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Abstract
Background: Cide family proteins including Cidea, Cideb and Cidec/Fsp27, contain an N-terminal
CIDE-N domain that shares sequence similarity to the N-terminal CAD domain (NCD) of DNA
fragmentation factors Dffa/Dff45/ICAD and Dffb/Dff40/CAD, and a unique C-terminal CIDE-C
domain. We have previously shown that Cide proteins are newly emerged regulators closely
associated with the development of metabolic diseases such as obesity, diabetes and liver steatosis.
They modulate many metabolic processes such as lipolysis, thermogenesis and TAG storage in
brown adipose tissue (BAT) and white adipose tissue (WAT), as well as fatty acid oxidation and
lipogenesis in the liver.

Results: To understand the evolutionary process of Cide proteins and provide insight into the role
of Cide proteins as potential metabolic regulators in various species, we searched various databases
and performed comparative genomic analysis to study the sequence conservation, genomic
structure, and phylogenetic tree of the CIDE-N and CIDE-C domains of Cide proteins. As a result,
we identified signature sequences for the N-terminal region of Dffa, Dffb and Cide proteins and
CIDE-C domain of Cide proteins, and observed that sequences homologous to CIDE-N domain
displays a wide phylogenetic distribution in species ranging from lower organisms such as hydra
(Hydra vulgaris) and sea anemone (Nematostella vectensis) to mammals, whereas the CIDE-C domain
exists only in vertebrates. Further analysis of their genomic structures showed that although
evolution of the ancestral CIDE-N domain had undergone different intron insertions to various
positions in the domain among invertebrates, the genomic structure of Cide family in vertebrates is
stable with conserved intron phase.

Conclusion: Based on our analysis, we speculate that in early vertebrates CIDE-N domain was
evolved from the duplication of NCD of Dffa. The CIDE-N domain somehow acquired the CIDE-
C domain that was formed around the same time, subsequently generating the Cide protein.
Subsequent duplication and evolution have led to the formation of different Cide family proteins
that play unique roles in the control of metabolic pathways in different tissues.
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Background
Cide family proteins including Cidea, Cideb and Cidec/
Fsp27 [1-3] were originally identified by their sequence
homology to the N-terminal CAD domain (NCD) [4] of
DNA fragmentation factors Dffa and Dffb [5-16]. Whereas
NCD specifically refers to the N-terminal domain of Dff
factors, CIDE-N denotes the N-terminal sequence shared
by Cide proteins in this article. In addition to the CIDE-N
domain, Cide proteins also contain a unique conserved C-
terminal domain (CIDE-C domain). Despite some varia-
tion between NCD and CIDE-N, they all contain a poten-
tial yin and yang surface that could mediate weak protein-
protein interaction. Recently, they were also found to be
structurally homologous to the ubiquitin (UB) α/β roll
superfold [17,18], but bear no high similarity to other
existing proteins [17,19].

While Cidea is expressed at high levels in BAT [20], Cideb
is more abundantly expressed in the liver, with moderate
levels in kidney, small intestine and colon [21]. When
over-expressed in heterologous cells such as 293T and
COS-7 cells, Cideb can form homo- or hetero-dimers with
other CIDE family members and induce caspase-inde-
pendent cell death [22]. Furthermore, CIDE-C domain of
Cideb, is responsible for Cideb-induced cell death and
dimerization [22]. Cidea protein has also been found to
regulate apoptosis induced by TGF-β [23]. However, how
Cide proteins induce apoptosis remains unclear. No cas-
pase cleavage site or nuclease specific domain present in
Dff factors was identified in Cide proteins. To study the
physiological role of Cide proteins, we previously gener-
ated Cidea null mice, and found that Cidea-null mice are
lean and resistant to diet-induced obesity and diabetes
[20]. Cidea controls energy homeostasis in BAT by regu-
lating lipolysis and thermogenesis. A recent study showed
that Cidea was implicated in human obesity by regulating
human adipocyte lipolysis [24] and a V115F polymor-
phism in human was found to be associated with obesity
in certain populations [25]. Cidea was the most highly up-
regulated gene in the liver of high calorie diet (HC)-fed
mice and second most down-regulated gene in the liver of
HC plus resveratrol (HCR) aging-improved mice [26].
Similar to Cidea, Cideb also plays important roles in
metabolism. We recently reported that Cideb regulates
diet-induced obesity, liver steatosis, and insulin sensitivity
by controlling lipogenesis and fatty acid oxidation in the
liver [21]. In addition, Fsp 27/Cidec was found to be asso-
ciated with lipid droplets and promote triglyceride storage
in differentiated 3T3-L1 cells [27,28]. All these studies
suggest that Cide family proteins play important roles in
modulating energy homeostasis, aging and the develop-
ment of metabolic diseases such as obesity and diabetes
[29-31].

While it is evident that Cide proteins regulate energy
homeostasis in mammals, it is unclear about the origin
and evolution of Cide family proteins. To provide further
insights into the structure and function of Cide proteins,
we have employed various databases and bioinformatic
tools to study how Cide family proteins have been
evolved. A recent analysis of the evolutionary process of
Dff family proteins has identified orthologs of Dffa/b in
lower organisms such as sea anemone, suggesting that the
DNA fragmentation pathway in apoptosis is conserved
throughout evolution [32]. Here we defined signature
sequences for the N-terminal region of Dffa, Dffb and
Cide proteins and CIDE-C domain of Cide proteins and
analyzed the evolutionary history of CIDE-N and CIDE-C
domains of Cide family proteins. No ortholog of CIDE
proteins was identified in invertebrates or other lower
organisms. However, a homologous sequence of CIDE-N
domain of Cide proteins was identified in hydra, in addi-
tion to sea anemone as previously reported [32]. We
found that the signature sequences for CIDE-N domain of
Cide proteins are similar to those of NCD of Dffa in hydra
and sea anemone. More importantly, we found that
CIDE-C domain exists only in vertebrates with occasional
possible omission from certain ancient fish species. By
analyzing the genic structures and intron phases of Cide
and Dff family, we found that although the evolution of
the ancestral CIDE-N domain includes different intron
insertions, the genomic structure of Cide family in verte-
brates is stable, including 5 conserved exons separated by
4 introns with the sequential phases 2-0-0-2. Based on our
observation, we postulate that the origin of Cide proteins
may be the result of recombination of sequences encoding
CIDE-N and CIDE-C domains in early vertebrates, and
subsequent duplication and evolution have led to the for-
mation of different Cide family proteins.

Results
Sequence comparison and species/tissue distribution of 
CIDE-N and CIDE-C domains
Through sequence alignment of the N-terminal region of
Cide and Dff family proteins in human and mouse (Fig
1a), we observed highly conserved 37 amino acid residues
around the EDGT protein signature site in the CIDE-N
domain and NCD. NMR structural analysis in human
Cideb suggests that the EDGT signature is located on an
important loop of the CIDE-N domain interaction inter-
face zone 1. Within this conserved domain, we observed
penta amino acid residues RPXRV unique for CIDE-N
domain of Cide family proteins, a VDDXXYF signature for
Dffa and a LPXXGSR signature for Dffb (Fig 1a). These
specific sequences will be used to distinguish Cide pro-
teins from Dff in our following study. In addition,
through the sequence alignment of CIDE-C domain of
Cide family proteins in human and mouse (Fig 1b), we
identified a highly conserved XARXTFDXYXXN-
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PXDXXGXLNKVATXYXXYSXSXD signature in CIDE-C
domain.

An Hmmer search of Nr.db downloaded from NCBI
showed that proteins that share similarity to CIDE-N
domain or NCD are found in 25 organisms (Table 1), rep-
resenting either CIDE or Dff proteins. These Dff proteins
are widely found in vertebrates and invertebrates, whereas
Cide proteins only exist in 16 vertebrates among the 25
organisms.

To check the expression of Cide proteins, we searched cur-
rently available EST data base using the mouse CIDE-N
sequence and found 1,251 EST clones that share homol-
ogy to CIDE-N domain or NCD in 71 organisms (Table 2)
spanning from lower organism such as cnidarians (H. vul-
garis and N. vectensis) to human. These data suggest that
CIDE-N domain is evolutionarily conserved, consistent
with an observation previously reported [32]. Some 857
EST clones that share sequence homology to the CIDE-C
domain were found in 37 organisms (Table 2), all of
which are vertebrates including sharks, bone fish,
amphibians, birds, and mammals. Thus far, we have not

The analysis of Cide and Dff family proteins in human and mouseFigure 1
The analysis of Cide and Dff family proteins in human and mouse. (A) Sequence alignment of the N-terminals of all 
available Cide and Dff family proteins in human and mouse using MAFFT algorithm. The CIDE-N domain is indicated by a dark 
line on top of the alignment. The alignment of the most conserved region of 37 amino acids encompassing the EDGT signature 
motif is framed with a red rectangle. The signatures of Cide and Dff family proteins are framed with a green rectangle. The 
exon boundaries are marked by black vertical lines. (B) Sequence alignment of the CIDE-C domains of Cide family proteins 
found in human and mouse using MAFFT algorithm. The CIDE-C domain is indicated by a dark line on top of the alignment. 
The alignment of most conserved 35 amino acids is framed with a red rectangle. The exon boundaries are marked by black ver-
tical lines.
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identified any protein or open reading frame that contains
only the CIDE-C domain and does not contain the CIDE-
N domain. The Nr.db and EST search also suggests that
CIDE-C domain has appeared in a later stage of evolution
and it may have a specific function relating to vertebrates.

To further investigate the origin and function of different
Cide proteins, we checked the tissue distribution of ESTs
encoding Cide proteins in vertebrates (Table 2). In the
mouse, Cidea is predominantly expressed in BAT, with
small amounts of mRNA detected in heart, brain, skeletal
muscle, lymph node, thymus, appendix and bone marrow
[2,20]. The expression of Cidec/Fsp27 is more widespread,
with high levels in WAT and moderate levels in BAT and

skeletal muscle[3,20]. Cideb is more abundantly expressed
in the liver, with moderate levels in kidney, small intestine
and colon [21]. Results from the analysis of the distribu-
tion of Cide ESTs are in good agreement with the above
observations, revealing that a large number of EST for
Cideb found in the liver, and of Cidec in WAT. We also
found Cide proteins are expressed at varying levels in
many different tissues in the lower vertebrates. Cidea is
expressed in the eye of zebrafish (Danio rerio), testis of
Atlantic salmon (Salmo salar), ovary and brain of X. tropi-
calis and chicken (Gallus gallus), caecal tonsil, intestinal
lymphocyte and liver of chicken; Cideb is expressed in the
liver of zebrafish, medaka (Oryzias latipes) and X. tropicalis,
gut/intestine of zebrafish, Atlantic salmon and X. tropica-

Table 1: Hmmer search in Nr.db from NCBI using the CIDE-N motif pfam02017

Organism/Protein 
Found

Cidea Cideb Cidec Dffa Related Dffb Related Drep1* Related Drep2* Related Drep3* Related Drep4* Related

Homo sapiens 
(human)

1 1 1 1 1

Pan troglodytes 1 1 1 1
Pongo pygmaeus 1
Macaca mulatta 1 1 1 1
Mus musculus 
(mouse)

1 1 1 1 1

Rattus norvegicus 1 1 1 1 1
Equus caballus 1 1 1 1
Bos Taurus 1 1 1 1 1
Sus scrofa 1 1 1
Canis lupus familiaris 1 1 1 1 1
Monodelphis 
domestica

1 1 1 1

Ornithorhynchus 
anatinus

1 1 1 1

Gallus gallus 
(chicken)

1 1 1

Xenopus laevis 1 1 1
Xenopus tropicalis 
(X.tropicalis)

1 1 1 1

Danio rerio 
(zebrafish)

1 1 1 1 1

Tetraodon nigroviridis 
(tetraodon)

1 1 1 1

Aedes aegypti 1 1 1
Anopheles gambiae 
str. PEST

1 1

Culex pipiens 
quinquefasciatus

1 1 1

Drosophila 
melanogaster (fruit 
fly)

1 1 1 1

Drosophila 
pseudoobscura

1 1 1 1

Bombyx mori 1
Apis mellifera 1 1
Tribolium castaneum 1 1

Total Cide Protein Found 41
Total Dff Related Protein Found 48
* Drep1 is Dffa in fruit fly, and Drep4 is Dffb in fruit fly.
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Table 2: EST distribution chart for organisms found with CIDE related domains

Organisms Found 
with Cide Related 
Domains

Species Search Criterior Tissue Distribution#

CIDE-N 37aa CIDE-C 
35aa

Cidea Cideb Cidec/Fsp27

Homo sapiens (human) Mammals 281 126 BAT+, WAT, skin, 
heart, sympathetic 
trunk

liver, small intestine+, 
kidney, colon, lung, 
brain, thalamus, 
cervix, thymus, T-
lymphocytes, lymph, 
placenta, stomach, 
prostate, testis, eye

WAT, white matter, 
brain, lung, skin, eye, 
breast, ovary, 
uterine, pancreas, 
colon, testis, 
nasopharynx

Macaca fascicularis 3 1
Macaca nemestrina 1
Macaca mulatta 1 1
Pongo pygmaeus 3
Papio anubis 2
Spermophilus lateralis 1
Mus musculus (mouse) 185 130 BAT+, mammary 

gland, salivary 
gland, aorta, 
thyroids, eye, head, 
lung, kidney

liver, kidney, colon, 
small intestine+, 
bowel, placenta

WAT+, mammary 
gland, salivary gland, 
thyroid, colon, lung, 
kidney, placenta

Rattus norvegicus 13 15
Rattus sp. 1 1
Sus scrofa 89 74
Bos taurus 98 90
Ovis aries 13 5
Capra hircus 1
Canis lupus familiaris 9 10
Macropus eugenii 2 2
Trichosurus vulpecula 11 9

Gallus gallus (chicken) Birds 40 36 ovary, brain, caecal 
tonsil, intestinal 
lymphocyte, liver

liver, small intestine, 
fat body, intestinal 
lymphocyte, hearts

Taeniopygia guttata 4 4
Meleagris gallopavo 1

Xenopus tropicalis 
(X.tropicalis)

Amphibians 149 146 ovary, brain liver, gut/intestine, fat 
body, oviduct

Small intestine, lung 
brain

Xenopus laevis 88 77
Ambystoma mexicanum 1 1

Danio rerio (zebrafish) Bone Fishes 56 16 eyes liver, gut/intestine liver
Dicentrarchus labrax 1 1
Cyprinus carpio 1 1
Fundulus heteroclitus 4 3
Gasterosteus aculeatus 13 3
Gadus morhua 4 1
Misgurnus 
anguillicaudatus

1

Ictalurus furcatus 1 1
Oncorhynchus mykiss 30 30
Oncorhynchus nerka 1 1
Oryzias latipes (medaka) 49 44 liver ovary
Pimephales promelas 3
Platichthys flesus 1 1
Plecoglossus altivelis 
altivelis

1 1
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Salmo salar (Atlantic 
salmon)

12 15 testis gut/intestine, head 
kidney, thymus, 
pyloric caecum

thyroid, thymus, 
spleen, pyloric 
caecum

Sparus aurata 2 2
Takifugu rubripes (fugu) 2 1
Thunnus thynnus 2 1
Zosterisessor 
ophiocephalus

1 1

Leucoraja erinacea (little 
skate)

Sharks & Rays 8 2 Liver

Squalus acanthias (spiny 
dogfish)

3 3

Branchiostoma floridae 
(amphioxus)

Lancelets 3

Drosophila melanogaster 
(fruit fly)

Insects 8

Drosophila 
pseudoobscura

2

Drosophila ananassae 1
Drosophila erecta 1
Aedes aegypti 3
Anopheles gambiae 1
Lutzomyia longipalpis 1
Phlebotomus papatasi 1
Bombyx mori 3
Apis mellifera 1
Acyrthosiphon pisum 3
Aphis gossypii 1
Heliconius erato/himera 
mixed

1

Heliconius melpomene 1
Tribolium castaneum 3
Diabrotica virgifera 
virgifera

1

Rhipicephalus 
appendiculatus

Arachnids 1

Ixodes scapularis 2

Daphnia pulex Crustaceans 1
Homarus americanus 1

Lottia gigantea Molluscs 4
Aplysia californica 2
Crassostrea gigas 2
Mytilus californianus 2

Capitella sp. I ECS-2004 Annelids 3

Nematostella vectensis 
(sea anemone)

Cnidarians 5

Hydra vulgaris (hydra) 1

Total EST Hits 1251 857

# The order of tissues is based on the copy number of cDNAs encoding corresponding protein. The cDNAs from mixed tissues are ignored in 
counting.
+ The high expresion of Cide proteins in these tissues is verified by expriments, but not observed in the current EST database.

Table 2: EST distribution chart for organisms found with CIDE related domains (Continued)
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lis, in the thymus, head kidney, and pyloric caecum of
Atlantic salmon, in fat body and oviduct of X. tropicalis;
while Cidec/Fsp27 is expressed in the liver of little skate
(Leucoraja erinacea), zebrafish and chicken, in the small
intestine of X. tropicalis and chicken, in the ovary of
medaka, in thyroid, thymus, spleen and pyloric caecum of
Atlantic salmon, in the brain and lung of X. tropicalis, as
well as in the fat body, intestinal lymphocyte and hearts
of chicken.

Identification of the ancestral CIDE-N domain in hydra
Hydra and sea anemone belong to the phylum cnidaria
which is one of the earliest animal phyla [33,34]. We
found 1 cDNA (GenBank: DY447116) in hydra and 5
cDNAs (GenBank: DV089654, GenBank: DV085979,
GenBank: FC181163, GenBank: FC273871 and GenBank:
FC274613) in sea anemone which encode proteins
homologous to the most conserved 37 amino acids of
CIDE-N domain from mouse Cideb. Further analysis
revealed that the cDNA in hydra encode Dffa, while the
other 5 cDNAs in sea anemone all encode Dffa, as
observed by Eckhart et al [32].

Sequence alignment of N-terminal region for Cide and
Dff family proteins in hydra, sea anemone and human
(Fig 2) showed a remarkable similarity between Cide pro-
teins and hydra Dffa. Using pair-wise comparison, we
found the NCD of hydra Dffa shares approximately 42.3
percent sequence similarity to the NCD of human Dffa,
and 42.9 percent sequence similarity to the CIDE-N
domain of human Cideb. Dffa in hydra and sea anemone
has signatures of both Cide family proteins and Dffa
(RPXRV and VDDXXYF), but Dffb in sea anemone only
contain signature sequences for Dffb (LPXXGSR). These
data, together with the above sequence comparison and
species distribution data, suggest that CIDE-N domain of
Cide proteins is derived from the NCD of Dffa, but not
Dffb, in lower organism like hydra and sea anemone.

Thus we define herein the NCDs of Dffa in hydra and sea
anemone as the ancestral CIDE-N domain.

Comparative genomic analysis of genic structures and 
intron phases of Cide and Dff gene family
By searching the genomic data base of various species, we
observed that the gene structure of all Cide family proteins
in vertebrates consists of 5 exons and 4 introns with the
sequential phases 2-0-0-2, while vertebrate Dffa gene con-
sists of 6 exons and 5 introns with the sequential phases
1-1-0-1-0. Vertebrate Dffb consists of 7 exons and 6
introns with the sequential phases 0-1-1-0-0-2. The length
of exons of Cide gene family is also conserved in verte-
brates. By matching their exons to the corresponding pro-
tein sequences of Cide and Dff family proteins, we found
that CIDE-N domain is encoded by exon 2 and exon 3 of
Cide genes whereas the conserved CIDE-C domain is
encoded by exon 4 and exon 5 of Cide genes. NCDs of
Dffa and Dffb are encoded mainly by its exon 1 and exon
2, respectively (Fig 3a,d).

Unlike the conserved genic structures and intron phases of
Dff gene family in 10 vertebrates, the Dff gene family in 3
representative invertebrates has different genic structures
and intron phases. The ancestral CIDE-N domain of Dffa
in sea anemone was split by one phase 0 intron in fruit fly
(Drosophila melanogaster), but by phase 1 intron in a differ-
ent position in amphioxus (Branchiostoma floridae) (Fig
3b,c). Based on the genomic structure and analysis from
non-redundant proteins databases and EST database, we
conclude that the Cide gene family exists only in verte-
brates, while the dff gene family exists in both vertebrates
and invertebrates.

The absence of some Cide family proteins in several 
vertebrate species
From the result of tblastn search in available EST data
bases, we found the most ancient CIDE-N domain exists
in hydra and sea anemone, and the most ancient CIDE-C

Sequence alignment of N-terminals for Cide and Dff family proteins in hydra, sea anemone, and humanFigure 2
Sequence alignment of N-terminals for Cide and Dff family proteins in hydra, sea anemone, and human. Shown 
here are six N-terminals of Cide and Dff proteins, with the sequence from human Cideb representing the CIDE-N domain and 
the rest representing the NCD domains. The most conserved EDGT signature is highlighted in red. The RPXRV signature of 
Cide family proteins is highlighted in yellow, the VDDXXYF signature of Dffa in purple, and the LPXXGSR signature of Dffb in 
green. The exon boundaries are marked by black vertical lines. The potential exon boundaries are marked by black dotted 
lines. The secondary structure of the human Cideb's CIDE-N domain is presented on the top of the alignment [17]; cylinders 
and arrows represent α helices and β strands, respectively.
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Genic structures and intron phases of Cide and Dff gene familyFigure 3
Genic structures and intron phases of Cide and Dff gene family. (A) The gene structures of human Cideb, mouse Dffa 
and mouse Dffb are shown above their corresponding proteins. Exons and introns are shown in boxes and wavy lines, respec-
tively [4, 17]. Exons are drawn to scale. Black lines link a particular exon to its translated region of the protein. The matching 
areas flanked by black lines between the most conserved proteins sequences and their corresponding exons are makred in red. 
(B) Genic structures and intron phases of Cide and Dff gene family from several representative model organisms are drawn to 
scale. The regions from the various species in the same color share sequence homology. (C, D) The genic and intron phases of 
Cide and Dff gene family are divergent in invertebrates but conserved in vertebrates. Exon sizes in different organisms are 
shown in evolutional order. The bordering intron phases of the exons are shown in the left. The number in '()' of exon 1 of 
each gene indicates its nucleotide position downstream of ATG (inclusive of the three nucleotides). The number in '()' of each 
last exon indicates its nucleotide position upstream of its stop codon. '*' indicate before the first exon (or after the last exon) 
noncoding exon regions. '#' refers to exons with deviational start phase and the end phase from the others in the same exon 
group. '^' indicates discard of some flanking exons. Italicized numbers are adjusted exon sizes. Exons in bold encode the most 
conserved protein regions. Abbreviations for species: s, sea anemone (Nematostella vectensis); f, fruit fly (Drosophila mela-
nogaster); a, amphioxus (Branchiostoma floridae); m, mouse (Mus musculus); h, human (Homo sapiens). Other model organisms 
are zebrafish (Danio rerio), medaka (Oryzias latipes), stickleback (Gasterosteus aculeatus), tetraodon (Tetraodon nigroviridis), fugu 
(Takifugu rubripes), X.tropicalis (Xenopus tropicalis), chicken (Gallus gallus), opossum (Monodelphis domestica). SP, start phase, EP, 
end phase.

Gene NO SP EP Sea anemone NO SP E Fruit fly NO SP EP Amphioxus

dffa exon1 - 1 259 exon1 - 0 295(45) exon1 - 1 100

exon2 0 0 216 exon2 1 1 162

exon2 1 - 374(231) exon3 0 2 272 exon3 1 0 146

exon4 2 - 1369(361) exon4 0  

dffb exon1 - 1 235 exon1 - 0 240 exon1 - 0 335(108)

exon2 0 1 124 exon2 0 1 136

exon2 1 0 233 exon3 1 - 1754(989) exon3 1 1 195

exon4 1 0 80

exon3 0 2 254 exon5 0 2 275

exon4 2 - 6noxe802 2 - 190

Gene NO SP EP Zebrafish Medaka Stickleback Tetraodon Fugu X.tropicalis Chicken Opossum Mouse Human

cidea exon1 - 2 147 838383)35(39)86(09

exon2 2 0 167 541541541*)39(751151931

exon3 0 0 162 741741741741741651

exon4 0 2 94 173 182 182 176 182 182

exon5 2 - 27 )841(174)241(793541)331(134)331(9621)901(362

cideb exon1 - 2 137^ 68 62^ *)14(301)14(702141441

exon2 2 0 115 115 115 115 117# 149# 145 145 145

exon3 0 0 150 165 159 189 163# 73# 150 147 150

exon4 0 2 194 185 191 191 223# 264# 195# 191 191

exon5 2 - 376(142) 130 124 106 106 136 129# 512(136) 571(133)

cidec exon1 - 2 81(50)* 53* 69(53) 86^ 56 78(53)* 53 78(53)* 78(53)*

exon2 2 0 142 151 154 142 142 142 160 154 154

exon3 0 0 150^ 150 150 158# 158# 150 147^ 159 159

exon4 0 2 191 191 191 171# 177# 188 188 191 188

exon5 2 - 790(154) 372(184) 403(181) 407(85)* 85 1150(178) 178 1089(163) 582(163)

dffa exon1 - 1 275(94) 204(94) 145(94) 97 94 142(97) 406(142) 136 234(136) 234(136)

exon2 1 1 159 159 159 159 159 162 162 162 162 162

exon3 1 0 134 155 155 158 155 152 131 146 143 143

exon4 0 1 190 211 205 193 193 190 190 190 190 190

exon5 1 0 125 122 125 125 137 140 155 140 152 152

exon6 0 - 805(216) 195 641(177) 144 144 623(162) 394(204) 201 1572(213) 213

dffb exon1 - 0 156 155(111) 126 155(114) 123 156 123 260(123) 437(114)

exon2 0 1 127 127 127 130 130 127 127 127 127

exon3 1 1 189 195 186 186 186 189 187# 195^ 189 189

exon4 1 0 80 71 80 80 121# 80 80 80 80 80

exon5 0 0 174 94(93)# 174 174^ 133# 171 174 171 171 171

exon6 10110110110110110110110110120

exon7 2 - 494(211) 241^ 326(217)* 214 220 217 232 1159(244) 1914(235)
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domain exists in spiny dogfish (Squalus acanthias) and lit-
tle skate (Leucoraja erinacea). No sequence homologous to
CIDE-N domain was identified before phylum cnidaria
such as yeast (S. cerevisae). In addition, no sequence
homologous to CIDE-C was found before the phylum ver-
tebrata.

Interestingly, although the whole genome of nematodes
(C. elegans) was sequenced and analyzed extensively, no
genomic sequence encoding proteins that share sequence
similarity to Dffa/b or Cide proteins were identified. We
only found 1 protein (GenBank: Y51A2D.10) in C. elegans
with limited homology to the conserved 37 amino acids
including the signature EDGT motif of CIDE-N domain
from human Cideb (Fig 4), with no homology to any
other region. Furthermore, the exon boundaries between
this protein and human Cideb are not conserved. There-
fore, this protein is unlikely to be the ortholog of Dff or
Cide in C. elegans.

In the Petromyzon_marinus-3.0 Contigs database (sea
lamprey (Petromyzon marinus) genome data base last mod-
ified on Apr 16, 2007) we found an ortholog of Dffb, but
not Dffa or Cide proteins. As sea lamprey is regarded as
the most primitive vertebrate, it would be interesting to
determine whether any ortholog of Cide proteins exists in
this organism. In the large EST database for little skate and
spiny dogfish, we failed to identify any Cidea-like protein.
Thus it is highly possible that ortholog of Cidea may not
exist in little skate and spiny dogfish. Furthermore, after
searching the whole genome sequences of fugu (Takifugu
rubripes) and tetraodon (Tetraodon nigroviridis) [35,36], no

ortholog for Cidea protein was identified in these species.
No Cidea-like protein was identified in stickleback (Gas-
terosteus aculeatus) either. In addition, no ortholog of
Cideb was identified in the currently available chicken
(Gallus gallus) genome data base [37] or EST databases.

The phylogenetic tree of CIDE-N and CIDE-C domains
In this study, three methods including neighbor-joining
(NJ), maximum likelihood (ML), and unweighted pair
group method with arithmetic mean (UPGMA) were used
to construct the phylogenetic trees. These three methods
often gave the same trees, except for some minor details.
From the phylogeny of 31 selected Cide and Dff family
proteins from various model organisms using the CIDE-N
domain and NCD, respectively (Fig 5a), we found that
Cide family proteins form an independent sub-clade from
the Dffa proteins and the vertebrate CIDE-N domains
have close relationship with the NCD of amphioxus Dffa.
These results confirm that CIDE-N domain is derived
from NCD of Dffa in early vertebrates. Through the two
phylogenetic trees of 17 selected Cide family proteins in
vertebrates using the CIDE-N and CIDE-C domains,
respectively (Fig 5b,c), we found that all the Cide family
proteins can be divided into 3 subfamilies, Cidea, Cideb
and Fsp27/Cidec. The CIDE-N domain NJ phylogeny is
rooted by the NCD of amphioxus Dffa (Fig 5a,c). In addi-
tion, the CIDE-N domain ML phylogeny and the CIDE-C
domain phylogeny generated by NJ and UPGMA analysis
are rooted at midpoint (Fig 5b). These data suggest that
Cideb is the most ancient member in Cide family, and its
duplication resulted in the formation of Cidec and Cidea.
However, the CIDE-N domain UPGMA phylogeny rooted

The full sequence alignment of human Cideb and the putative CIDE-N domain-containing protein (CND) in C. elegansFigure 4
The full sequence alignment of human Cideb and the putative CIDE-N domain-containing protein (CND) in C. 
elegans. The CIDE-N domain is marked by black bold line and the CIDE-C domain by green bold line. The exon boundaries 
are marked by solid vertical lines.
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Neighbor-joining phylogenetic trees of selected Cide or Dff family proteins from model organismsFigure 5
Neighbor-joining phylogenetic trees of selected Cide or Dff family proteins from model organisms. (A) Shown 
here is the NJ phylogeny of 31 representative Cide and Dff family proteins from various model organisms. The protein 
sequences conserved by CIDE and Dff family proteins were used and the tree was drawn by using MEGA 4.0. (B) The NJ phyl-
ogeny of 17 selected Cide family proteins in vertebrates based on the CIDE-C domain rooted by the NCD of amphioxus Dffa. 
(C) The NJ phylogeny of 17 selected Cide family proteins in vertebrates based on the CIDE-N domain rooted at midpoint. 
Bootstrap values for NJ, ML and UPGMA analyses (first, second and third values, respectively) are presented for each clade. 
The scale bar indicates the number of amino acid substitutions per site. Model organisms used are amphioxus (Branchiostoma 
floridae), little skate (Leucoraja erinacea), spiny dogfish (Squalus acanthias), X.tropicalis, chicken (Gallus gallus), opossum (Monodel-
phis domestica), mouse (Mus musculus), human (Homo sapiens).
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by the NCD of amphioxus Dffa indicates Cidec as the
most ancestral Cide protein. The CIDE-C domain ML phy-
logeny rooted at midpoint indicates Cidea as the most
ancestral Cide protein. To sum up, these results point to a
likelihood that Cideb is the most ancestral Cide protein.

Discussion
Here we have defined signature sequences for the N-termi-
nal region of Dffa, Dffb and Cide proteins, CIDE-C
domain of Cide proteins, and analyzed the evolutionary
history of CIDE-N and CIDE-C domains of Cide proteins
using various databases and bioinformatic tools. We iden-
tified the ancestral CIDE-N domain in hydra and found
CIDE-C domain exists only in vertebrates. Furthermore,
genomic structures and intron phases of Cide family pro-
teins are conserved in vertebrates.

The formation of ancestral CIDE-N in early metazoan
Based on currently available data, we have found the
ancestral CIDE-N domain in H. vulgaris, in addition to N.
vectensis as previously reported [32]. In tropical demos-
ponge Reniera, more primitive to the above two cnidari-
ans, we did not find any sequence homologous to CIDE-
N domain, with the caution that its genome sequencing is
still ongoing [38]. Similarly, we did not find any CIDE-N
homology in the current database of EST from sponges
[39]. However, other important apoptosis genes, such as
the proapoptotic molecule DD2 [40], the cell survival pro-
teins, Bcl-2-related molecules [40], and caspases [41] have
been found in the sponge. More importantly, the caspase-
3 dependent DNA fragmentation was observed in sponge
[41]. These data indicate that the DNA fragmentation
pathway in apoptosis is conserved in sponge. Thus an
ancestral CIDE-N domain, the NCD of Dffa, should also
exist in sponge. The exact conclusion awaits further
sequencing information from sponges.

The formation of CIDE-N and CIDE-C in early vertebrates
The mechanisms for the origin of new genes, such as exon
shuffling, gene duplication and retroposition, have been
thoroughly explored and extensively discussed [42]. It is
well established that recombination of sequences encod-
ing protein domains play a major part in protein evolu-
tion. However, there is less evidence to suggest how the
novel protein domain, themselves, arise [43]. Here, we
found homology sequences of CIDE-C exist only in verte-
brates and all of them are linked to CIDE-N to form Cide.
Based on protein sequence alignments (Fig 1, 2) and the
phylogenetic tree (Fig 5a), CIDE-N domain of Cide family
proteins must have been derived from the NCD of Dffa. In
addition, from the exon boundaries derived from the pro-
tein sequence alignments results (Fig 1, 2), we could tell
that exon 3 of Cide gene is derived from the exon 2 of Dffa
gene. By comparison of the genic structures and intron
phases between Dffa and Cide gene family, we found that

the formation of CIDE-N domain had undergone three
steps of intron changes from NCD of Dffa (See Fig 3a for
relative intron positions). First, the phase-1 intron1 of
Dffa was changed to the phase-0 intron 2 of Cide. Second,
the phase-1 intron 2 of Dffa was changed to the phase-0
intron 3 of Cide. Third, the phase-2 intron1 of Cide was
formed. These three intron changes underlie the evolution
of the NCD of Dffa into CIDE-N, and provide insight into
the molecular mechanisms regarding the origin of Cide
family. Completion of the whole genome sequencing of
sea lamprey, regarded as the most primitive vertebrate
thus far, will help ultimately resolve the formation of
CIDE-N and CIDE-C domain.

The divergence of Cide family proteins in advanced 
vertebrates
The 2R hypothesis (two rounds of whole genome duplica-
tion in early vertebrate evolution) suggests that one round
whole genome duplication happened at the root of the
vertebrate lineage, followed by another round in Agnatha
and Gnathostomata [44]. We found the evolution path of
Cide proteins is in good agreement with the hypothesis.
We propose that the appearance of ancient Cide family
protein occurred at the root of the vertebrate lineage along
with the first round of whole genome duplication. We sus-
pect that the most ancient Cide family protein was most
similar to Cideb, which then gave rise to the ancient
Cidea/c around the Agnatha and Gnathostomata period
which was probably accompanied with another round of
whole genome duplicatoin. Cidec and Cidea were derived
from ancient Cidea/c at the emerging of the actinoptery-
gian fishes. In support of the above conclusions are the
following observations: no Cide protein was found in
amphioxus; only Cideb and Cidec are found in little skate
and spiny dogfish; all of Cidea, Cideb and Cidec are found
in zebrafish and X. tropicalis. According to the phylogenies
of CIDE-N and CIDE-C domains (Fig 5) and the evolution
of other gene families such as the Hox gene family in early
vertebrates [45,46], we speculate that there should be one
Cide protein in sea lamprey with strong resemblance to
Cideb. The lack of evidence for the presence of any Cide
protein in sea lamprey must be due to the incomplete
genome database available.

We have also compared the tissue distributions of EST
clones and experimental data (Table 2), and found that
there are some differences in the expression patterns of
Cide proteins between mammals and lower vertebrates,
which surprisingly revealed an expression overlap
between Cideb and Cidec in lower vertebrates but not in
mammals. The coexpression of Cideb and Cidec in the
liver, guts and WAT of lower vertebrates is in accordance
with our above-mentioned evolutionary model for the
early divergence of Cideb and Cidec. Cidea seems to be
Page 11 of 16
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The Evolutionary history of Cide family proteins based on a phylogenetic tree of animalsFigure 6
The Evolutionary history of Cide family proteins based on a phylogenetic tree of animals. The evolutionary history 
of Cide family proteins is divided into several stages based on the phylogenetic tree of animals [63–66]. '*' indicate three key 
model organisms whose whole genomes have not been fully sequenced thus far. Absence of Cide or Dff family proteins from 
each species is indicated by a cross next to the respective branch of the evolutionary tree. Model organisms used are S. cere-
visae, hydra (Hydra vulgaris), sea anemone (Nematostella vectensis), nematode (Caenorhabditis elegans), fruit fly (Drosophila mela-
nogaster), sea squirt (Diazona violacea), amphioxus (Branchiostoma floridae), sea lamprey (Petromyzon marinus), little skate 
(Leucoraja erinacea), zebrafish (Danio rerio), medaka (Oryzias latipes), stickleback (Gasterosteus aculeatus), tetraodon (Tetraodon 
nigroviridis), fugu (Takifugu rubripes), X. tropicalis, chicken (Gallus gallus), opossum (Monodelphis domestica), mouse (Mus musculus), 
human (Homo sapiens).
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highly expressed in tissues unique to mammals, including
BAT and mammary gland.

Although Cide family proteins were originally identified
to induce cell death [2], many studies have also found
they could play an important part in modulating energy
homeostasis, aging and the development of metabolic
diseases such as obesity and diabetes [20,21,24-26]. Con-
sidering the urgent need in evolution for vertebrates to
modulate energy homeostasis and the emerging of warm
blood animals, Cide family proteins may originally to
function as "thrifty" genes and gradually evolve to be
important regulator of metabolic pathways in mammals
[47]. Combining the vertebrate origin and the control of
metabolic pathways, Cide family proteins could be ideal
targets for therapeutic intervention of metabolic diseases
such as obesity and diabetes.

Model for the evolutionary history of Cide family proteins
Based on our results, we mapped the presence or absence
of the Cide and Dff family proteins to the phylogenetic
tree of the animals, and summarized the evolutionary his-
tory of CIDE-N and CIDE-C domains into six stages (Fig
6). Around the transition of unicellular protozoan to mul-
ticellular metazoan, or the evolution of Bilateria from
diploblasts (possibly the results of Cambrian explosion),
one ancient or ancestral NCD for Dffa and Dffb was
formed, encoded by an ancient exon bordering a phase 1
intron. Subsequent duplication led to the separation of
Dffa and Dffb in cnidarians, and only the NCD of Dffa,
but not Dffb, comprised the ancestral CIDE-N domain
(Stage 2). In arthropods the ancient exon that encoded the
ancestral CIDE-N domain was spliced by one phase 0
intron, while in nematodes the whole Dff family proteins,
including the ancestral CIDE-N domain, were lost for
some unknown reason (Stage 31). Around the same time
in cephalochordates another phase 1 intron was inserted
into a different position of the ancestral CIDE-N. This new
intron insertion of the ancestral CIDE-N was later passed
on to vertebrates. Also Dff family proteins might have dis-
appeared from urochordates at this time (Stage 32). In
early vertebrates like agnathan fishes, NCD of Dffa/the
ancestral CIDE-N domain underwent duplication. One
duplicated NCD of Dffa became the CIDE-N domain and
merged with the newly formed CIDE-C domain to gener-
ate one ancient Cideb-like protein (Stage 4). Subsequent
duplication led to the ancient Cidea/c protein which bears
strong resemblance to Cidec in chondrichthyan fishes
(Stage 5). When actinopterygian fishes occurred, Cidea
was formed from the duplication of ancient Cidea/c.
Some Cide family proteins might have disappeared in sev-
eral vertebrate species (Stage 6).

Conclusion
In this article, we searched various databases and per-
formed comparative genomic analysis to study the
sequence conservation, genomic structure, and phyloge-
netic tree of the CIDE-N and CIDE-C domains of Cide
proteins. We were able to define signature sequences of
CIDE-N domain and CIDE-C domain for Cide proteins,
and NCD for Dff proteins, respectively. Our study identi-
fied the ancestral CIDE-N domain in cnidarians, and
found the CIDE-C domain exists only in vertebrates. Fur-
ther analysis of genomic structure such as exon length and
intron phase patterns showed although evolution of the
ancestral CIDE-N domain had undergone different intron
insertions to various positions in the domain among
invertebrates, the genomic structure of Cide family in ver-
tebrates is stable with conserved intron phase. We propose
that NCD of Dffa was duplicated in early vertebrates, and
one of the duplicated copies became CIDE-N domain that
merged with the newly formed CIDE-C domain, generat-
ing an ancient Cide family protein. Subsequent duplica-
tion and evolution led to the formation of different Cide
family proteins that exert their specific roles in the control
of metabolic pathways in different tissues.

Methods
We retrieved human and mouse Cide and Dff family pro-
tein sequences using NCBI Entrez [48], their accession
numbers are as follows: human Cidea (GenBank:
AAQ65241) 219aa; human Cideb (GenBank: AAH35970)
219aa; human Cidec (GenBank: AAH16851) 238aa;
human Dffa (GenBank: AAH07721) 331aa; human Dffb
(GenBank: AAC39709) 338aa; mouse Cidea (GenBank:
AAH96649) 217aa; mouse Cideb (GenBank: AAH12664)
219aa; mouse cidec/Fsp27 (Swiss-Prot: P56198) 239aa;
mouse Dffa (GenBank: AAH58213) 331aa; mouse Dffb
(GenBank: AAH53052) 343aa.

Using the MAFFT algorithm [49] implanted in Jalview
[50], we performed alignments of the N-terminal regions
of human and mouse Cide and Dff family proteins, and
the CIDE-C domain of Cide proteins.

Hmmer search of Nr.db from NCBI
Using the well-defined CIDE-N motif pfam02017, we
searched potential Cide and Dff family proteins in the
downloaded NCBI non-redundant protein database [48]
by Hidden Markov model search program HMMER [51],
and found 287 proteins with satisfying E cutoff(<10).
Then we performed multiple sequence alignment analysis
to identify the resultant proteins through Jalview [50]. The
nonredundant entries were summarized in Table 1.

tblastn search in EST database from NCBI
Using the two most conserved regions of mouse Cidea (a
region in the CIDE-N domain of 37 amino acids:
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TLVLEEDGTVVDTEEFFQTLRDNTHFMILEKGQKWTP,
and the other in the CIDE-C domain of the 35 amino
acids: IARVTFDLYRLNPKDFLG CLNVKATMYEMYS-
VSYD) revealed by the multiple sequence alignment of
human and mouse Cide proteins, we conducted two
tblastn searches with the EST database from NCBI [52]. In
order to analyze and compare the sequences we identi-
fied, we translated all of the cDNA sequences into protein
sequences using the Translate Tool from the ExPaSy server
[53]. Further sequence composition analysis and align-
ments were performed using Jalview [50].

We carried out sequence alignment for the N-terminals of
Cide and Dff family proteins from three species: hydra,
sea anemone, and human; we also conducted a full
sequence alignment of human Cideb and a putative
CIDE-N domain-containing protein in C. elegans using
ClustalW [54]. By doing a pair wise comparison for each
of the two proteins mentioned above using Vector NTI
[55], we were able to determine the sequence homology
between these proteins.

Gene structure analysis using the genome database of 17 
model organisms
Seventeen representative model organisms, including 11
vertebrates, 5 invertebrates and 1 fungus, were chosen in
our gene structure analysis, as their genome sequences are
either fully or mostly available. The genome for sea anem-
one was obtained from [56,57], amphioxus (Branchios-
toma floridae) from [58], and for sea lamprey (Petromyzon
marinus) from [59]. The genome databases for the other
14 organisms were obtained from Ensemble [60]. We
summarized the nucleotide composition, length of the
exons, and intron phase patterns bordering respective
exons in tables, and genic structures to scale and exons to
its translated protein regions in schematic figures.

Phylogenetic analysis of Cide and Dff family proteins
We retrieved the sequences of 17 Cide family proteins in
selected model vertebrates, and 14 Dff family proteins in
selected vertebrates and invertebrates from their genome
or EST databases (Additional file 1). By the preliminary
multiple sequence alignments using the MAFFT algo-
rithm, we isolated the CIDE-N and CIDE-C domain of
Cide family proteins, and NCDs of Dff family proteins.
After manual alignment improvement by Jalview (Addi-
tional file 2), the phylogeny of the 17 selected CIDE-N
domains for Cide and the 14 NCD domains for Dff family
proteins, the phylogeny of the CIDE-C domains and that
of the CIDE-N domains are separately constructed by the
neighbor-joining (NJ), maximum likelihood (ML), and
unweighted pair group method with arithmetic mean
(UPGMA) methods. We constructed NJ and UPGMA trees
using MEGA 4.0 [61], and ML trees by using PHYML
V2.4.4 [62]. For NJ and UPGMA trees, Poisson correction

for amino acid sequences and 10,000 bootstrap resam-
plings were used, while the Jones, Taylor, and Thorton
(JTT) model for amino acid sequences and 100 bootstrap
resamplings were used in ML analysis. Tree files were
viewed by using MEGA 4.0 [61]. NJ trees are shown with
bootstrap values for NJ, ML and UPGMA analyses (first,
second, and third values, respectively). Finally, we
mapped the distribution of the Cide and Dff family pro-
teins to the standard phylogenetic tree of the animals and
summarized the evolutionary history of CIDE-N and
CIDE-C domains into several stages.
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