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Abstract

Background: In HIV-1 evolution, a 100-100,000 fold discrepancy between census size and
effective population size (N,) has been noted. Although it is well known that selection can reduce
N., high in vivo mutation and recombination rates complicate attempts to quantify the effects of
selection on HIV-1 effective size.

Results: We use the inbreeding coefficient and the variance in allele frequency at a linked neutral
locus to estimate the reduction in N, due to selection in the presence of mutation and
recombination. With biologically realistic mutation rates, the reduction in N, due to selection is
determined by the strength of selection, i.e., the stronger the selection, the greater the reduction.
However, the dependence of N, on selection can break down if recombination rates are very high
(e.g., r 2 0.1). With biologically likely recombination rates, our model suggests that recurrent
selective sweeps similar to those observed in vivo can reduce within-host HIV-| effective population
sizes by a factor of 300 or more.

Conclusion: Although other factors, such as unequal viral reproduction rates and limited
migration between tissue compartments contribute to reductions in N,, our model suggests that
recurrent selection plays a significant role in reducing HIV-| effective population sizes in vivo.

Background tions [8-12], and recurrent selection [2-5,8]. The

The effective population size, N,, is defined as the size of
an idealized population that has the same population
genetics properties (generally those properties that meas-
ure the magnitude of random genetic drift) as the actual
population. Most studies have estimated the within-host
N, for HIV-1 during chronic infection to be ~103 [1-5],
though one study estimated N, to be between 10%and 5 x
105 [6]. Even the highest of these estimates is about two
orders of magnitude lower than the number of produc-
tively infected cells, estimated to be on the order of 107 to
108 cells [7]. Explanations for low N, values include une-
qual viral reproduction rates [2-5,8], structured popula-

possibility that recurring selection may be reducing viral
diversity is unsettling because most of the computational
models used to estimate N, assume neutral evolution.

During a selective sweep of a favorable allele, any neutral
alleles linked to the selected allele will rise in frequency
and become overrepresented in the population. This proc-
ess, called "hitchhiking", can reduce neutral diversity
more than random genetic drift and therefore reduce N,
[13]. Although selection has been acknowledged as a pos-
sible explanation for the low within-host effective popula-
tion size during chronic HIV-1 infection [3,12], high
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mutation [14,15] and recombination rates [16-20] com-
plicate attempts to study the effects of selection on HIV-1
in vivo. To address these issues, we extended a classic
"inbreeding coefficient" method [21-23] to derive recur-
rence equations that account for the combined effects of
selection, mutation, and recombination. We then used
these equations to quantify the effects of selection on
effective size using parameters relevant to HIV-1 evolution
in vivo.

Results and Discussion

Overview of the genetic model

Our model follows the basic Wright-Fisher assumptions
of a single haploid population of constant size with no
subdivision or migration, non-overlapping generations,
and random sampling of offspring each generation. We
calculated N, in terms of the inbreeding effective size,
which is based on the change of the average inbreeding
coefficient (F) at a neutral locus (L) that is linked to a
locus (S) that is under selection. The inbreeding coeffi-
cient is defined as the probability that two individuals are
identical by descent (which means they are identical and
have a common ancestor). Therefore, for the neutral locus
L, two individuals are identical by descent if they are
derived from a common ancestor and are identical at
locus L, regardless of the status of locus S. Our approach
to estimating N, was to determine changes in the inbreed-
ing coefficient at the neutral locus in the presence and
absence of selection and recombination. The effective
population size was defined as the size of the neutral pop-
ulation that gave changes in the inbreeding coefficient
that were equal to those observed in the presence of selec-
tion and recombination.

As shown in Figure 14, in the absence of recombination,
an offspring can be derived from a parent in the previous
generation with either allele a or A at locus S. An offspring
with allele a can be derived by two pathways: from a par-
ent with allele a (without mutation) or a parent with allele
A (with an A to a mutation). An offspring with allele A can
be derived by two similar pathways. Therefore, F, (the
value of F at time t) will be the sum of the probability that
two offspring are derived from a certain combination of
parents (both with allele A, both with allele a, and one
with allele A and the other with allele a) times the proba-
bility that the offspring are identical by descent at locus L
(see Appendix).

In the presence of recombination, loci L and S can be
derived from different parents (Figure 1B). An offspring
with allele a or A at locus S can be derived from one or
more parents in the previous generation by the four path-
ways illustrated in Figure 1B. As above, F, will be the sum
of the probability that the two offspring are derived from
a certain combination of pathways (both having locus S
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from parents with allele A, both having locus S from par-
ents with allele a4, one having locus S from a parent with
allele a and the other having locus S from a parent with
allele A) times the probability that the offspring derived
from these pathways are identical by descent at locus L
(see APPENDIX).

Effect of selection on effective population size

We used the ratio N/N, to summarize the reduction in N,
due to selection from the start of selection at t = 0 until ¢t =
Lneartyfisea [ the time when the frequency of the advantageous
allele reaches (N-1)/N]. This last approximation is helpful
because fixation time is asymptotic, with the advanta-
geous allele never reaching 100% in a deterministic
model.

In the absence of mutation, the reduction in N, due to
selection was most strongly affected by the initial fre-
quency of the advantageous allele, A, (Figure 2A). In the
presence of mutation, the reduction in N, due to selection
was most sensitive to the selective advantage, s, of the
advantageous allele (Figure 2B). Indeed, for a homogene-
ous population of N = 107, the N/N, ratio increased 6 - 9
fold with each 10-fold increase in the selection coefficient
in the presence of mutation. However, recombination can
break the hitchhiking effect of selection on N, (Figure 2C).
For example, when r < 10-3, for locus L with U = g, selec-
tion with s = 0.1 reduced N,by ~20 fold. In contrast, when
r> 0.1, selection with s = 0.1 had little effect on N,,.

Effective population sizes calculated from the inbreeding
coefficient (inbreeding N,) are usually the same as those
calculated from the variance in the allele frequency (vari-
ance N,), though exceptions do occur [24-27]. To validate
our results, we estimated the effect of selection on N, by
calculating the variance in the frequency of the linked
neutral allele from simulations using the same genetic
model. Values for the inbreeding N, obtained from the
calculations above were generally consistent with the esti-
mates of the variance N, derived from these simulations
(Figure 2A to 2C). We noted that there was an approxi-
mate 3-fold difference in the N, values between the two
methods when s = 0.01 (Figure 2B). This is likely due to
the fact that the inbreeding N, was estimated using a strict
deterministic model; while the variance N, was estimated
from simulations of s = 0.01, where genetic drift plays a
bigger role.

A very high mutation rate at the neutral locus L (e.g., U =
10004) also diminished the reduction in N, due to selec-
tion (Figure 2D). In the absence of mutation, the effect of
selection was insensitive to changes in the initial homoge-
neity at locus L (Figure 2E). In the presence of mutation,
selection with an initially heterogeneous population at
locus L caused greater reductions in N, than selection with
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Illustration of the genetic model. A) In the absence of recombination, an offspring with allele a can be derived from a par-
ent with allele a (without mutation) or a parent with allele A (with an A to @ mutation); an offspring with allele A can be derived
from a parent with allele A (without mutation) or a parent with allele a (with an a to A mutation). B) In the presence of recom-
bination, an offspring with allele a at locus S can be derived from parent(s) in the previous generation by four pathways: |)
Locus S from a parent with allele a without mutation or recombination, (or with recombination between another parent with
allele ). 2) Locus S from a parent with allele A following an A to @ mutation but no recombination (or with recombination
between another parent with allele A). 3) Locus S from a parent with allele a without mutation, but with recombination
between another parent with allele A. 4) Locus S from a parent with allele A following an A to a mutation and recombination
between another parent with allele a. An offspring with allele A can be derived from parent(s) in four pathways similar to those
described above. For the purpose of illustration, only 8 genomes were presented in generation t-1 and t.
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Reduction in N, following a selective replacement with and without mutations in loci L and S. A) The effect of dif-
ferent initial frequencies of the advantageous allele. B) The effect of different selection coefficients. C) The effect of different
recombination rates. D) The effect of different mutation rates at locus L. E) The effect of different initial inbreeding coefficients.
F) The effect of different census population sizes. Panels A and C-F all assume s = 0.1. Solid lines indicate that the N/N, ratios
are based on the inbreeding coefficient F,; dashed lines indicate that the N/N, ratios are based on the variance effective popula-
tion sizes estimated from our simulations. In the presence of mutation, the dashed lines indicate the N/N, ratios based on the
upper and lower estimates of variance effective populations size. Black lines indicate cases with mutation; grey lines indicate
cases without mutation. Unless otherwise specified, the following parameters were used: in the absence of mutation, £ =0, v =
0,U=0,N=107,s=0.1,A;= 10 r=0,and Fy= Fys o= F,0 = Faq0 = 0.1; in the presence of mutation, 1= 2.5 x 105, v = 43,
U=, N=107,5=0.1,A;=0,r=0,and Fy=F .= I, Fpn 0= Fpq0 = 0.

an initially homogeneous population. For Fyless than 0.1,
however, further increases in the initial heterogeneity (i.e.,
making F, even lower) did not lead to further reductions
in N, through selection. Interestingly, reductions in N,/N
due to selection were insensitive to changes in the census
population size, N (Figure 2F).

Effect of recurrent selection on effective population size
For a homogeneous population under recurrent selection,
the inbreeding coefficient of the neutral allele decreased

until it reached a quasi-steady state, where it fluctuated in
a regular "sawtooth" fashion (Figure 3A). The effect of
recurrent selection on N, was sensitive to selection
strength. For example, for a homogeneous population of
N =107and U = g, the decline of F, over time under recur-
rent selection with s = 0.01 overlapped the neutral curve
when N = 9,973,000, while the decline of F, under recur-
rent selection with s = 0.1 overlapped the neutral curve
when N = 28,220 (Figure 3A). In other words, recurrent
selection had little effect on N,when s = 0.01, while recur-
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Reduction in N, due to recurrent selection. A) The changes of F, over time under selection (left panels) and under neu-
trality (right panel), in the absence of recombination. B) The effects of different selection coefficients (left panel, r = 0) and dif-
ferent recombination rates (right panel, s = 0.1). The starting parameters were: Fo=F o= |, Fgp0= Fr0=0,Ag=0,U = =25

x 105, v = u3.

rent selection reduced N, by over 300-fold when s = 0.1
(Figure 3A and 3B). This reduction in N, by recurrent
selection could be diminished by high recombination
rates (Figure 3B). Although recombination had little
impact on the reduction in N, due to selection under a
model with s = 0.1 and r < 10-3, with r > 0.1, recombina-
tion completely broke the hitchhiking effects of selection
on N,with s = 0.1.

Conclusion

We examined the combined effects of selection, mutation,
and recombination on the effective population size of a
neutral locus that is linked to a locus under selection.
Consistent with other studies [21-23], we found that
selection can increase the inbreeding coefficient and

reduce the inbreeding effective population size. Without
mutation, this reduction is primarily determined by the
initial frequency of the advantageous allele, i.e., the lower
the initial frequency, the greater the effect. With mutation,
this reduction is mostly determined by the strength of
selection, i.e., the stronger the selection, the greater the
effect. With moderate recombination rates (e.g., r < 10-3),
recurrent selection can substantially lower N, though the
hitchhiking effect disappears if the recombination rates
are very high (e.g., 7> 0.1).

The effective population size of HIV-1 during chronic
infection has been shown to be 100- to 100,000-fold
lower than within-host census size. Indeed, CTL responses
are a driving force of HIV-1 evolution and these responses
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continuously select for escape mutants during chronic
infection [28-30]. In a comprehensive study of viral evo-
lution and CTL responses during the first four years of
HIV-1 infection in one subject, Liu et al. [30,31] found
that of the 25 epitopes detected in this subject, 17 were
largely replaced by mutants over time. The selection coef-
ficients for the CTL escape mutant(s) of a single epitope
ranged from 0.2 to 0.4 during acute infection and from
0.0024 to 0.15 during chronic infection, with an average
of 0.03 [30]. Humoral and escape-specific CTL responses
impose additional selective pressures not quantified in
Liu et al. [30,31]. With low to moderate recombination
rates, our model shows that recurrent selection with s =
0.1 reduces viral effective population size by approxi-
mately 300-fold. Therefore, during HIV-1 infection, selec-
tion alone is likely to reduce the viral effective population
size to an N, of ~105. This result is close to the estimate of
N,~5 x 105 that Rouzine and Coffin [6] obtained from a
model that accounts for selection. The small discrepancy
may be due to their use of a lower mutation rate (10-3 vs.
2.5 x 105 in our study) and possible biased sampling of
sites with higher underlying mutation rates in their study

[5].

With high recombination rates, our model predicts that
selection has little effect on N,. Observations of 3 to 13
cross-over events per virion in vitro [17-20] suggest an
intrinsic recombination rate of 104 to 10-3 per adjacent
site per generation. However, this range is not relevant to
our model since these estimates were obtained using het-
erozygous virions, which may not be abundant in vivo.
While Jung and colleagues [32] have demonstrated that
cells in the spleen are infected with multiple viruses (a
pre-requisite for the formation of heterozygous virions),
they did not determine how often heterozygous virions
are formed. More relevant is data in which SCID-HU mice
were infected with a 50:50 mixture of two marked strains
[19]. Two-to-three weeks after infection, an average of
~0.01% of infected cells carried a phenotypic marker of
recombination (present on half of all recombinants).
Conservatively assuming a single generation of recombi-
nation, we estimate from equation (11, Appendix) that
the probability of recombination between their two mark-
ers (which were 408 bp apart) was 7 = ~ p,./(PaP) =
0.0001/(0.5 x 0.5) = ~4 x 10 per virion per generation —
a value too low to break the hitchhiking effects of selec-
tion in our model. However, we recognize these are
approximate values obtained from a somewhat artificial
system. HIV-1 evolution studies could benefit from addi-
tional studies of marked viruses in animal models and
clever retrospective analyses of in vivo data from humans
to determine evolutionarily relevant recombination rates.

http://www.biomedcentral.com/1471-2148/8/133

Methods

Genetic model

We assume a Wright-Fisher model with a neutral locus L
that is linked to a locus under selection, locus S. The
selected locus has two alleles, an advantageous allele, A,
with a fitness w = 1 + s, and a disadvantageous allele, a,
with a fitness of 1. Allele A mutates to a at rate ¢ and allele
a mutates to A at rate v, while neutral mutations at locus
L occur at rate U. A description of all the characters,
parameters, and variables used in this study is listed in
Table 1. For the purposes of calculation, we assume the
following parameters are known: the initial frequency of
allele A (A,); the initial frequency of allele a (a,); and the
initial inbreeding coefficient at locus L among all individ-
uals (F,), among individuals with allele A (F,, ,), among
individuals with allele a (F,, ), and between individuals
with allele A and those with allele a (F,, ,).

Parameters for HIV-1

The average mutation rate of HIV-1 has been estimated to
be 2.5 x 10-> per nucleotide per generation [14], although
one recent study estimated a higher mutation rate of ~8.5
x 105 per site per generation [15]. Assuming that any
nucleotide substitution at a defined nucleotide site shifts
locus S from the advantageous to the disadvantageous
state, we defined x = 2.5 x 10-5 per generation. Assuming
that only a particular nucleotide substitution at this site
increases fitness, we set v = /3. Since the census sizes of
productively HIV-1 infected cells in vivo exceeds 107
[7,33], most of the comparisons in this study were with N
= 107. Since the accumulation of advantageous alleles in
populations is more stochastic as N decreases, we only
examined populations with N > 10¢.

Effect of selection on effective population size without
mutation

Under selection, the inbreeding coefficient of the linked
neutral locus will increase faster than expected by random
genetic drift until the selected advantageous allele is fixed
(A, = 100%). Because we are using a deterministic model,
fixation time is asymptotic. To quantify the effect of selec-
tion, we determined the average time for an advantageous
allele to approach fixation, t, and the value of F at

nearlyfixed’
Eneariyfived- biarhyfied €an  be  calculated  from
A . . .
t= log(attzg ) /log(w), where t is the time just before the

favored allele A at locus S becomes fixed; i.e., when

A, =81 and a, = ;. Fwas calculated with =0, v =0,

and U = 0. The corresponding N, is defined here as the
population size under neutrality that will increase F from

F,to F, between ¢ = 0 and ¢ = 1,404 We deter-

nearlyfixed

mined the corresponding N, under the following condi-
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Table I: Description of characters, parameters and variables.
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Characters Description

) Locus under selection.

L Neutral locus linked to locus S.

A Advantageous allele at locus S.

a Disadvantageous allele at locus S.

Parameters

N Census population size.

s Selection coefficient.

w Fitness of the advantageous allele A, w = | +s.

Y7 Probability that locus S mutates from A to a per virion per generation.

1% Probability that locus S mutates from a to A per virion per generation.

U Probability that mutation occurs at locus L per virion per generation.

r Probability of recombination between loci L and S per virion per generation.

Variables

N, Effective population size.

A, Frequency of allele A at locus §S at generation t.

a, Frequency of allele a at locus S at generation t.

F, Probability that two alleles at locus L are identical by descent at generation t (equivalent to the inbreeding coefficient in classic
population genetics).
Inbreeding coefficient at equilibrium.

F

Faa. ¢ F of locus L between offspring with allele A, at generation t.

Faa t F of locus L between offspring with allele g, at generation t.

Faa. ¢ F of locus L between offspring with alleles A and q, at generation t.

Pa.t Probability that an offspring at generation t is derived from a parent with allele A at generation t-1.

Pa.t Probability that an offspring at generation t is derived from a parent with allele a at generation t-1.

Pasa Probability that an offspring at generation t is derived from a parent with allele A, given that the offspring has allele A.

PAsa t Probability that an offspring at generation t is derived from a parent with allele A, given that the offspring has allele a.

Passa.t Probability that an offspring at generation t is derived from a parent with allele g, given that the offspring has allele a.

Passa ¢ Probability that an offspring at generation t is derived from a parent with allele g, given that the offspring has allele A.

Paa. Probability of an individual at generation t having alleles at loci L and S both being derived from individual(s) with allele A at locus S.

Paa, ¢ Probability of an individual at generation t having locus L derived from an individual with allele A at locus S and locus S derived from
an individual with allele a at locus S.

Poa. ¢ Probability of an individual at generation t having alleles at loci L and S both being derived from individual(s) with allele a at locus S.

P, ¢ Probability of an individual at generation t having locus L derived from an individual with allele a at locus S and locus S derived from

an individual with allele A at locus S.

tions: N = 10°to 10% s = 0.01 to 10; A, = 10-7to 10-3; and
Fy=Fyp0=Fu0=Fauo= 10410 0.8 (if Fy = 1, F will not
change over time without mutation, regardless of selec-
tion).

Effect of selection on effective population size with
mutation and recombination

The frequency of the A allele cannot be maintained at
100% with the occurrence of the back mutation from A to

a at locus S. Therefore t,,,,,,,, Was set to the time that A,
and g, reached equilibrium, i.e., when A, = A,, ;. The corre-

sponding N, the population size under neutrality that

between t = 0 and ¢ =

nearlyfixed

will increase F from Fjto F,

3

nearlyfiear  Was determined using numerical iteration

[Appendix equation (2)]. We determined the correspond-
ing N, under the following conditions: N = 106to 10%; s =
0.01 10 10; Ag= 00 10%; Fy= F,y 0= 10410 1; Fos o= Fruo
=0,ifAy=0and Fy, g= F,,o=F, if Ay>0; 1 =2.5 x 10,
v=/3, U= puto 1000y and r = 0 to 1. With these high
advantageous mutation rates and large population sizes
(Nv>> 1), individuals with allele a had mutations to allele
A in almost every generation, preventing advantageous
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allele A from being lost from the population due to
genetic drift.

Effect of recurrent selection on effective population size
With the fixation of the advantageous allele A, the
inbreeding coefficient of locus L will undergo a nearly
neutral change unless new alleles linked to locus L
become advantageous. To estimate the effect of recurrent
selection on N,, we assumed that all loci under selection
are linked to locus L in the absence of recombination. We
also assumed that each selected locus was under sequen-
tial selection, i.e., when the frequency of an advantageous
allele reached 99.9% at generation t, we assumed that
another locus started to undergo selection (calculated by
settingA,=0, F,, ,=F, F,, ,=0,and F,, ,= 0). For simplic-
ity, we assumed that all of the selected loci have the same
mutation rate and selection coefficient. We calculated F
under recurrent selection under the following conditions:
N =107, Ag=0, Fypo=Fuuo=0, Fo= Fyuo=1, £= 2.5 x 10-
5, v=p/3,and U=y 5s=0.01t0 10; and r=0to 1.

Estimate of the effect of selection on variance effective
population size by simulation

The change in the average inbreeding coefficient is one of
several criteria used to estimate effective population size
[24-27]. To validate our results using a different measure
of effective population size, we estimated the effect of
selection on N, by calculating the variance in the fre-
quency of the linked neutral allele from simulations using
the genetic model described above. The parameters used
in these simulations were the same as those used for the
calculation for the inbreeding coefficient described above.
When simulating selection in the absence of mutation,
the simulations were performed under the following con-
ditions: N = 107; s = 0.01 to 10; A= 107 t0 10-3; Fy=F,, o
=F,0=Fs.0=0.1; u=v=U=0; and r = 0. When simulat-
ing selection in the presence of mutation, the simulations
were performed with the following conditions: N = 107; s
=0.01t010; Ag= 0; Fy=Fyo=1, Fypn o= Fap0=0; £=2.5
x 105, v=p/3,and U = g5 =0.01 to 10; and r = 0 to 1.
Since the deterministic model assumes an infinite popula-
tion size, we only examined a large population size of 107.
For each condition, 100,000 simulations were repeated.
We calculated the variance of the allele frequency at the

linked neutral locus L at the corresponding t,,1yfixed-

Under neutrality in the absence of mutation, the allele fre-
quency variance can be calculated by

p(1=p)[1 - (1—=)'1[34]. Therefore, the population size

under neutrality (N,) that has the same variance in allele

frequency as the population under selection can be deter-

http://www.biomedcentral.com/1471-2148/8/133

mined using numerical iteration. In the presence of muta-
tion, we used simulation to determine the range of the
population size under neutrality. These were used to
determine the range of allele frequency variances that
matched the frequency variance under selection at the cor-
responding t

nearlyfixed-
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Appendix

Recurrence equation for F in the absence of selection

In the absence of mutation or selection, the inbreeding
coefficient is

1 1 1
Fo= gt h =1-0-'-Fp) (M

where ¢ is time in generations and N is the population size
[26]. % gives the probability that two offspring are
derived from same parent in which case the probability of
them being identical by descendent is 1. (1 - ﬁ) is the

probability that two offspring are derived from different
parents in which case the probability of them being iden-
tical by descendent is F, ;. In the presence of mutation,

F, =[4 + (1 - 1)F](1-U)?[35]. To obtain F, in terms
of Fy let a=Lx(1-U)?, and B=(1-L)x(1-U)>.
This gives

F, = a+ fF,
Fy=a+ fF =a+fx(a+fF) =a+af+ PF,
Fy=a+ fF,=a+ Bx (a+afi+ BF) = a+ af+ aff + BF,
Fo=a+af+aff+aff+..+af,+ pF,

The formula, 1 + x + ... + x*1 = (1-x7)/(1-x), gives the fol-
lowing:

Fi=a(1-2)/(1-p) + PF, (2)
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As t approaches infinity, F converges to the equilibrium

F= Ui)tﬁ = 132N+ 2 shown previously by Kimura and

Crow [35].

Recurrence equations for F in the presence of a selected
locus without recombination

In the presence of selection, the F value at time t is the sum
of the probability of two offspring being derived from par-
ents having alleles AA, aa, or Aa at locus S multiplied by
the probability that the offspring will be identical by
descent at locus L. In other words:

1
F, :{ni,,liﬂlf

1 1
NALL NALT a1l + 20400 Faai }(1 -u)*.

3)

Here, A, ; and a, , are the frequencies of the advantageous

1
VEanl+ Pf,l[m +(1-

and disadvantageous alleles at locus S at generation t-1.

wAr—1

pA,l = WA;_1+a;_q and pa,t =

ar—1 . _
wh, g ra; o 81Ve the proba

bilities that an offspring at generation ¢ is derived from a
parent at generation t-1 with allele A or a, respectively.
Fua Fau and F, give the probabilities that parents with the
indicated alleles will be identical by descent at locus L.
Given that both parents have allele A or a at locus S, the

1 1
NA; and Nay_q

terms respectively give the probabili-

ties that two offspring have the same parent (in which case
the probability of being identical by descent at locus L, in

1

NA; | and

the absence of mutation is 1). The 1-

1
Nag—1

terms give the probability that the two off-

spring came from different parents (in which case the
probabilities of identity by descent at locus L, in the
absence of mutation, are F,, ., and F,, ,, respectively).

The term (1-U)2 accounts for the fact that two individuals
cannot be identical by descent if there is a mutation at the
neutral locus L.

If the parameters w, 1, v, U, Ay, ao, Fo, Fap o Fagor and Fy, o
are known, F, can be calculated using equation (3). In
addition, F,, , F,, ;, and F,, ; can be calculated using the
following equations:

1 1 2 1 1
Fap, = |———+(1-——)F |——+(1-—)F,
ane ={(Pasar) [NA[_l +( NAt—l) ani ]+ (Passad) [N‘lt—l +( Nat_l) a1
+2pA—>A,zpa—>A,zFAa,z—1}(1 - U)2r
(4)

http://www.biomedcentral.com/1471-2148/8/133

LR P
Nag—q Nag—q

Faas = {(acsa)’l Fania | (acs) Ty — 0= I agcl

1
NA{—
+2p AssaiPasaFaae-1} (1= U)?

(5)

and

FAa,t = (pA—)A,tpa—m,t FAa,t—l + pa—m,tpa—)A,t Faa,t—l + pA—m,lpA—)A,t
FAA,I—] + pA—)a,tpa—m,tFAa,t—l)(l - U)2 (6)

Where p,_,, ,is the probability that a sampled offspring is
descended from a parent with allele x given that the off-
spring has allele y at locus S. The reasoning behind equa-
tions (4) - (6) is similar to that for equation (3). For each
offspring, p,_,, ,can be calculated as the probability of the
parent having allele x at locus S multiplied by the proba-
bility that x mutates to y (or fails to mutate, if x = y),
divided by the probability that the offspring is y. In other
words,

wxAg—q a1
B TN Y V.V J e p— L S—y '}
Pasar wxA;_q+ar_ (A=u)/Asr Passay wxAg_1 +ag_1 v/ A
and
a1 WXAp_1
=—(1- ’ [
Pasar WXA;_1+a;_1 (I-v)/ay, Pasa WxA[_1+as_1 u/a,
where A, and a, are given by
WXAf_ ap—
=l ey Sy
WXAt—l +ag—1 WXAt—l +ag—1
(7)
ag_ wWAf_
a,=—L 1)+ =1 (8)

L wat_1+at_1 wat_1+at_1

When A, ay, Fy, Fyy 1, F,y 1, and Fy, ; are available, we can
calculate F, using equation (3), and F,, ,, F,,,, and F4, ,
using equations (4) to (6). Therefore, F, can be obtained

by iteration.

Recurrence equations for F in the presence of a selected
locus and recombination

Assuming that loci L and S recombine with a probability
r per generation, we obtain

Npa,t—1
Pop, = 1-71)+ r—— ©)
ane =Pl )+ Pay N1
Np t_l
Paa,t =pa,t(1_r)+pa,trﬁ (10)
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Npat
N-1

(11)

PA(l,t =Pary = Pal

where p,, , is the probability that an individual at genera-
tion t has a neutral locus L derived from an individual
with allele x at locus S, and a selected locus S derived from
an individual with allele y at locus S (x and y can be A or
a). This probability is the sum of the probability of no
recombination and the probability of recombination
between individuals with indicated allele at locus S. The -
I's in the (Np, ,- 1) and (N - 1) terms above account for
the fact that a haploid individual cannot recombine with
itself.

Similar to equations (3) - (6), with recombination,

1 1
— +(-——)F
PR v LU

1 1
—+(1-——)F,
T e LTS

F2(P arPans + PaniPaas + PariP aas  PaaiP ra)Faai-1

(PAns + PRas +20an P aac)l
Fo =3 +(Pans +Piae + 2Par P aas)l a-uy

1

1 S 1 , .
= {Pf«,r[m +(1- m)"m,wu] + ﬂf,:[m +(1- Weaap1]+ 20 PaiFaai- }(1 -uy?

(12)

1
Nag—1

PAAO=)+PAgV 2 1 1
F., = [ +(1- F,
AAL {( At ) lN/\[_l ( NAt—l) AA, 1—1]
1-u)+paqv 1 1
+ Paa( /(‘) Paa )2 S a- )E,
ag_1 Nag_y
. 2[p AA(1=p)xpaA (=) +P AA(A—1)XPpaav+Pas (1—1)XP AqV+P AaV>*P aa?] F 1 -u)?
A2 Aa,i-1
t

a, =

(13)

PAa(1=V)+PAAR o 1 1
F..= 1- F
was = {( a ) Na +( NA )Eas, 11
Paa(1=v)+PaAlt > 1 (11— 1 F
o PRI 2 (1
. 2[pAa(1-v)Xpaa(1-v)+p Aa(1-V)XPaAH+Paa(1—V)XP AAL+P AAUXPaAM] F 1 -1)?
Aa,t-1
at

(14)

PAAQ=1)+pAaVy ., PAa(I=V)+PAAM 1 1

Faqr = [ 1- F,

aar ={( n, )% ( a )lNAt_l +( NAz—l) an, -
PaA(-1)+paa? Paa(l1-v)+paAlt 1 1= 1 F

+( A )x( B )i Nag1 +( Nar1 )Faa, 111

. 20 AAPaAM(I=1)+2P AP aaV(1—V)+(P AAPaa+PaAP Aa) | (1—1) (1-v)+1v] F )1 -u)?
Aa, -1

Atar
(15)

where A, and a, are calculated using equations (7) and (8).
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