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Abstract
Background: Plastids have inherited their own genomes from a single cyanobacterial ancestor,
but the majority of cyanobacterial genes, once retained in the ancestral plastid genome, have been
lost or transferred into the eukaryotic host nuclear genome via endosymbiotic gene transfer.
Although previous studies showed that cyanobacterial gnd genes, which encode 6-
phosphogluconate dehydrogenase, are present in several plastid-lacking protists as well as primary
and secondary plastid-containing phototrophic eukaryotes, the evolutionary paths of these genes
remain elusive.

Results: Here we show an extended phylogenetic analysis including novel gnd gene sequences
from Excavata and Glaucophyta. Our analysis demonstrated the patchy distribution of the excavate
genes in the gnd gene phylogeny. The Diplonema gene was related to cytosol-type genes in red algae
and Opisthokonta, while heterolobosean genes occupied basal phylogenetic positions with plastid-
type red algal genes within the monophyletic eukaryotic group that is sister to cyanobacterial genes.
Statistical tests based on exhaustive maximum likelihood analyses strongly rejected that
heterolobosean gnd genes were derived from a secondary plastid of green lineage. In addition, the
cyanobacterial gnd genes from phototrophic and phagotrophic species in Euglenida were robustly
monophyletic with Stramenopiles, and this monophyletic clade was moderately separated from
those of red algae. These data suggest that these secondary phototrophic groups might have
acquired the cyanobacterial genes independently of secondary endosymbioses.

Conclusion: We propose an evolutionary scenario in which plastid-lacking Excavata acquired
cyanobacterial gnd genes via eukaryote-to-eukaryote lateral gene transfer or primary
endosymbiotic gene transfer early in eukaryotic evolution, and then lost either their pre-existing
or cyanobacterial gene.
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Background
A cyanobacterium-like ancestor gave rise via primary
endosymbiosis to a distinctive endosymbiotic organelle,
the plastid (primary plastid), in eukaryotic cells [1,2].
Some eukaryotic lineages retained the plastid through suc-
cessive generations, and its photosynthetic ability enabled
them to grow autotrophically. Some may have lost the
plastid, and returned to their previous heterotrophic state,
whereas others may have never experienced such an endo-
symbiotic event.

Green plants (green algae and land plants), Glaucophyta
and red algae are primary plastid-containing photosyn-
thetic eukaryotes. They are classified into a single super-
group, Archaeplastida, among the six 'super-groups' pro-
posed by Adl et al. [3]. It is generally believed that the
majority of the cyanobacterial genes (genes sharing their
origins with cyanobacterial homologues) found in the
nuclear genomes of extant Archaeplastida were recruited
from cyanobacterium-like endosymbionts via endosym-
biotic gene transfer (EGT) [4-6].

Other algae in several independent lineages are thought to
have secondarily acquired plastids by engulfing primary
photosynthetic eukaryotes. These have evolved into sec-
ondary plastid-containing photosynthetic eukaryotes
(secondary phototrophs) [1,2]. Most secondary plastids
in the super-group Chromalveolata, which consists of
Stramenopiles, Alveolata, Haptophyta and Cryptophyta,
are derived from red algae. Chlorarachniophyta in the
Rhizaria group and Euglenida in the Excavata group pos-
sess secondary plastids derived from green algal ancestors
[7-9]. A large number of plastid-related cyanobacterial
genes were further introduced into nuclear genomes of
secondary phototrophs via secondary EGT [10-12].

Although several studies have reported cyanobacterial
genes in plastid-lacking eukaryotes [13,14], gnd genes are
remarkable in their broad distribution among primary
and secondary plastid-containing photosynthetic eukary-
otes as well as among plastid-lacking protists [15,16]. The
gnd gene encodes an oxidative pentose phosphate path-
way enzyme, 6-phosphogluconate dehydrogenase, which
is important in regulating sugar metabolism and intracel-
lular redox state. Previous studies reported that the gnd
gene is widely conserved among eukaryotes and eubacte-
ria [17], and showed that there are two types of gnd genes;
one is phylogenetically close to cyanobacterial gnd genes
(termed 'cyanobacterial gnd'), and the other resembles
cytosol-localized gnd genes in Opisthokonta (termed
'eukaryotic ancestral gnd'). Cyanobacterial gnd genes are
present not only in primary and secondary phototrophs,
but also in plastid-lacking protists. These include the plant
pathogen Phytophthora that is classified into the super-
group Chromalveolata, and the heterolobosean amoebo-

flagellates that are classified into the super-group Excavata
[15,16]. These pioneering studies suggested a possible sce-
nario that cyanobacterial gnd genes were introduced via
primary or secondary endosymbiosis [15-17]. Neverthe-
less, the origin and evolutionary relationships of these
genes in photosynthetic and plastid-lacking eukaryotes
remains inconclusive.

We present here an extended analysis of the phylogeny of
gnd genes with emphasis on the plastid-lacking excavate
protists. We also discuss the origin and evolutionary his-
tory of the cyanobacterial genes in plastid-lacking protists,
within the scope of previously proposed hypotheses on
ancient lateral gene transfer (LGT) and EGT events.

Methods
Culture material
Diplonema papillatum (ATCC No. 50162) was axenically
cultured at 25°C in artificial seawater supplemented with
1% horse serum (Invitrogen, Carlsbad, CA, USA), 1 ×
Daigo IMK medium (Nippon Pharmaceutical, Tokyo,
Japan) and 0.1% tryptone. Peranema trichophorum cells,
co-cultured with Chlorogonium sp., were provided by Dr.
Toshinobu Suzaki (Kobe University). Euglena gracilis Z
(NIES-48) was cultured as described previously [18].

cDNA Library construction and PCR-based gene isolation
D. papillatum genomic DNA was extracted using the
DNeasy plant mini kit (Qiagen, Hilden, Germany). P. tri-
chophorum full-length cDNA sequences were synthesized
using the SV total RNA isolation system (Promega, Madi-
son, WI, USA) and the CapFishing full-length cDNA kit
(Seegene, Seoul, Korea). Glaucophyte cDNAs (Cyanophora
paradoxa NIES-547, Gloeochaete wittrockiana SAG 46.84
and Cyanoptyche gloeocystis SAG 34.90) were prepared as
described in the previous study [19], and used as tem-
plates for gene isolation. Fragments of gnd genes were
amplified using nested-degenerated primers based on the
conserved amino acid motif GLAVMGQN for forward
primers (GGIYTIGCIGTIATGGGICA or YTIGCIGTIAT-
GGGICARAA) and QAQRDFFG for reverse primers
(CCRAARAARTCICKYTGIGC or AARAARTCICKYTGIG-
CYTG). PCR products and cDNA clones were sequenced
directly or after TA-cloning, using an ABI PRISM 3100
genetic analyzer (Applied Biosystems, Foster City, CA,
USA) with a BigDye Terminator Cycle Sequencing Ready
Reaction kit v. 3.1 (Applied Biosystems). Expressed
sequence tags (ESTs) of Euglena gracilis (3,934 sequenced
clones, average length 532 bp) were generated by
sequencing cDNA clones selected at random from a cDNA
library (average insert size, >1 kbp) constructed using a
cDNA synthesis kit (Stratagene, Cedar Creek, TX, USA).
The EST sequencing was performed at the Dragon
Genomics Center, Takara Bio Inc. (Yokkaichi, Japan). A
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clone harboring the full-length gnd gene sequence was
identified by BLAST search.

Phylogenetic analysis
The data matrix of gnd genes was based on the amino acid
alignment in Andersson and Roger [15]. We excluded
amitochondrial and/or parasitic eukaryotes, which might
cause long branch attraction due to unusual nucleotide
substitutions [15,20,21]. We included the novel
sequences determined in this study (Table 1), and
sequences identified by the BLAST program from the Gald-
ieria sulphuraria genome database [22], the Joint Genome
Institute [23] and the Acanthamoeba castellanii EST data-
base in TBestDB [24]. The sequences were aligned using
CLUSTAL X [25] and manually refined using SeaView
[26]. The data matrix was made with 63 taxa and 437
amino acid sites (available upon request to SM). Data
matrices excluding Heterolobosea (61 taxa, 437 sites) and
including amitochondrial and/or parasitic eukaryotes (72
taxa, 437 sites) were also prepared to construct additional
trees (Additional files 1 and 2, respectively).

Bayesian inference was performed with the program
MrBayes version 3.1.2 [27] using the WAG matrix of
amino acid replacements assuming a proportion of invar-
iant positions and four gamma-distributed rates
(WAG+I+Γ4 model). For the MrBayes consensus trees,
1,000,000 generations were completed with trees col-
lected every 100 generations. One thousand replicates of
bootstrap analyses by maximum likelihood (ML) method
were performed using PhyML version 2.4.4 [28] with the
WAG+I+Γ4 model on two SunFire 15K machines, each of
which has 96 CPUs. Bootstrap values (1,000 replicates)
based on maximum parsimony (MP) analysis were calcu-
lated with PAUP 4.0 b10 with TBR heuristic search [29].
For exhaustive ML analysis, topology-dependent sitewise
likelihood values were calculated using TREE-PUZZLE
version 5.2 under a WAG+F+Γ8 model [30]. Alternative
tree topologies were analyzed with the approximately
unbiased (AU) [31] and Kishino-Hasegawa (KH) [32]
tests, and the resampling estimated log-likelihood (RELL)
bootstrap support values [33], using the CONSEL package
[31].

Results and Discussion
Phylogenetic and statistical analysis of gnd genes
Fig. 1 shows a Bayesian consensus tree from a matrix with
63 taxa, with Bayesian posterior probabilities (Bayes) of
70% or more, and ML and MP bootstrap support values of
50% or more. As reported previously [15,16], all the red
algae examined have both cyanobacterial and eukaryotic
ancestral gnd genes. Although several excavate gnd genes
(Heterolobosea and Euglenida) were cyanobacterial in
agreement with the previous studies [15,16], the gnd gene
from another excavate species, D. papillatum, was found to
group with Opisthokonta and red algal eukaryotic ances-
tral genes (Bayes|ML|MP = 79|--|--). Several proteobacte-
rial species (Vibrio, Neisseria and Haemophilus) showed a
weak affinity to eukaryotic genes (Bayes|ML|MP =
100|73|--), and Amoebozoa was located outermost in the
eukaryotic ancestral clade (Bayes|ML|MP = 100|99|94).
Notably, red algae and excavate genes shared basal posi-
tions within each of the cyanobacterial and eukaryotic
ancestral clades. As shown in Trypanosoma, Giardia and
Trichomonas [15], the EW sequence signature, which is
unique to the cyanobacterial gnd genes, was absent in the
D. papillatum gnd gene (Table 1, Additional file 3), con-
firming its non-cyanobacterial origin. However, the para-
sitic excavates were positioned outside of the eukaryotic
ancestral clade with weak support values in the tree of 72
taxa (Additional file 2), possibly due to long branch
attraction. Whether the genes from parasitic Excavata truly
shared the same origin as known free-living Excavata
genes, or were independently acquired via prokaryote-to-
eukaryote LGT is open to further investigation of evolu-
tionary signals and functional characterization. Our
results and currently available genome information sug-
gest that, while each red algal species possesses both
cyanobacterial and eukaryotic ancestral genes and sup-
posedly use them in different cellular compartments, free-
living Excavata examined to date have just one or the
other.

Cyanobacterial genes from bikonts [34] (namely Archae-
plastida, Stramenopiles and Excavata in this study) were
robustly monophyletic (Bayes|ML|MP = 100|100|98) and
showed a strong affiliation with the genes from cyanobac-
teria (Bayes|ML|MP = 100|91|76) (Fig. 1). In the cyano-

Table 1: Sequences encompassing the EW signature and accession numbers of gnd genes identified in this study

Species name Taxonomy EW signature Accession number

Cyanophora paradoxa Glaucophyta IDGGNEWYENTE AB425331
Gloeochaete wittrockiana Glaucophyta IDGGNEWYKNTE AB425332
Cyanoptyche gloeocystis Glaucophyta IDGGNEWYLNTE AB425333
Euglena gracilis Euglenida VDGGNEWFPNSQ AB425328
Peranema trichophorum Euglenida IDGGNEWFPNTL AB425329
Diplonema papillatum Diplonemea IDGGNSHFPDSI AB425330

EW signature residues conserved among cyanobacterial gnd genes [15] are indicated in bold.
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MrBayes consensus tree of gnd genes, constructed with 437 amino acid sites from 63 taxaFigure 1
MrBayes consensus tree of gnd genes, constructed with 437 amino acid sites from 63 taxa. Bayesian posterior 
probabilities (Bayes) (70% or more) and maximum likelihood (ML) and maximum parsimony (MP) bootstrap support values 
(50% or more) are shown. The thick branches are represented as described in the figure.
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bacterial gene clade, each of the three divisions of
Archaeplastida (green plants, Glaucophyta and red algae)
was monophyletic but separately located (Fig. 1). Glauco-
phyte gnd genes formed a monophyletic group with green
plants, Euglenida, and Stramenopiles with moderate sup-
port values (Bayes|ML|MP = 100|64|59). Secondary pho-
totrophs and the plastid-lacking heterotrophic relatives
from Euglenida and Stramenopiles were robustly mono-
phyletic (Bayes|ML|MP = 100|100|100). Plastid-lacking
heterolobosean protists and red algae were located at the
basal position in the cyanobacterial clade, weakly forming
a monophyletic group (Bayes|ML|MP = 74|-|-).

To test the possibility that the plastid-lacking excavate
protists acquired gnd genes via secondary endosymbiosis
of a green alga [15], we carried out an exhaustive ML anal-
ysis for calculating the likelihood values of alternative tree
topologies. First, based on the topology in Fig. 1, we
defined six groups in which monophyly was confirmed by
all three methods (Bayes = 100, ML > 50, MP > 50): green
plants (Green), Glaucophyta (Glauco), Stramenopiles +
Euglenida (EuSt), Heterolobosea (Htrl), red algae (Red)
and others (Outgroup). Then, we constructed all possible
105 trees, fixing the intra-group topologies of the six

monophyletic groups as in Fig. 1, and calculated probabil-
ities of each tree for AU and KH tests (Table 2, Additional
file 3). All possible 15 trees supporting the monophyly of
Green + Htrl were rejected by both AU and KH tests at the
5% confidence level. All possible nine trees supporting
monophyly of Green + EuSt + Htrl groups were also
rejected by both tests at the 5% confidence level (Table 2).

Although our tree topology in Fig. 1 suggests that cyano-
bacterial genes from bikonts were originally acquired via
a single gene transfer event from cyanobacteria, there are
two possible explanations of their origin as discussed in
the previous study [15]; early primary EGT from the ances-
tral plastid genome, or prokaryote-to-eukaryote LGT from
a close relative of extant cyanobacteria independently of
EGT. We favor the former scenario for the following rea-
sons: 1) the gnd gene product is functionally plastid-
related, and is enzymatically localized to the plastid in
green plants [17]; and 2) the overall tree topology in Fig.
1 is consistent with a recent multigene phylogeny of
eukaryotes based on slowly evolving nuclear genes [19].

Table 2: Comparison of alternative tree topologies by exhaustive maximum likelihood (ML) analysis

Treea Topologyb ΔlnLc S.E. pAUd pKHd RELLe

1 (Out, (Red, Htrl), (EuSt, (Glauco, Green))); <-27143.41> - 0.867 0.758 0.283
36 (Out, Red, ((Htrl, Green), (EuSt, Glauco))); 30.2 14.4 0.038 0.020 5.00E-06
49 (Out, ((Red, (Htrl, Green)), EuSt), Glauco); 54.7 17.8 0.013 0.003 2.00E-04
54 (Out, ((Red, (Htrl, Green)), Glauco), EuSt); 40.1 19.3 0.011 0.024 3.00E-04
56 (Out, Red, (((Htrl, Green), Glauco), EuSt)); 27.8 15.8 0.009 0.038 4.00E-04
58 (Out, ((Red, Glauco), (Htrl, Green)), EuSt); 41.6 19.4 0.009 0.021 3.00E-06
70 (Out, ((Red, EuSt), (Htrl, Green)), Glauco); 52.8 18.2 0.004 0.005 3.00E-07
71 * (Out, (Red, (Htrl, (EuSt, Green))), Glauco); 48.9 15.5 0.004 0.002 1.00E-05
82 * (Out, (Red, ((Htrl, Green), EuSt)), Glauco); 57.1 17.8 0.001 0.002 3.00E-06
85 (Out, (Red, (EuSt, Glauco)), (Htrl, Green)); 44.1 15.0 0.001 0.004 2.00E-05
86 (Out, (Red, ((Htrl, Green), Glauco)), EuSt); 39.2 19.1 5.00E-04 0.025 6.00E-06
87 * (Out, Red, (((Htrl, EuSt), Green), Glauco)); 29.5 14.8 4.00E-04 0.025 1.00E-06
89 (Out, ((Red, EuSt), Glauco), (Htrl, Green)); 51.3 18.0 2.00E-04 0.005 3.00E-06
91 * (Out, Red, ((Htrl, (EuSt, Green)), Glauco)); 27.9 14.5 1.00E-04 0.028 1.00E-05
93 * (Out, (Red, Glauco), (Htrl, (EuSt, Green))); 50.0 16.3 1.00E-04 0.003 3.00E-06
94 * (Out, (Red, ((Htrl, EuSt), Green)), Glauco); 54.0 18.5 1.00E-04 0.004 1.00E-06
95 (Out, (Red, EuSt), ((Htrl, Green), Glauco)); 44.8 18.5 6.00E-05 0.012 2.00E-06
96 (Out, (Red, (Htrl, Green)), (EuSt, Glauco)); 41.4 15.0 3.00E-05 0.005 5.00E-07
98 * (Out, (Red, Glauco), ((Htrl, EuSt), Green)); 52.5 18.7 2.00E-06 0.006 7.00E-07
101 (Out, ((Red, Glauco), EuSt), (Htrl, Green)); 55.7 18.0 2.00E-40 0.003 2.00E-15
103 * (Out, (Red, Glauco), ((Htrl, Green), EuSt)); 57.0 18.2 2.00E-53 0.003 1.00E-17
104 * (Out, Red, (((Htrl, Green), EuSt), Glauco)); 32.8 15.0 3.00E-56 0.016 8.00E-19

aBest tree (tree 1) and trees supporting the monophyly of green plants + Heterolobosea among all the possible 105 trees retaining six monophyletic 
groups in Fig. 1.
bGreen, green plants; Htrl, Heterolobosea; Glauco, Glaucophyta; EuSt, Euglenida and Stramenopiles; Red, red algae; Out, eukaryotic ancestral clade 
and cyanobacteria. Intra-group topologies of six groups are fixed as shown in Fig. 1.
cDifference in the log-likelihood value of alternative tree versus the 'best' tree.
dProbability values of the approximately unbiased (AU) and Kishino-Hasegawa (KH) tests.
eBootstrap support value of resampling estimated log-likelihood with 10,000 replicates.
Asterisks indicate the topologies supporting the monophyly of Green + Htrl + EuSt.
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Origins of plastid-lacking excavate gnd genes
Heterolobosean gnd genes occupied the basal positions in
the cyanobacterial clade and weakly formed a mono-
phyletic group with red algae. Although our tree topology
suggests that euglenid and heterolobosean gnd genes are
distantly related, previous studies have not clearly
excluded the single secondary-plastid origin of these genes
[15,16]. To test whether the heterolobosean gnd genes
could originate with secondary EGT as suggested by the
'plastids-early' hypothesis for secondary plastids in Eugle-
nida [8], we verified the possibility that the cyanobacterial
gnd genes in plastid-lacking heterolobosean protists and
green plants could be potentially monophyletic, using
confidence tests based on exhaustive ML analyses (Table
2). According to the plastids-early hypothesis for second-
ary plastids in Euglenida [8], the secondary endosymbio-
sis of green alga occurred in the common ancestor of
Euglenida and Heterolobosea, and extant plastid-lacking
protists within these taxa have secondarily lost their plas-
tids and photosynthesis-related genes. Although this
hypothesis is contentious [1,8], it is worth verifying
because this is the leading explanation for the acquisition
of cyanobacterial genes through secondary endosymbi-
onts in Heterolobosea. Considering that the orientation
of LGT between the ancestors of Stramenopiles and Eugle-
nida is unknown, we examined two possibilities on the
origin of the euglenid and heterolobosean gnd genes.
First, we examined the possibility that ancient euglenid
gnd was transferred into the common ancestor of Stra-
menopiles, which postulates the monophyly of Stra-
menopiles, Euglenida, Heterolobosea and green plants.
Then we examined the second possibility that an ancient
stramenopile gnd was acquired by the euglenid ancestor,
which assumes that Heterolobosea and green plants are
exclusively monophyletic. All the trees supporting first or
second possibilities were rejected by AU and KH tests at
the 5% confidence level (Table 2). These results suggested
that heterolobosean gnd genes were not secondary green
plastid-derived, and that the gnd gene phylogeny did not
support the plastids-early hypothesis [8,35]. Taken
together, our data disallowed the plastids-early hypothe-
sis, and showed that a secondary endosymbiotic origin of
the gnd genes from green alga into plastid-lacking excavate
protists is unlikely.

It is striking that Euglenida is monophyletic with Stra-
menopiles in the cyanobacterial clade (Fig. 1). Recent
phylogenetic analyses of the plastid-encoded and nuclear-
encoded plastid-targeted genes suggest that the ancestor of
euglenid secondary plastids branches within green algae,
inconsistent with our gnd tree topology [9,36]. The mono-
phyly of cyanobacterial gnd genes from E. gracilis and plas-
tid-lacking P. trichophorum further suggests that euglenid
gnd genes have not been recruited via secondary EGT of a
green alga, because the 'plastids-recent' hypothesis argues

that eukaryovorous euglenid species such as P. trichopho-
rum diverged before the secondary endosymbiotic event
in the Euglenida lineage [8]. Meanwhile, the presence of
the cyanobacterial genes in Stramenopiles, including pho-
tosynthetic algae and the plastid-lacking oomycete Phy-
tophthora, is apparently consistent with the
'Chromalveolate hypothesis' [1,13], which suggests that
secondary plastids of Chromalveolata have been acquired
through a single secondary endosymbiotic event. The
most likely explanation is that the ancestor of the euglen-
ida host cells acquired a gnd gene via ancient LGT from the
stramenopile lineage before their divergence. This also
explains well why Euglenida and Heterolobosea are
robustly separated in the gnd phylogeny (Fig. 1) despite
the close relatedness of these two lineages based on SSU
rRNA gene phylogeny [35] and multiple nuclear-encoded
protein phylogenies [36,37].

Evolutionary history of gnd genes and plastid-lacking 
excavate genomes
Although our gnd tree topology appears unexpected com-
pared with the prevailing view of plastid evolution [38],
several gene phylogenies that suggested imprints of gene
transfer between Euglenida and Stramenopiles have been
reported. In the plastid-targeted phosphoribulokinase
(PRK) gene phylogeny [39], red algal genes were basal in
the eukaryotic clade and were separated from chromalve-
olate and green plant genes. Furthermore, euglenid and
chromalveolate PRK genes were monophyletic and sister
to green plants, and the authors reasoned that these sec-
ondary phototrophs might acquire PRK genes via inde-
pendent LGT events. As discussed above, it is likely that
Euglenida has acquired a cyanobacterial gnd gene from
the ancestor of Stramenopiles via LGT. Although PRK
genes are found only in photosynthetic organisms (cyano-
bacteria, algae and land plants) and the origin of euglenid
PRK genes was phylogenetically unresolved, one can
argue that PRK and cyanobacterial gnd genes might have
gone through similar evolutionary histories. A phyloge-
netic analysis of plastid-targeted fructose-1,6-bisphos-
phatase (FBP) genes illustrated another case of LGT
between Euglenida and Chromalveolata [40]. Thus these
genes might have been transferred from the stramenopile
lineage to the euglenid lineage via multiple LGT events,
perhaps phagocytosis of secondary phototrophs by a
phagotrophic ancestor as suggested in the chlorarachnio-
phyte Bigelowiella natans [41].

In the cyanobacterial gnd gene subtree, the red algal clade
was at the basal position and was moderately separated
from green plants and Glaucophyta. An additional phylo-
genetic analysis excluding Heterolobosea recovered the
basal position of red algae in this subtree, suggesting that
long branch attraction or artificial misplacement of red
algae by heterolobosean sequences was unlikely (addi-
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tional file 1). Additionally, provided that the cyanobacte-
rial genes from bikonts were robustly monophyletic (Fig.
1), in contrast to well-characterized examples of prokary-
ote-to-eukaryote LGTs [42-44], it is unlikely that the
cyanobacterial gnd genes from bikonts had been acquired
via multiple LGTs from cyanobacteria to eukaryotes.
Recently, two competing hypotheses on Archaeplastida
phylogeny were proposed (monophyly vs. non-mono-
phyly) [19,45]. The phylogenetic position of red algae in
Fig. 1 is inconsistent with the monophyletic hypothesis of
the Archaeplastida [45] unless multiple eukaryote-to-
eukaryote LGTs are hypothesized (Fig. 2A). Although red
algal and glaucophyte ancestries of the heterolobosean
genes were not significantly dismissed, AU tests rejected
the possible secondary EGT from green alga to Heterolo-
bosea (Table 2). Hence, the eukaryote-to-eukaryote LGTs
shown in Fig. 2A are likely sources of gnd genes in plastid-
lacking protists, in terms of the monophyletic hypothesis
of the Archaeplastida [45-47]. However, monophyly of
red algae plus Stramenopiles (plus Euglenida) was not
rejected in our statistical tests (Additional file 4), suggest-
ing that the stramenopile genes might be attributed to sec-
ondary EGT of red alga. On the other hand, an increasing
number of multigene phylogenies showed that mono-
phyly of Archaeplastida had limited or no support [19,47-
49]. Therefore it is advisable to discuss the evolutionary
history of gnd genes, taking a different point of view on
the plastid evolution into consideration (Fig. 2B). In
terms of the non-monophyly hypothesis of the Archae-
plastida, it is reasonable to suggest that the gnd gene phy-
logeny may reflect the host cell phylogeny as recently
resolved by a multiple slowly evolving nuclear gene phyl-
ogeny [19], which demonstrated the non-monophyly of
Archaeplastida and the most basal positioning of red
algae plus Excavata within the bikonts (Fig. 2B).

Possible evolutionary scenarios of plastid and host nuclear 
genomes
We propose evolutionary scenarios in which the common
ancestor of eukaryotes possessed a eubacteria-derived
eukaryotic ancestral gnd gene, and the bikonts lineage
additionally acquired the cyanobacterial gnd gene via a
single primary endosymbiosis [50-52] (but see [53,54] for
alternative views), and then diversified into Archaeplast-
ida, Chromalveolata, Excavata (and Rhizaria) (Fig. 2).
Given that recent large-scale molecular phylogenies dem-
onstrated the monophyly of bikonts [19,45-47] based on
the rooting of eukaryotes [34], and no data providing evi-
dence on primary and secondary plastids in the unikonts
has been shown, we illustrated two likely scenarios in Fig.
2. In scenario A, we assumed monophyly of Archaeplast-
ida [e.g. [45]], and accordingly, at least two gains of
cyanobacterial gnd genes via LGT and multiple losses of
eukaryotic ancestral genes in separate lineages of bikonts.
In scenario B, we presumed that all the bikonts including

Evolutionary scenarios on the cyanobacterial and eukaryotic ancestral gnd gene distribution in bikontsFigure 2
Evolutionary scenarios on the cyanobacterial and 
eukaryotic ancestral gnd gene distribution in bikonts. 
A, Traditional view of host cell phylogeny of bikonts [e.g. 45], 
assuming the multiple loss events of eukaryotic ancestral 
genes and at least two lateral gene transfer events (LGT) of 
cyanobacterial genes (broken lines plus white arrows). B, 
Alternative phylogeny [e.g. 19], assuming a single loss and a 
single lateral gene transfer event. Although only either the 
cyanobacterial or eukaryotic ancestral gene was found in 
Excavata in this study, only one is illustrated for clarity. 
Rhizaria is not shown since no gnd genes have been found in 
this lineage. 2nd EGT, secondary endosymbiotic gene trans-
fer.
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secondary phototrophs and plastid-lacking bikonts had at
one time acquired the primary plastid [19]. Green plants,
Glaucophyta and Chromalveolata then lost the eukaryotic
ancestral gnd gene, red algae retained both, and Excavata
lost either one. In the ancestors of Excavata, loss of pri-
mary photosynthetic plastids might have triggered con-
current gene loss of either cyanobacterial or eukaryotic
ancestral gnd. Only a single LGT event from Stramenopiles
into Euglenida is considered in scenario B. Although both
scenarios are compatible with our phylogenetic analysis
and statistical tests, we reason that scenario B is parsimo-
nious and more likely to explain the evolutionary history
of the gnd genes in that less LGT events need to be presup-
posed. Broader sampling from various eukaryotic groups
(especially in Chromalveolata and Rhizaria) will be criti-
cal to devise a more reliable evolutionary history of
eukaryotic gnd genes, and host lineages [49]. It is also
important to note that concatenated nuclear gene phylog-
eny of eukaryotic (host cell) lineages and data mining for
cyanobacterial genes in plastid-lacking protists are sup-
posed to be independent approaches for exploring the ori-
gin of plants. Future research will be focused on how
deeply primary endosymbiosis is rooted within the
bikonts, and which lineage could experience primary
endosymbiosis early in the evolution of bikonts.

Conclusion
Our present study demonstrates that (1) free-living Exca-
vata possess either cyanobacterial or eukaryotic ancestral
gnd genes, (2) it is statistically unlikely that heterolo-
bosean gnd genes were acquired via ancient secondary
EGT of green alga, and (3) Euglenida and Stramenopiles
are robustly monophyletic. Although the sister relation-
ship of this monophyletic group to any Archaeplastida
lineage is not rejected by the statistical tests (Additional
file 4), it is moderately separated from red algae (Fig. 1),
suggesting that the gnd genes in Stramenopiles are not of
secondary endosymbiont origin. One explanation is that
a unique primary EGT of cyanobacterial gnd genes into
Archaeplastida was followed by independent eukaryote-
to-eukaryote LGTs into Stramenopiles and Heterolo-
bosea, and then by an additional LGT from Stramenopiles
into Euglenida (Fig. 2A). Alternatively, our results favor an
evolutionary scenario that the gnd gene phylogeny reflects
host cell phylogeny, and that the common ancestor of
bikonts has acquired cyanobacterial gnd genes via primary
endosymbiotic gene transfer early in eukaryotic evolution
(Fig. 2B).
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