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Abstract

Background: The taxonomic and phylogenetic relationships of New World monkeys (Platyrrhini) are difficult to
distinguish on the basis of morphology and because diagnostic fossils are rare. Recently, molecular data have led to a
radical revision of the traditional taxonomy and phylogeny of these primates. Here we examine new hypotheses of
platyrrhine evolutionary relationships by reciprocal chromosome painting after chromosome flow sorting of species
belonging to four genera of platyrrhines included in the Cebidae family: Callithrix argentata (silvered-marmoset), Cebuella
pygmaea (pygmy marmoset), Callimico goeldii (Goeldi's marmoset) and Saimiri sciureus (squirrel monkey). This is the first
report of reciprocal painting in marmosets.

Results: The paints made from chromosome flow sorting of the four platyrrhine monkeys provided from 42 to 45
hybridization signals on human metaphases. The reciprocal painting of monkey probes on human chromosomes revealed
that 21 breakpoints are common to all four studied species. There are only three additional breakpoints. A breakpoint
on human chromosome |3 was found in Cadllithrix argentata, Cebuella pygmaea and Callimico goeldii, but not in Saimiri
sciureus. There are two additional breakpoints on human chromosome 5: one is specific to squirrel monkeys, and the
other to Goeldi's marmoset.

Conclusion: The reciprocal painting results support the molecular genomic assemblage of Cebidae. We demonstrated
that the five chromosome associations previously hypothesized to phylogenetically link tamarins and marmosets are
homologous and represent derived chromosome rearrangements. Four of these derived homologous associations tightly
nest Callimico goeldii with marmosets. One derived association 2/15 may place squirrel monkeys within the Cebidae
assemblage. An apparently common breakpoint on chromosome 5q33 found in both Saimiri and Aotus nancymae could be
evidence of a phylogenetic link between these species. Comparison with previous reports shows that many syntenic
associations found in platyrrhines have the same breakpoints and are homologous, derived rearrangements showing that
the New World monkeys are a closely related group of species. Our data support the hypothesis that the ancestral
karyotype of the Platyrrhini has a diploid number of 2n = 54 and is almost identical to that found today in capuchin
monkeys; congruent with a basal position of the Cebidae among platyrrhine families.
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Background

Molecular data have led to a revaluation of the time for
primate origins and current views suggest that paleontol-
ogists have underestimated the time depth of primate ori-
gins [1,2]. Previously most paleontologists thought that
the origin of primates was around 60 million years ago
(mya) approximately at the Cretaceous/Tertiary (K/T)
boundary, but there is a growing consensus that primates
probably originated at least 85-90 mya. Fossil evidence
indicates an African or possibly an Indo-Madagascan ori-
gin for primates, however data for a geographic origin are
largely circumstantial [2,3].

It now appears that the division of the two major branches
of primates, Strepsirrhini (lemurs and lorisoids) and Hap-
lorrhini (tarsiers, monkeys, apes and humans) would
then easily predate 60 mya and probably 77 mya [2,4].
Recent molecular contributions have reinforced the hypo-
thesis of a monophyletic African origin of strepsirrhines
[2,4-6]. The division between lorisoids and lemuroids, the
two major branches of strepsirrhines, is deep and proba-
bly established by 65 mya.

Current paleontological interpretations about anthropoid
origins are dependent on where tarsiers are placed in the
primate phylogenetic tree. The Strepsirrhini/Haplorhini
taxonomic division of primates was based on the mor-
phological conclusions that tarsiers were more closely
related to anthropoid primates (monkeys, apes, and
humans) than to the "lower" primates [7]. However, the
molecular data are ambivalent on tarsier affinities and
have been interpreted to link tarsiers with anthropoids [8-
10], or to Strepsirrhini [11-14]. Apparently, the strepsir-
rhine/tarsier/anthropoid divergence was so rapid that for
current molecular methods it appears as a trichotomy [2].
There are some isolated fossil teeth from Africa dated
between 45 and 60 mya which may be close to the origin
of anthropoids, but more complete and diagnostic
remains from the Fayum (Egypt) only appear at about 35—
37 mya [15] long after the probable origin of anthropoids.
The Asian fossils appear to be a sister clade to these African
remains and there may be a complicated pattern of multi-
ple primate faunal exchanges between Asia and Africa.

Even if the origin of stem anthropoids has not yet been
unequivocally elucidated [16-18] the anthropoid pri-
mates surely include both New World (Platyrrhini) and
Old World (Catarrhini) monkeys, apes and humans.

Platyrrhine origins and taxonomy

Various hypotheses have been advanced for the origin of
New World monkeys (NWM) and whether they were a
mono or a polyphyletic assemblage [19]. The current con-
sensus is that paleowinds, island-hopping and vegetation
rafting, favoured a Paleogene African origin of New World
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monkeys [20,9]. Various dispersal events probably
occurred over a 20 million year period making repeated
contributions to colonization possible and a plausible
case for the multi-phyletic origin of extant NWM [21]. The
dentition, particularly M3, of Branisella boliviana, at 27
mya the oldest fossil platyrrhine monkey, supports an
African origin of NWM because it is similar to fossils from
the Oligocene and Late Eocene of Fayum, Egypt [22].
Comparative phylogenomics demonstrates a close phylo-
genetic relationship between these primates, compatible
with a monophyletic African origin for all New World
monkeys [23,24].

Dates for the origin of the platyrrhine/catarrhine diver-
gence from the molecular data are considerably earlier
than the oldest fossil remains and range from about 35
mya to over 50 mya with 40 mya as a fair compromise
[1,25]. A summary of molecular evidence indicates that
extant platyrrhines diverged over the last 20 million years
[21,26] making it probable that the radiation of living
species occurred wholly in the Neotropics to take advan-
tage of favorable ecological opportunities. This radiation
produced numerous species with a wide range of morpho-
logical, ecological and ethological adaptations. Today
these monkeys range from southern Mexico to northern
Argentina.

The taxonomic and phylogenetic relationships of these
monkeys continue to challenge primatologists and are dif-
ficult to define on the basis of morphological characters
because of problems in distinguishing homology and
convergence [27]. In Platyrrhinae "sibling species" are not
uncommon and paleontological data are as yet so limited
that they are of little use to resolve phylogenetic relation-
ships. We do not know much about what happened to the
platyrrhines between 40 and 20 million years ago and it
would be quite helpful to have further paleontological
evidence to shed light on this gap [26].

Traditional taxonomies of Playrrhines and the position of
Callimico goeldii

These difficulties are reflected in the large number of dif-
ferent phylogenetic trees and taxonomies presented by
various authors over the years (fig 1). The various treat-
ments of Callimico goeldii are explicatory. This species
resembles tamarins and marmosets in small body size and
claws, but shares with other NWM characters like single
births and a third molar. Traditional taxonomies either
recognized two or three families of NWMs. When two
families were recognized (Cebidae and Callitrichidae) C.
goeldii was placed into one or the other and was seen as
basal to the other species [24,28-30]. Others erected a
third family (Callimiconidae) to accommodate C. goeldii
[31-34]. All families were then placed in one superfamily,
Ceboidea. A typical and largely followed morphological
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based taxonomy is that of Groves (1993)[35] with two
families: 1. Callitrichidae, including the genera Callimico,
Callithrix, Leontopithecus, Saguinus, and 2. Cebidae: includ-
ing genera Alouatta, Aotus, Ateles, Brachyteles, Lagothrix,
Callicebus, Cebus, Saimiri, Cacajao, Chiropotes, and Pithecia.

Molecular tree of New World monkey phylogeny

Molecular data has led to a radical revision of the tradi-
tional divisions and assemblages of NWMs. The separa-
tion into two distinct branches of Cebidae and
Callitrichidae is not supported. Instead, three clades are
distinquished [36-41]:

1. Cebidae, marmosets (including Callimico) and tamarins
are placed in a clade with Saimiri, Cebus and probably
Aotus

2. Pitheciidae which groups Callicebus, Pithecia, Cacajao
and Chiropotes.

3. Atelidae which consists of Alouatta, Ateles, Lagothrix and
Brachyteles.

Indeed, Groves (2001), without providing any evident
morphological justification, altered his taxonomy of
NWNMs probably to reflect developments in primate phyl-
ogenomics. His scheme is identical to that above, but
erects Nyctipithecidae with the single genus Aotus as a
fourth family.

On the other hand, the low number of nucleotidic differ-
ences found between Platyrrhine species, because the
divergence between many taxa was probably short, often
limits the resolution of molecular studies. There is some
uncertainty as to the exact branching order, both between
and within the three taxonomic divisions (fig. 1) [39-42].

Molecular cytogenetic in Platyrrhine phylogenomics

Comparative molecular cytogenetics represents an inde-
pendent database to morphology and sequencing for
studying New World primate evolution. Chromosome
rearrangements are important markers in the evolution of
species, because rearrangements are rare genomic events
often linked to the speciation process [43]. Over the last
decade the use of chromosomes for evolutionary and phy-
logenetic research has received a particularly strong
impulse from molecular cytogenetics. FISH techniques in
comparative genomics have proven to be powerful instru-
ments to individuate and study chromosomal changes.
Painting probes permitted chromosomal homologies to
be established between different species on the basis of
DNA content [44] and have uncovered many of the trans-
locations intervening between various species of primates.
Initially human probes were produced and hybridized to
ape and monkey chromosomes to determine homology at
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the DNA level. The introduction of Flow activated chro-
mosome sorting (Facs) has widened the production of
painting sets from other primates and many species of
mammals. The use of "reciprocal painting" has deepened
the possibilities of investigation. In fact "reciprocal paint-
ing" not only confirms results obtained with FISH in an
independent experiment, but also provides new and more
detailed information about breakpoints in chromosomal
rearrangements. The correct identification of breakpoints
determines if similar rearrangements actually involve
homologous chromosomal segments. When different
breakpoints are detected, it is clear that the rearrange-
ments involved do not derive from the same chromo-
somal rearrangement. Both cases have different weight in
phylogenetic interpretation.

As is commonly seen in arboreal primates, it is well
known that the evolutionary rate of chromosomal rear-
rangements in Platyrrhinae is very high [45-47]. Because
rapidly evolving systems usually provide good phyloge-
netic resolution, our research was focused on using molec-
ular cytogenetic data (chromosome sorting and multi-
directional chromosome painting) to help clarify the evo-
lution, taxonomy and phylogenetic relationships between
these primates.

Cytogenetics confirms that New World monkey biodiver-
sity is still not well known and that species number is
probably underestimated in traditional taxonomy. Molec-
ular cytogenetics data indicate that many taxa including
Atelidae (genera, Lagothrix, Brachyteles, Alouatta and
Ateles) and other species (Callicebus, Aotus) are karyologi-
cally derivated [45,47-53].

Chromosome painting has already provided important
information about the molecular taxonomy of Platyrrhi-
nae and in particular Cebidae. One hypothesis on the
basis of chromosome painting with human paints was
that C. argentata, C. pygmaea and C. goeldii (with Saguinus
oedipus and Callithrix jacchus) shared derived chromo-
somal associations that define the Callitrichidae family
[37].

We used "reciprocal painting" to study four species of
New World monkeys: Callithrix argentata (CAR), Cebuella
pygmaea (CPY), Callimico goeldii (CGO) and Saimiri sciu-
reus (SSC) (Figure 2). Paints of the chromosomes of these
four monkey species (Figure 3) were produced through
Facs, and then hybridized to human chromosomes. We
integrated our new data with already available informa-
tion obtained through hybridization of human paints on
chromosomes of C. argentata (2n = 44), C. pygmaea (2n =
44), C. goeldii (2n = 46-47) ([37] and on Saimiri sciureus
(2n = 44) [53].
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a) Rosenberger, 1984

Figure |

c) Schneider et al., 2001

d) Ray et al., 2005

Four phylogenies for New World monkey genera. a) modified from Rosenberger et al 1984 [72] and b) modified from
Ford 1986 [73] are based on morphological traits, while c) modified from Schneider et al., 2001 [40] and d) modified from Ray

et al.,, 2005 [39] are based on molecular studies. See text for further details.

Results

Flow sorting

Callithrix argentata

The bivariate flow karyotype of Callithrix argentata was
resolved into 25 peaks (Fig. 4a). Flow sorting and degen-
erate nucleotide primed (DOP)-PCR provided chromo-
some paints from each peak. These paints were then
hybridized to Callithrix argentata to identify the chromo-
some content of each peak. All but one peak provided sin-
gle chromosomes. Chromosomes CAR5 and CAR10 were
sorted together in one peak despite the repetition of sort-
ing experiments. Chromosomes 6, 11 and 18 were each
found in two peaks.

Cebuella pygmaea

The bivariate flow karyotype of Cebuella pygmaea was
resolved into 24 peaks (Fig. 4b). Flow sorting and DOP-
PCR provided chromosome paints from each peak. These
paints were then hybridized to Cebuella pygmaea to iden-
tify the chromosome content of each peak. All peaks pro-
vided single chromosomes. Chromosomes 1, 7 and 18
were each found in two peaks.

Callimico goeldii

The bivariate flow karyotype of Callimico goeldii was
resolved into 23 peaks (Fig. 4c). Flow sorting and DOP-
PCR provided chromosome paints from each peak. These
paints were then hybridized to Callimico goeldii to identify
the chromosome content of each peak. All but 4 peaks
provided single chromosomes. Chromosomes 4/5, 6/9, 7/
10/13 and 20/X2 were sorted together in one peak despite
the repetition of sorting experiments. Chromosome 11
was found in two peaks.

Saimiri sciureus

The bivariate flow karyotype of Saimiri sciureus was
resolved into 21 peaks (Fig. 4d). Flow sorting and DOP-
PCR provided chromosome paints from each peak. These
paints were then hybridized to Saimiri sciureus to identify
the chromosome content of each peak. All but 5 peaks
provided single chromosomes. Chromosomes 5/8, 6/11,
9/11, 15/16 and 19/20 were sorted together in one peak
despite the repetition of sorting experiments. Chromo-
some 16 was found in two peaks.

Hybridization of monkey paints on human chromosomes
Callithrix argentata and Cebuella pygmaea

Both C. argentata and C. pygmaea paints produced 42 sig-
nals on human autosomes (Fig. 5 and Fig 6a). Six marmo-
set chromosomes have identical syntenies in humans:
HSA 4, 6, 11, 12, 19 and the X chromosome. Eight other
human chromosomes (5, 9, 14, 17, 18, 20, 21 and 22)
were hybridized by a single marmoset chromosome paint.
Seven human chromosomes (2, 7, 8, 10, 13, 15 and 16)
were hybridized by two marmoset chromosomes. Finally
human chromosome 1 and 3 were each hybridized by 3
marmoset probes. The alternating hybridization signals of
two or more paints on human chromosomes 3, 7 and 15
suggested that inversions had occurred after divergence of
the common ancestor. For chromosomes 3 and 7 it is well
known that paracentric and pericentric inversions
occurred in the line leading to humans. But it is not
known in which line the inversions in chromosome 15
occurred.

Callimico goeldii

On human autosomes, 45 signals were detected by C. goe-
Idii paints (Fig 5 and Fig 6b). Seven C. goeldii chromo-
somes have identical syntenies in humans: HSA 4, 6, 11,
12, 19, 20 and the X chromosome. Five other human
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Figure 2

Geographic distribution of four species of Cebidae.
Geographic distribution of the four species studied by flow
sorting and reciprocal chromosome painting: Callithrix argen-
tata in violet, Cebuella pygmaea in red, Callimico goeldii in
green and Saimiri sciureus in yellow.

chromosomes (14, 17, 18, 21, and 22) were hybridized by
a single C. goeldii paint, but formed syntenic associations
in C. goeldii. Nine human chromosomes (2, 5, 7, 8, 9, 10,
13, 15 and 16) were hybridized by two monkey chromo-
somes. Human chromosomes 1 and 3 were hybridized as
above by 3 human paints. Human chromosomes 3, 7 and
9 as above had alternating patterns of two paints indicat-
ing inversions which occurred in the human line. Human
chromosome 15 also had an alternating hybridization
pattern indicating an inversion.

Saimiri sciureus

On the human autosomes, 42 signals were detected using
Saimiri sciureus paints (Fig. 5 and 6d). Eight Saimiri sciu-
reus chromosomes have identical syntenies in humans:
HSA 4, 6,11, 12,13,17, 22 and X. Five other human chro-
mosomes (14, 18, 19, 20, 21) were painted by a single
monkey probe, but formed syntenies associations in
Saimiri sciureus. Two monkey probes painted seven
human chromosomes 2, 5, 7, 8, 10, 15 and 16. As previ-
ously human chromosomes 1 and 3 were each hybridized
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by three monkey paints. The probe for SSC 2 painted two
entire human chromosomes (HSA 9 and HSA 14) and one
segment on HSA 15. Again alternating signals to monkey
paints were found on human chromosomes 3, 7 and 15.

Breakpoints

The reciprocal painting revealed by the hybridization pat-
tern of monkey probes on human chromosomes shows
that 21 breakpoints are common to all four studied spe-
cies. There are only three additional breakpoints. A break-
point on human chromosome 13 was found in CPY, CAR
and CGO, but not in SSC. There are two additional break-
points on human chromosome 5: one is specific to SSC,
and the other to CGO.

Previous research showed that the associations of seg-
ments of human chromosomes 9/13, 9/22, 13/17 were
present in all studied species of marmosets, tamarins and
in Callimico. The reciprocal chromosome painting shows
that these associations have identical breakpoints and are
completely homologous in all these species. The associa-
tion 2/15 was also reported in these species and in Saimiri,
but not in other platyrrhines. The reciprocal painting also
shows that the segments forming this association are
homologous.

Discussion

The reciprocal painting results, in general, support the
molecular genomic assemblage of Cebidae [36-38,40,41].
We demonstrated that the five chromosome associations,
which phylogenetically link tamarins and marmosets are
homologous and derive from shared chromosome rear-
rangements in a common ancestor (table 1). Four of these
derived homologous associations tightly nest Callimico
goeldii within the radiation of these species. The reciprocal
chromosome painting data confirmed that Callimico goel-
dii is nested within Cebidae as previously hypothesized by
Neusser et al 2001 on the basis of unidirectional painting
of human chromosome paints. This evidence of hom-
ology of derived syntenic associations is important, espe-
cially for C. goeldii, whose taxonomic position was
historically controversial. According to morphological
studies, this species was included by some authors in the
family Cebidae [7] or placed in Callitrichidae, but in a
basal position.

One derived association 2/15 was also found in Saimiri
linking these species with the Cebidae assemblages. How-
ever, the molecular data indicate a closer relationship
between Saimiri and Cebus, another genus of this assem-
blage. There is no reciprocal painting data on species of
the genus Cebus. However, the human chromosome
painting pattern on Cebus species studied up to now sug-
gest that this species maintains a karyotypes almost iden-
tical to the ancestral platyrhinne karyotype (APLK).
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Figure 3

G-banded karyotype of four species of Cebidae. a) Callithrix argentata, b) Cebuella pygmaea, c) Callimico goeldii and d)
Saimiri sciureus. The X-chromosome of Saimiri sciureus differs by a pericentric inversion or centromere shift.

Therefore there are no derived association syntenies
cytogenetic data to link Cebus with marmosets, tamarins
or Saimiri. If the molecular data has correctly placed
Saimiri, then this species shares a common ancestor with
Cebus after the divergence of the marmosets and tamarins,
and the 2/15 association may represent a convergence.
Further testing with higher resolution molecular cytoge-
netics methods (i.e. BAC clones) and sequencing of break-
points will be needed to determine whether the 2/15
association found in Saimiri is truly homologous with that
found in marmosets.

An apparently common breakpoint on chromosome
533 found in both Saimiri and Aotus nancymae could be
evidence of a phylogenetic link between these species (fig
7). In Saimiri it forms a separate syntenic association with
5/7 to form SSC 20. In Aotus nancymae this segment, along
with regions homologous to 4 other human chromo-
somes (10/11/7/5), forms ANA 4. By integrating our cur-
rent results with previous reports on reciprocal painting
between humans and Platyrrhines, we can show that

other fissions of human syntenies 4, 5, 9, 15 and 17
involve different breakpoints and are not homologous.

A 1/3 syntenic association found in both Aotus nancymae
and Callimico goeldii at first appears to be a possible phyl-
ogenetic link between these species (table 2). However,
both these species have high rates of chromosome evolu-
tion making convergence an alternate hypothesis. Our
reciprocal painting of Callimico paints on human met-
aphases compared to previous data from reciprocal paint-
ing between humans and Aotus [54] allows us to confirm
the hypothesis that this association is not homologous
and results from convergence. The association in Callimico
can be defined as t1b:3b(1q21-19q32:3p24-3p14, 3q22-
3q26.3) while that of Aotus is defined as t1c:3¢/21(1g32-
qter:3p12-q13.1/21).

There is a previous report that provides some weak sup-
port for a cytogenetic link between Callicebus and Aotus
provided by the syntenic association 10/11 [50]. How-
ever, the reciprocal painting in these species cannot deter-

Page 6 of 14

(page number not for citation purposes)



BMC Evolutionary Biology 2007, 7(Suppl 2):S11

Hoechst Fluorescence

0 200 400 600
Chromomycin Fluorescence

400
!

Hoechst Fluorescence

0 200 ann 600 800
Chromomycin Fluorescence

Figure 4

http://www.biomedcentral.com/1471-2148/7/S2/S11

800
L

600
L

Hoechst Fluorescence

0 200 00 600 800
Chromomycin Fluorescence

400 600 E?U
L h

Hoechst Fluorescence

200
L

200 400 600
Chromomycin Fluorescence
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mine if the rearrangements are homologous. The
orientation and exact fusion points between HSA 10 and
11 in both taxa need to be tested with BAC FISH and
sequencing to determine if this syntenic association is
equivalent or different.

It can also be noted that the assignment of Aotus with the
Cebidae is not as solid as for other species. A sister relation
between Aotus and the Cebus/Saimiri clade is favored by
parsimony analysis, but not by other analyses [41].

Saimiri was linked to Aotus by only 1 Alu insertion and
then this branch to Callithrix and Saguinus by only 2 inser-
tions [39]. Recently, a Bayesian analysis of 59.8 kbp
genomic data for 13 primates concluded that the deepest
node within the Cebidae was between squirrel monkeys
and marmosets at 17.1 mya with 20.8 mya for crown pla-
tyrrhine node. Although Singer et al. also claim that Alu
elements were able to resolve Cebidae branching, all
branches were supported by a maximum of one marker;
hardly reassuring [55].
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Hybridization of Cebidae probes on human metaphases. Hybridization examples of Cebidae probes on a human met-
aphase: a) CAR 12 paints segments of HSA 2 and 15, b) CAR 15 paints segments of HSA 3, c) CAR 18 paints a segment of HSA
Iq, d) CPY 4 paints HSA 17, 20 and a segment of HSA 13, e) CPY 8 paints HSA 8p and 18, f) CPY 10 paints HSA Ip and |0p,
g) CGO 15 paints segments of HSA 9 and all of 22, h) CGO |7 paints a segment of HSA 13 and all of 17, i) CGO 22 paints a
small segment of HSA 3 and all of 21, j) SSC 7 paints HSA 2q and segments of |5, k) SSC 14 paints a segment of HSA 1q and
most of 19, ) SSC 15 paints HSA 8p and 8.
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Human idiogram with hybridization assignments of Cebidae paints. Human chromosomes are numbered below: a)
Callithrix argentata chromosomes numbered to the left and to the right, Cebuella pygmaea chromosomes; b) Callimico goeldii
chromosomes numbered to the left and to the right, Saimiri sciureus chromosomes.

The ancestral karyotype and monophyly of platyrrhines

Previous reconstructions of the ancestral primate karyo-
type (APK) hypothesized a diploid number from 2n = 48
to 50 [56-59]. Recent reciprocal chromosome painting
has also refined the content of the APK. Both Stanyon et
al. (2006)[60] and Nie et al. [61](2006) found in lori-
forms a syntenic association 7/16 identical to that found
in the proposed ancestral eutherian karyotype [62]. There-
fore 7b/16p should be included in the APK. Defined by
reference to homology with the human karyotype, the

genome of the last common ancestor of all living primates
had the following chromosomes:

1, 2a, 2b, 3/21, 4, 5, 6, 7a, 7b/16b, 8,9, 10, 11, 12a/2243,
12b/22b, 13, 14/15, 16a, 17, 18, 19a, 19b, 20, X and Y.

Then from the APK the origin of the anthropoids was
marked by: 1) a fission of the syntenic association 7b/16b,
2) areciprocal translocation that gave origin to 12 and 22,
3) fusion of 19p and 19q. The ancestral anthropoid kary-
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Table I: Number of chromosome segments found in various New World monkey primates.
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The top row lists the species belonging to the family Cebidae: APLK = ancestral platyrrhine karyotype, CAP = Cebus apella, SSC = Saimiri sciureus,
CPY = Cebuella pygmaea, CAR = Callithrix argentata, CJA = Callithrix jacchus, CGO = Callimico goeldii, SOE = Saguinus oedipus, LCH = Leontopithecus
chrysomelas, ANA = Aotus nancymae. In the left column, 2n is the diploid number of the species. The numbers refer to human chromosomes and
under each species the number of segment found in that species, not including segments fragmented due to inversions. Numbers in red show
derived fissions. Seg refers to the total number of segments including those produced by inversions. S. A. refers to the total number of syntenic
associations found in each species including multiple associations due to inversions. [37, 53, 74-76].

Table 2: Syntenic chromosome associations of segment homologous to human chromosomes found in at least two species of Cebidae.

216 3121 5/7 8/18  10/16 14/15  1/10 913 922 1317 215 1720  1/3  n.apo

APLK X X X X X X

CPY X X X X X X X X X X X X

CAR X X X X X X X X X X X X

CJA X X X X X X X X X X X

CcGo X X X X X X X X2 X X X 2
SOE X X X X X X X X X X X

LCH X X X X X X X X X X X

ssC X X X X X X X 5
CAP X X X X X X

ANA X X X X) X X 14

The top row lists the syntenic associations of segment homologous to human chromosomes found in at least two species of Cebidae. The last
column (n. apo), reports the number of additional apomophic associations. APLK = ancestral platyrrhine karyotypes, CAP = Cebus apella, SSC =
Saimiri sciureus, CPY = Cebuella pygmaea, CAR = Callithrix argentata, CJA = Callithrix jacchus, CGO = Callimico goeldii, SOE = Saguinus oedipus, LCH =
Leontopithecus chrysomelas, ANA = Aotus nancymae [37, 53, 74-76].
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Human idiogram with all reciprocal chromosome
painting data. Human idiogram with all reciprocal chromo-
some painting data integrating results from this report and
the literature [50, 52, 54] Breakpoints common to all platyr-
rhine species and hypothesized to be present in the APLK
(ancestral platyrrhine karyotypes) are shown as a black line
across human chromosome. Breakpoints found in other
groups of species or single species are color coded. CPY =
Cebuella pygmaea, CAR = Callithrix argentata, CJA = Callithrix
jacchus, CGO = Callimico goeldii, SSC = Saimiri sciureus, ANA
= Aotus nancymae, CPA = Callicebus pallescens, LLA =
Lagothrix lagotricha.

otype common to both Old World and New World pri-
mates maintained a diploid number of 2n = 46 but with
the following chromosomes: 1, 2a, 2b, 3/21, 4, 5, 6, 7a,
7b, 8,9, 10, 11, 12, 13, 14/15, 164a, 16b, 17, 18, 19, 20,
22,XeY.

The New World monkeys all share and are characterized
by seven fissions in five chromosomes (1, 3/21, 8, 10 and

http://www.biomedcentral.com/1471-2148/7/S2/S11

14/15) and by 4 fusions, which form syntenic associations
(2b/16a, 5/7a, 8b/18 and 10b/16b). A comparison of our
reciprocal painting with that available in the literature
shows that all these syntenic associations have the same
breakpoints and are homologous derived rearrangements
(Figure 7). Additional, indirect, supporting evidence for
the homology of these breakpoints across platyrrhine spe-
cies comes from the multidirectional painting of Sangui-
nus oedipus and Lagothrix lagothricha paints on various
species [63] including Atelidae [64,65]. In all these cases
the painting revealed numerous conserved autosomal
syntenies compatible with an origin in a common ances-
tor. Therefore, our data and that of the literature support
the hypothesis that the ancestral karyotype, (as reported
in Stanyon et al 2003, 2004) of the New World monkeys
has a diploid number of 2n = 54: 1a, 1b, 1c, 2a, 2b/1643,
3a, 3b, 3¢/21, 4, 5/7a, 6, 7b, 8a, 8b/18, 9, 10a 10b/16b,
11,12, 13, 14/15a, 15b, 17, 19, 20, 22, X and Y.

Divergence order of Platyrrhines

Molecular cytogenetic data do not provide convincing evi-
dence on the order of divergence between platyrrhine
families. However, it is suggestive that the karyoytpe
found in the genus Cebus is almost identical to that of the
APLK for diploid number (2n = 54) and for associations.
It differs only for a pericentric inversion and hetero-
chromatin additions. This condition is congruent with a
basal position of the Cebidae.

Both Canavez et al. (1999)[36], Schneider et al.
(2001)[40] and Seuanez et al (2005)[66] also placed the
Cebidae as basal with the Pitheciidae and Atelidae sharing
a more recent common ancestor. Analysis of primate ret-
roviral restrictive domains also placed the Cebidae as
basal [67]. Ray et al. (2005)[39] on the basis of Alu inser-
tions places the Pitheciidae as basal and with the Cebidae
and Atelidae sharing a more recent common ancestor.
Steiper and Ruvolo (2003)[41] using G6PD data depend-
ing on the type of analysis put either Atelidae or Pithecii-
dae as basal. In a recent study of orthologous sequences of
six nuclear genes compared for most platyrrhine genera,
the branching order between the three clades shifted
when different algorithms were used. In one Pitheciidae
were basal with Cebidae and Atelidae sharing a more
recent common ancestor; in the other the Cebidae were
basal with Atelidae and Pitheciidae as sister clades [42].
For now, it seems that molecular studies apparently can-
not yet unequivocally determine the relationship between
Cebidae, Atelidae and Pitheciidae.

Conclusion

Our results support the molecular genomic assemblage of
Cebidae. Five chromosome associations, phylogenetically
linking tamarins and marmosets are homologous and
derive from shared chromosome rearrangements in a
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common ancestor. Four derived homologous associations
nest Callimico goeldii within the radiation of the marmo-
sets. One derived association 2/15 may link Saimiri with
these species. An apparently common breakpoint on
chromosome 5q33 may link Saimiri and Aotus. A compar-
ison of our reciprocal painting with that available in the
literature shows that the great majority of syntenic associ-
ations and breakpoints found in New World monkeys are
homologous. Our data support the hypothesis that the
ancestral karyotype of all Neotropical primates had a dip-
loid number of 2n = 54 with chromosomes: 1a, 1b, 1¢, 2a,
2b/16b, 3a, 3b, 3¢/21, 4, 5/7a, 6, 7b, 8a, 8b/18, 9, 10a
10b/16b, 11, 12, 13, 14/15a, 15b, 17,19, 20, 22, X and Y.
This suite of derived chromosome rearrangements found
in all these monkeys, overwhelming supports the mono-
phyly of NWM and shows that these primates form a tight
phylogenetic and taxonomic unit. Although molecular
cytogenetic data do not yet provide convincing evidence
on the order of divergence between platyrrhine families, it
does suggest that the conserved karyotypes found in spe-
cies of the genus Cebus is congruent with a basal position
of the Cebidae.

However, it should be noted that chromosome painting
even with reciprocal hybridizations does not usually
detail intrachromosomal rearrangements and breakpoint
resolution is limited. Cloned DNA probes such as BACs,
cosmids and locus specific probes, provided increased res-
olution and can reveal intrachromosomal rearrangments
and precisely map breakpoints. Further high resolution
molecular cytogenetic research, using such cloned DNA
probes, will be necessary to confirm and resolve unan-
swered questions of New World primate evolution [68-
70]. These questions are urgent today because many of
these primates are highly endangered.

Methods

Cell samples, tissue culture and chromosome preparation
Metaphase preparations were obtained from established
fibroblast cell lines of one male individual of Callimico
goeldii and of Cebuella pygmaea, of one female individual
of Callithrix argentata and of one male individual of
Saimiri sciureus. The cell lines were kindly provided by S.
O'Brien, Laboratory of Genomic Diversity, National Can-
cer Institute, Frederick MD, USA. Normal culture proce-
dures were followed. Cultures were maintained in DMEM
supplemented with 10% fetal bovine serum.

Flow sorting and in-situ hybridization

Chromosome-specific probes from the NWM were made
by DOP-PCR from flow sorted chromosomes using PCR
primers amplification and labeling conditions as previ-
ously described [44,71]. Chromosome sorting was per-
formed using a dual laser cell sorter (FACSDiVa). This
system allowed a bivariate analysis of the chromosomes

http://www.biomedcentral.com/1471-2148/7/S2/S11

by size and base-pair composition. About five hundred
chromosomes were sorted from each peak in the flow
karyotype. Chromosomes were sorted directly into PCR
tubes containing 30 pl of distilled water. The same 6MW
primer was used in the primary reaction and to label the
chromosomal DNA with biotin dUTP or digoxigenin-
dUTP (both from Roche) in a secondary PCR for indirect
detection. Direct labeling was with rodamine 110-dUTP
(Perkin-Elmer) for green, Spectrum Orange (Vysis) for red
and Cy5-dUTP (Amersham) for infrared as previously
described [57]. In situ hybridization and probe detection
were carried out following common FISH procedures.
About 300-400 ng of each PCR product per probe,
together with 10 pg of human Cot-1 (Invitrogen) were
precipitated and then dissolved in 14 pl hybridization
buffer. After hybridization and washing of the slides,
biotinylated DNA probes were detected with avidin cou-
pled with fluorescein isothiocyanate (FITC, Vector, Burl-
ingame, CA). Digoxigenin-labeled probes were detected
with antidigoxigenin antibodies conjugated with Rodam-
ine (Roche, Eugene, Oregon).

Digital images were taken using a cooled Photometrics
CCD camera coupled to the microscope. Imaging software
was SmartCapture (Digital Scientific, Cambridge, UK).
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