ongoing introgression may both play a
role in the present element diversity, but it is difficult to
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disentangle these possibilities, especially without a better
understanding of how the elements evolve. If, for exam-
ple, they evolve extremely quickly, the suggestion that the
lineages are old based on their high level of divergence is
not valid. One possible way to gain additional insights
into the age of the Stowaway lineages of the Triticeae
would be to survey Stowaway variation in genera related
to, but outside of the tribe. Phylogenetic relationships
linking Triticeae elements to multiple lineages outside the
tribe would be consistent with shared ancestral polymor-
phism.

The high level of homoplasy exhibited by the intron 4
Stowaway elements is unmistakable, given the phyloge-
netic context provided by the B-amylase gene tree; there is
little correspondence between presence vs. absence of the
element and the phylogenetic estimate. In any case, the
character states "present" and "absent" have little mean-
ing here because the elements that are present, though
found at orthologous sites within the gene, are not them-
selves related as orthologs, and sites from which the ele-
ment is absent are variable in terms of sequence. Thus,
while the presence vs. absence of a Stowaway element has
been used for phylogenetic inference in AA-genome spe-
cies of rice [36,37], the general utility of MITEs as phylo-
genetic markers at higher taxonomic levels should not be
assumed [13]. The specific genetic mechanisms underly-
ing the homoplastic losses and gains cannot be deter-
mined from the observed historical patterns alone, but the
phylogenetic perspective does reveal the complexity of
MITE evolutionary dynamics over time, and complements
recent studies documenting ongoing activity of MITEs and
mariner-like elements.

Conclusion

Stowaway MITEs have undergone multiple deletions from
and insertions into the same site in B-amylase intron 4
during the history of the tribe. Multiple losses are sup-
ported by sequence variation among the putative sites of
element excision/degradation, and the phylogenetic dis-
tribution of those sites. Multiple gains are supported by
the polyphyletic distribution of five 3-amylase elements,
and their non-monophyly relative to elements at non-
orthologous loci in other Triticeae genomes. The complex
history of gains and losses contraindicates the use of
either the presence vs. absence of, or sequence compari-
sons among, these elements for organismal phylogeny
reconstruction. While phylogenetic analyses of historical
element activity do not allow genetic mechanisms of gain
and loss to be inferred, they do provide insights into the
long-term dynamics of element evolution. Thus, the his-
torical perspective provided by a phylogenetic approach is
complementary to studies of ongoing transposon activity.
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Methods

A set of aligned Triticeae B-amylase sequences [Gen-
bank:AY821686-AY821734] was generated for a phyloge-
netic study of the tribe [15]; the taxon list with authorities
and accession numbers, and the laboratory methods used
for obtaining the sequences, are provided therein. Briefly,
a 1400-bp portion of the ubiquitously-expressed B-amy-
lase gene [38] was amplified using primers in exon 2 (2a-
for, GCCATCATGTCRTTCCACCA) and exon 5 (5a-bac,
TCRGCTGCATGGTTTGGAAC) [15], and amplified prod-
ucts were cloned into pGEM-T Easy vectors (Promega,
Madison, WI, USA). Cloned products were amplified
directly from colonies and cleaned using shrimp alkaline
phosphatase and exonuclease 1 (USB, Cleveland, OH,
USA). After cleaning, fragments were sequenced with
BigDye Terminator v. 3.1 (Applied Biosystems, Foster
City, CA, USA) using the amplification primers and four
internal primers (3a-bac, ATGAATTCTCCRAYGCCTGG;
3a-for, CCAGGCRTNGGAGAATTCAT; 4a-bac, CTGCT-
GCTGCTITGAARTCTG; and 4b-for, TACCTRSAAGCA-
GACTTCAAAG) [15]. Sequence alignments were done
using Clustal V [39], with some manual adjustments.

Short transposable elements were initially recognized as
highly variable insertions with conserved termini in some
B-amylase introns. The basic local alignment search tool
(BLAST) [40] yielded significant alignments to Stowaway
elements from barley, wheat, and/or rye in the Entrez
nucleotide database [41]. Each of the five f-amylase ele-
ments was used for a separate nucleotide-nucleotide
BLAST search of all organisms in Entrez, with low com-
plexity filter on, and a word size of 11. BLAST searches can
recover high-score (low E-value) matches based solely on
short regions of high similarity (including Stowaway TIRs),
so searches were run twice; the TIR sequences were first
included with, and then excluded from, the query
sequences. The best matches in terms of length and
sequence identity were similar for both sets of searches,
and the results based on the full sequences are presented.
The p-amylase elements' secondary structures (not
shown) were predicted using mfold v. 3.2 [42] on the
Rensselaer bioinformatics web server [43].

Phylogenetic distribution of elements was assessed rela-
tive to the B-amylase gene tree, which was estimated after
exclusion of the Stowaway elements themselves. Details of
the sampling, analysis methods, and interpretation of the
resulting phylogenetic tree are provided elsewhere [15]. In
brief, aligned sequences were analyzed with PAUP*
4.0b10 [44] using maximum likelihood (ML) under a
general time reversible model of sequence evolution [45]
with some sites assumed to be invariable, and with rate
variation among the remaining sites assumed to follow a
gamma distribution [46,47]. Model parameter optimiza-
tion, and tree searches using fixed optimized parameters,
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were done using a successive approximations approach
[48]. Bootstrap branch support was estimated using
PAUP* 4.0b10 [44] based on 100 ML bootstrap replicates
under the same model and model parameters as were
used for phylogeny estimation, and Bayesian posterior
probability values were obtained using MrBayes 3.0 [49].
The resulting tree is used to illustrate the phylogenetic dis-
tribution of Stowaway elements and excision sites.
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