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Background
The occurrence of homoplasy is problematic in phyloge-

Abstract

Background: Marsupial syndactyly is a curious morphology of the foot found in all species of
diprotodontian and peramelemorph marsupials. It is traditionally defined as a condition in which
digits 1l and Il of the foot are bound by skin and are reduced. Past treatments of marsupial
syndactyly have not considered the implications of this unique morphology for broader issues of
digit development and evolution, and the ongoing debate regarding its phylogenetic meaning lacks
a broad empirical basis. This study undertakes the first interdisciplinary characterisation of
syndactyly, using variance/covariance matrix comparisons of morphometric measurements,
locomotor indices, ossification sequences, and re-assessment of the largely anecdotal data on the
phylogenetic distribution of tarsal/metatarsal articulations and "incipient syndactyly".

Results: Syndactylous digits have virtually identical variance/covariance matrices and display
heterochronic ossification timing with respect to digits IV/V. However, this does not impact on
overall locomotor adaptation patterns in the syndactylous foot as determined by analysis of
locomotor predictor ratios. Reports of incipient syndactyly in some marsupial clades could not be
confirmed; contrary to previous claims, syndactyly does not appear to impact on tarsal bone
arrangement.

Conclusion: The results suggest that marsupial syndactyly originates from a constraint that is
rooted in early digit ontogeny and results in evolution of the syndactylous digits as a highly
integrated unit. Although convergent evolution appears likely, syndactyly in Diprotodontia and
Peramelemorpha may occur through homologous developmental processes. We argue that the
term "syndactyly" is a misnomer because the marsupial condition only superficially resembles its
name-giving human soft-tissue syndactyly.

netic reconstruction and the tracing of morphological  centuries of controversial and often heated

evolution [1,2]. This is particularly the case when the evo-
lution of a homoplastic trait is perceived as relatively com-

plex and therefore deemed unlikely to have evolved more
than once. A classic example that has sustained nearly two

debate is the

character of marsupial syndactyly. This is commonly
defined as a peculiar phenotype in which digits II and III
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of the marsupial foot are tightly connected by a common
sheath of skin at least to the base of the intermediate pha-
lanx [3,4]. The trait occurs in all species of two Australa-
sian marsupial orders (Fig. 1), Peramelemorpha (bilbies
and bandicoots; 21 species) and Diprotodontia (koalas,
wombats, possums, kangaroos, and allies; approx. 141
species). Together, these two clades represent nearly 50%
of marsupial species [5], Diprotodontia being the most
ecologically and locomotorily diverse extant marsupial
clade [6,7].

Marsupial syndactyly was one of the first characters used
for marsupial classification, [8-12]. It has been reasoned
that a character as complex as syndactyly could have only
evolved once within marsupials [8,12-16], and perame-
lemorphs and diprotodontians were commonly grouped
in the clade of Syndactyla [11,16,17]. Famously, this was
at odds with the division of marsupials based on dentition
into "diprotodont" (including Diprotodontia, and some-
times Paucituberculata, which possess two large procum-
bent incisors) and "polyprotodont” clades
[peramelemorphs and all other marsupial clades
[6,10,18]]. However, with the advent of molecular sys-
tematics, it became widely accepted [with some excep-
tions; [16,19]] that Diprotodontia and Peramelemorpha
are not sister groups [20-23]. As Figure 1 shows, this
arrangement favours homoplastic origins of syndactyly in
Peramelemorpha and Diprotodontia [18,21,23-25].
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Phylogeny of marsupial orders. Figure based on a con-
sensus of Amrine-Madsen et al. (2003) and Nilsson et al.
(2004), with unresolved position of Microbiotheria. Red
branches denote clades where syndactyly occurs.
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However, there have also been suggestions that syndactyly
may be plesiomorphic for larger marsupial clades, and has
subsequently been lost in some clades [23,26,27].

As a matter of course, it has been assumed that marsupial
syndactyly arose under selective pressure, but what the
functional relevance of syndactyly is has never been con-
vincingly argued. A number of researchers suggested that
the comparatively small size ("reduction") of syndacty-
lous digits in most species is related to arboreal locomo-
tion in putatively arboreal ancestors of the syndactylous
clades [13,28,29]. This scenario has been contested
because arboreal Diprotodontia have particularly strongly
developed syndactylous digits [3,30]. A second hypothe-
sis suggests that the function of syndactylous digits as
"grooming digits" confers a selective advantage
[3,11,18,31]. However, grooming organs are common
among placental mammals without comparable extensive
transformations in pedal morphology [3,13]. As such, the
adaptive implications of marsupial syndactyly remain elu-
sive. However, it has never been considered that it is a
unique phenomenon with implications transcending its
local importance. No extant tetrapod clade displays a trait
which, without a clear-cut locomotor function, impacts as
heavily and consistently on autopodial morphology of an
ecologically diverse order. Such exceptions have the
potential to inform our understanding of evolutionary
and developmental patterns of tetrapod autopodial evolu-
tion [32], but little empirical information exists on syn-
dactyly, which stems mainly from a few older dissection-
based studies [3,33-35]. As such, syndactyly displays some
intriguing but largely unexplored characteristics. For
example, syndactyly is not an exclusively soft-tissue
related condition but majorly affects the digits (Fig. 2).
The characteristic morphology of digits I and III suggests
that they evolve as a distinct unit within the syndactylous
foot [4], but this has never been tested. The result of the
unusual anatomy of syndactylous digits is that digit III
never forms the main axis of the foot in syndactylous mar-
supials [36], which is rare among tetrapods [37,38].
Instead, the marginal digits IV and V are extensively devel-
oped, while digits II and III are considered "reduced"
[13,31]. Nevertheless, locomotion in syndactylous marsu-
pials (particularly Diprotodontia) is more diverse than in
all other marsupials and many placental orders, catering
for plantigrade terrestrial walking and bounding, grasping
arboreal locomotion, and the unique hopping gait of kan-
garoos; this is also reflected in pedal diversity (Fig. 2).
However, patterns of functional adaptation in the syndac-
tylous foot and particularly of digits IT and III remain to be
explored. Marsupial syndactyly is also apparent very early
in pedal development, which has lead to the as yet
untested suggestion of heterochronic change of foot
development in syndactylous species [13]. This is an inter-
esting suggestion because heterochronic change in early
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ontogeny can help to explain evolutionary transforma-
tions of morphological traits [39-41]. Lastly, contextuali-
sation of syndactyly in an evolutionary framework is to
date impossible because the evidence regarding its distri-
bution has not been comprehensively assessed; two lines
of evidence have been deemed important in this respect.
A range of didelphid species have been termed "incipi-
ently syndactylous" (Table 1). This has been considered
evidence that syndactyly may be more plesiomorphic
within marsupials than has been generally recognized
[23,26,42], although the existence of incipient syndactyly
has been contested [30,42,43]. Contrary to this hypothe-
sis, it was suggested that tarsal/metatarsal articulation pat-
terns in peramelemorphs, which differ from the
plesiomorphic mammalian condition, are a consequence
of convergent acquisition of syndactyly [8,15].

Characterizing Syndactyly

This study approaches marsupial syndactyly from several
angles. First, we test the notion that digits II and III evolve
as a distinct unit within the syndactylous foot. This is
done through assessment of inter-digit integration pat-
terns of morphometric measurements across the diversity
of syndactylous marsupials, using a comparison of vari-
ance/covariance and correlation matrices. A morphomet-
ric approach is also taken to explore the impact of
marsupial syndactyly on pedal diversity and functional
adaptation. In addition, comparative analysis of ossifica-
tion sequence in the digits [44-46] is employed to assess
the proposition that syndactyly arises through hetero-
chronic change in pedal digit development [13]. Lastly, a
review and acquisition of new broad-scale comparative
data on external didelphimorph pedal digit morphology,
as well as marsupial tarsal articulations, are employed for
empirical qualification of previous hypotheses regarding
incipient syndactyly and the influence of syndactyly on
tarsal morphology.

Using this combination of morphometric, external mor-
phological, and ontogenetic approaches, we address
issues regarding the nature, origins, and evolutionary
implications of marsupial syndactyly: What are the evolu-

Table I: List of species considered incipiently syndactylous
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tionary characteristics of digit relationships in syndacty-
lous marsupials? Are these patterns related to
heterochronic changes in pedal digit development? Does
syndactyly impact on pedal diversity and functional adap-
tation? Does a reassessment of traditionally used indica-
tors of syndactyly result in a better understanding of its
evolution? The results are synthesized into an integrated
view of marsupial syndactyly as a unique phenomenon in
tetrapod autopodial evolution.

Results

Correlation matrix comparisons

Morphometric raw data are shown in Additional file 1.
Variance/Covariance (v/cv) and correlation matrix corre-
lations are listed in Table 2. Matrix repeatabilities (listed
in the diagonals of Table 2) are mostly over 0.9, suggest-
ing low sampling error. One exception are the repeatabil-
ities for v/cv matrices of digits II and III which are
considerably lower (this is probably due to size variation,
which is greater than in the remaining digits). This is likely
an underestimate since the lower repeatabilities for these
digits lead to over-adjustment of their raw v/cv matrix cor-
relations (which is very high; 0.96) to a correlation value
over 1. The highest matrix correlations reported by both
analyses are those between digits II and III. Medium to
high correlations are reported for comparisons of digit V
with all other digits, while matrices of digits IV compared
with digits IT and III have the lowest correlations. Vari-
ance/covariance matrix correlations are consistently
higher that correlation matrix comparisons, except in
comparisons between the syndactylous digits. This differ-
ence might be due to the scaling effect on the non-size
adjusted data resulting from division by the standard
deviation in the correlation approach [47].

The correlations between raw lengths are significantly
stronger between phalangeal elements of digits IT and III
compared to those of digits II or III with digits IV or V
(Table 3). Regressions of raw measurements of corre-
sponding digit elements show that this is due to a virtually
isometric relationship between digits II and III as evi-
denced by regression slopes close to 1, with very low

Species Author

Caluromys derbianus
Genus Marmosa

Kirsch 1977, Bensley 1903

Monodelphis orinoci Kirsch 1977

Thylamys pusilla Bensley 1903
Gracilianus microtarsus Bensley 1903
Philander opossum Bensley 1901
Chironectes minimus Hall 1987

Notoryctes typhlops

Genus Micoureus Bensley 1901

Bensley 1903, Tate 1933, Kirsch 1977

Gadow 1892, Dollo 1899, Bensley 1903, Szalay 1982, 1993, 1994
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Brushtailed
rock wallaby

Long-nosed
bandicoot

Syndactylous feet. Explanation of terminology and images of the right pedal skeleton of four syndactylous marsupials, show-
ing tarsal bones and separated digits of a koala (a), a lowland ringtail possum Pseudochirulus canescens (b), a brush-tailed rock

wallaby (c), and a long-nosed bandicoot Perameles nasuta (d). Note that a-c are diprotodontian marsupials, while d is a perame-
lemorph. Int. phal, intermediate phalanx; Metat., metatarsal; Prox. Phal, proximal phalanx. Roman numerals refer do digit num-

bers. Scale bar = | cm.

regression errors. Same-element regressions between all
other digit combinations are considerably different in
slope, with larger errors (Table 3; for some examples, see
Fig. 3).

Locomotor indices

The Kruskal-Wallis tests of single-digit comparisons sug-
gest highly significant differences between all locomotor
types and all predictor ratios (Additional file 2). The post
hoc Wilcoxon tests are generally significant between all
pairwise group comparisons. The results suggest that

Table 2: Variance/Covariance and correlation matrix
correlations between digits. Matrix repeatabilities are on the
diagonal of the matrix.

Variance/covariance 1] I} [\ \'
] 0.78
1} 1.18 0.83
v 0.65 0.74 0.98
\ 0.90 0.95 0.97 0.97

Correlation

Il 0.99

n 1.00 0.98

v 0.60 0.6l 091

\ 0.87 0.89 0.8l 0.96

arboreal species have longer and more gracile phalanges
(see also Figure 2a, b), as demonstrated by higher phalan-
geal indices, metatarsal slenderness ratios (SRs), distal
SRs, and proximal SRs of digits IV and V compared to
quadrupedal terrestrial ones. Metatarsal SRs are highest in
peramelemorphs and macropodoid species, reflecting
their elongate metatarsals (see also Figs. 2¢, d).

Kruskal-Wallis tests of locomotor index ratios in digit
pairs shows that most between-digit relationships are sig-
nificantly different between locomotor types. Exceptions
are ratios between digits II and III, and all between-meta-
tarsal ratios. The follow-up Wilcoxon test (Additional file
2) is significant for most inter-digit relationships between
all three groups, reflecting the markedly different relative
digit lengths in species of different locomotor type.

Digit ossification sequences

Ossification ranks for each species are presented in Addi-
tional file 3. In non-syndactylous marsupials, phalangeal
elements of one row (e.g. proximal, intermediate) occur
simultaneously in digits II-IV (Fig. 4a). In syndactylous
marsupials (Fig. 4b), the majority of phalangeal row ossi-
fication sequences are disassociated in time: digit IV is ear-
liest to ossify in a row, in most cases simultaneous with or
followed by digit V. Then follow ossification of digits 1I
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Table 3: Raw data regression results
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Regression Correlation comparisons between II/lll and others
Intercept Error Slope Error r dz b
Metatarsals
Il'and Il 0.333 0.924 0.907 0.028 0.986
Il'and IV 1.167 1.451 0.766 0.038 0.965 1.790 0.074
Il'and V 4.103 2421 0.746 0.069 0.892 3.931 0.000
IVandV 2.224 1.422 1.029 0.040 0.978 0.853 0.394
Pr. Phalanges
Il'and Il -0.308 0.210 1.014 0.016 0.996
Il'and IV -0.886 1.777 0.732 0.096 0.812 7.395 0.000
Iland V -1.264 1.722 0.968 0.120 0.828 7.128 0.000
IVandV 2.659 1.892 1.077 0.132 0.831 7.170 0.000
Int. Phalanges
Iland 1l -0.552 0.352 1.087 0.043 0.977
Il'and IV -1.314 1.843 0.729 0.160 0.641 5.57 0.000
Iland V -2.208 1.390 1.073 0.155 0.784 441 0.000
IVand V 2.866 1.212 0.948 0.788 0.788 4.340 0.000

Regression results of raw length regressions between corresponding digit elements. Note that elements of digits Il and lll are close to identical in
length in all species as shown by intercepts near 0 and slopes close to | with very little error. This is also reflected in tight correlations between
digits Il and Ill, which are nearly all significantly stronger than any other between-digit correlations (the relatively weaker results in metatarsals
comparisons are caused by a single high-leverage outlier, Diprotodon optatum). r, Pearson correlation coefficient; dz, difference of z-score

transformed correlations; p, significance.

and III (Fig. 4b). Ossification onsets for digit I are slightly
more variable, and metatarsals ossify at the same time in
all species except for Cercartetus concinnus (Fig. 4b). Parsi-
mov analysis of the ossification data, using the consensus
of ACCTRAN and DELTRAN optimized apomorphy list
inputs, identifies two heterochronic shifts responsible for
the rank changes: firstly, an acceleration of intermediate
phalanges of digits IV and V with respect to proximal and
intermediate phalanges of digits IT and III (see Fig. 5 for an
example), and secondly, acceleration of distal phalanges
IV and V with respect to distal phalanges II and III.

Tarsal bone anatomy and "incipient syndactyly"

All marsupial species examined, except peramelemorphs,
show metatarsal-tarsal articulations that correspond to
the plesiomorphic mammalian pattern (Fig. 2a-c). Digits
IT and III articulate with the mesocuneiform and ectocu-
neiform bone, respectively, in all marsupials, while in per-
amelemorphs, digit III articulates perceptibly less with the
ectocuneiform. Digit IV is mostly supported by the cuboid
in all species except peramelemorphs, where it is sup-
ported partially by the ectocuneiform and cuboid bones
(Fig. 2d). However, in wombats and a range of macropo-
doids there is also considerable contact between digit IV
and the ectocuneiform (Fig. 2c). Within peramelemorphs,
there is some variation as to the degree to which the ecto-
cuneiform is included in support of digit IV. This seems to
be related to locomotor mode, as the most extensive con-
tact is in the cursorial bilbies, Macrotis lagotis and the

extinct Chaeropus ecaudatus. Digit V is supported by the
cuboid in all species.

Species for which claims of "incipient syndactyly" were
found in the literature are listed in Table 1. Visual investi-
gation of study skins of didelphimorph marsupials show
that in most species, all middle digits (digits II-IV) are
highly similar. In some didelphimorphs, digits II and III
are more gracile than digits IV and V, and more similar to
each other (for an example, see Fig. 6), but never as dis-
tinctly so as in syndactylous marsupials. In no case are
digits II and III fully webbed, except in the fully webbed
feet of Chironectes minimus and in the foot of Notoryctes
typhlops, whose digits I-IV are webbed.

Discussion

The origins and evolution of marsupial syndactyly have
been debated for more than 150 years, although little
observational information has been collected. It may be
that the distinctive overall anatomy of syndactyly resulted
in the perception that it is distinctive enough not to
require further research. However, the results of this study
indicate that marsupial syndactyly has a unique evolu-
tionary and developmental background which has previ-
ously been largely ignored. A synthesis of results from this
study takes the implications of this unique phenomenon
beyond its traditional role as a purely phylogenetic prob-
lem.
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Figure 3

Raw data regressions. Representative regression plots of proximal phalangeal length of different digits. Proximal phalanges
of digits Il and Il are virtually isometric with very little error, whereas all others, although sometimes close to isometric, have

considerably larger error around the regression line.

Unique integration in the syndactylous foot

The near-identity of correlation matrices of digits II and
I1I, combined with strict raw measurement isometry of
their digit elements across species, suggest that the syndac-
tylous digits are highly constrained with respect to each
other across the diversity of syndactylous species. This is
congruent with the fact that the phalangeal skeleton of the
syndactylous digits is visually undistinguishable. This is
reminiscent of a definition of identical digits by Tabin
[[48], p. 290]: " Empirically, a digit is considered to have
the same identity as a second digit 'x' if, when examined
in isolation by a morphologist, the first digit would be
labeled as being a digit 'x'". Such a condition has few
counterparts in extant tetrapods. Among cases of marsu-
pial-like syndactyly reported in placentals, only that in
digit III and IV in three closely related species of otter
shrew (Potamogale velox and two species of Micropota-
mogale) is directly comparable [49]; note that the report-
edly syndactylous siamang gibbon Symphalangus
syndactylus has digits of different length [50]. To our

knowledge, conditions resembling marsupial syndactyly
are also unknown in extant amphibians or sauropsids
[51]. It could be argued that digits III and IV of hoofed
placentals (artiodactyla and perissodactyla) could be
comparable in their similarity to marsupial syndactyly.
However, autopodia of hoofed placentals follow a well-
documented pattern of increased central digit emphasis in
fore-and hindlimbs which is restricted to cursorial mam-
mals [32,52,53]. Marsupial syndactyly is not comparable
since it is restricted to the foot and morphologically and
functionally diverse, and does not correspond to any
obvious locomotor adaptation.

Syndactyly does not constrain functional adaptation of the
foot

Autopodial anatomy in tetrapods is strongly tied to loco-
motor function [54-56], and this is reflected in greater var-
iation in autopodial anatomy compared to more
proximally situated limb elements [57,58]. Extensive
locomotor adaptation within pedal digits is evident from
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Figure 4

Pedal digit ossification in syndactylous and non-syn-
dactylous marsupials. Schematic drawing of ossifications
in the foot of a non-syndactylous pouch young Quoll ("native
cat") Dasyurus viverrinus and syndactylous pygmy possum Cer-
cartetus concinnus Elements are coloured according to the
sequence in which they ossify, from first (1) to last (4). Not
to scale.

the matrix comparisons involving digits II or III versus IV
and V. Digit and phalangeal proportions correspond with
those generally predicted for mammalian autopodia
[7,55,56,59,60]: arboreal species have higher phalangeal
indices and phalangeal slenderness ratios, while species
with exclusively terrestrial locomotion have shorter
phalanges and more sturdy phalangeal proportions.
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Figure 5

Event pair mapping. Phylogeny of the species used for
ossification analysis of digit ossifications, with mapping of the
example of scores for intermediate digit IV versus proximal
digit Il. In all syndactylous marsupials, intermediate digit IV
ossifies before proximal digit Il (white lines), while both ossi-
fications appear simultaneously in all other mammals (solid
black line).
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Figure 6

Foot of Caluromys derbianus. Palmar view of the foot of
the didelphimorph Caluromys derbianus showing shorter,
unwebbed digits Il and IlI; this occurs in some didelphimorphs
and has been considered "incipient syndactyly". However,
these digit proportions are common in arboreal mammals
and do not seem equivalent to syndactyly. Scale bar = | cm

Between-digit ratio differences also reveal considerable
differentiation of digits with respect to each other (except
IT and III) according to locomotion. Although not mor-
phometrically assessed, digit I also follows widely recog-
nized patterns of functional adaptation [52]: it is strongly
developed and opposable in the arboreal possums and
koalas, and reduced or absent in the hopping or bounding
kangaroos and bandicoots, which is consistent with pat-
terns of marginal digit loss observed in cursorial, bound-
ing and hopping mammals [37,52,56].

The fact that syndactylous digit proportions differ signifi-
cantly between locomotor groups supports the hypothesis
that they evolve as a unit subject to selection pressures.
This complements the results of dissection studies which
show that the muscles operating the syndactylous digits
are as well developed and functional as in non-syndacty-
lous species [summarized in [3,33]]. In this respect, length
similarity of syndactylous phalangeal elements may hold
an important implication for their mobility: because the
digits are tightly appressed under a common skin sheath
and bound by connective tissue [3], their capacity to flex
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and extend depends on alignment of the joints along a
plane that allows them to move together.

It is notable that proportions and morphology of all pedal
digits in macropodoids (kangaroos) and peramelemorphs
are highly similar (see Figure 2¢, d). This includes an
enlarged digit IV as the main axis of the foot, a slightly
smaller digit V, very thin and gracile digits II and III, and
reduced or absent digit I. This convergence is interesting
because emphasis of central digits often coincides with
evolutionary trends in placentals towards cursoriality or
bounding locomotion [37,61]. Tyndale-Biscoe [62] sug-
gested that syndactyly arose as an adaptation to cursorial-
ity or bounding in Peramelemorpha and Diprotodontia.
This is unlikely if it is true that the ancestors of both clades
were arboreal [6,8,16,25,28,36]. Conversely, however, the
functional loss of a digit in syndactylous feet may have
favoured the evolution of the bounding or half-bounding
habit in both clades.

Syndactyly may not be a functional-adaptive trait

The few studies that have been concerned with the origins
of syndactyly have invoked functional-adaptive scenarios
for their appearance, either as grooming organs
[3,11,18,31] or as an adaptation to arboreality [13,28,29].
However, marsupial syndactyly does not resemble any
autopodial adaptations ever evolved in mammalian
autopodia. The characteristics of syndactyly are unique
among terrestrial mammalian orders (except for three spe-
cies of otter shrews). The coinciding heterochrony and
integration in syndactylous digits also cannot be
explained by simple processes of locomotor adaptation,
particularly because these patterns are conservative across
the considerable diversity of locomotor types in Diproto-
dontia. Rather, syndactyly may represent a constraint that
the foot is adapted to. Under this scenario, digits [IVand V,
which are always well developed, compensate for the
"unification" of the two syndactylous digits. An interest-
ing further implication of viewing syndactyly as a con-
straint would be a new view of the perceived "reduction”
of the syndactylous digits, which has been taken to be a
hallmark of syndactyly [3,13,21,28]. If digits II and III
were constrained to evolve as a single digit and functional
unit, it would be expected that the most advantageous
dimensions of this complex would be that of a single
digit, which is indeed reflected in the dimensions of the
syndactylous complex [13]. This would also explain why
the much-noted "reduction" is not a general feature of
marsupial syndactylous digits. For example, in most arbo-
real species the syndactylous digits are well developed
[[3]; see also Fig. 2a, b]. In fact, the syndactylous digit
complex in wombats is longer, although not wider, than
digits IV and V (pers. obs.), which is congruent with their
digging habit [56,61]. As such, there is evidence to suggest
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that the "reduction" of digits is not an intrinsic property
of syndactyly, but may be it's consequence.

Character distribution of syndactyly

The question as to whether marsupial syndactyly arose
once or twice has been discussed extensively, mainly
because convergent origins of this perceivedly complex
character have been deemed unlikely [16]. A sister group
relationship between Peramelemorpha and Diprotodon-
tia, and as such a single origin for syndactyly in these two
clades, can be ruled out based on the latest phylogenies.
However, it has been suggested that syndactyly may be in
fact homoplastic within a larger marsupial clade
[21,23,27]. Support for this notion comes from possible
tracks of a syndactylous marsupial from the Cretaceous of
British Colombia [63] and, tentatively, from the Late Cre-
taceous of Western Colorado [64]. Moreover, claims of
"incipient syndactyly" in some South American Didelphi-
morphia and the marsupial mole Notoryctes typhlops have
been considered evidence of an older origin of syndactyly.
Extensive connection of digits II and III by skin was only
observed in the fully webbed feet of the semiaquatic
Yapok Chironectes minimus and the mostly webbed feet of
Notoryctes typhlops, but digits IT and III and their elements
do not resemble each other and are not closely appressed
[3]. The sporadic occurrence of digits II and III which are
shorter than digit IV in some didelphimorphs is not unu-
sual for mammals. It is neither as highly conserved as syn-
dactyly in Diprotodontia and Peramelemorpha, nor does
it resemble it to a great degree. It is possible that the
shorter length of digits II and III in these species is due to
their mostly arboreal or scansorial habit [49], which com-
monly coincides with short medial digits [7,55,65,66].
The results of this study therefore suggest that syndactyly
is convergent in Diprotodontia and Peramelemorpha,
and is not plesiomorphic for marsupials.

Scenarios for the origins of syndactyly

Given the extensive similarities of peramelemorph and
diprotodontian syndactyly, the convergent evolution of
this trait in the two clades appears unlikely to have
occurred at random. It is possible that convergence of syn-
dactyly constitutes a case of parallelism which develops
through similar or identical developmental pathways [1].
This would suggest that that there is a greater likelihood of
syndactyly evolving in peramelemorphs and diprotodon-
tians due to shared ancestral developmental patterns.
Occurrence of full syndactyly in early marsupials and/or
metatherians, as has been suggested based on Cretaceous
tracks [63,64], is also conceivable under this scenario.

How syndactyly could establish itself twice, and the
nature of the developmental changes involved, are diffi-
cult to establish in the absence of a functional-adaptive
scenario. However, the results of this study provide cir-
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cumstantial evidence that allow the position of hypothe-
ses for further testing. Integration and isometry of digits II
and III can be explained in two ways; firstly, as an adapta-
tion to a bounding of digits by skin, and secondly, as the
result of a change in ontogenetic patterns that "synchro-
nized" the morphology of the syndactylous digits. Under
the first scenario, syndactyly would have established itself
as a malformation, possibly during a time when the ances-
tral populations were undergoing a bottleneck event [13];
the length isometry of the digits could have arisen because
this allowed the digits to function as a unit (see above).
However, this includes the unparsimonious scenario of a
malformation establishing itself in two unrelated marsu-
pial populations, with subsequent highly similar mor-
phological outcomes. Also, if syndactyly were just a skin
fusion of the digits, this would not explain the ossification
heterochrony that coincides with syndactyly in Diproto-
dontia and Peramelemorpha.

The second scenario, positing an ontogenetic pattern
change, may be more parsimonious and is favoured by
some of the evidence from this study. If the morphometric
integration of digit elements is intrinsic to syndactyly
through an ontogenetic constraint, the establishment of
syndactyly as a non-adaptive trait is less improbable
because, as discussed above, it effectively retains the
capacity of digit flexion and extension. As such, syndactyly
would only represent the loss of a single digit, rather than
the incapacitation of both digits as in soft-tissue syndac-
tyly of the human hand [67]. Digit loss is common in
mammals, although marginal digits are usually affected
[32,36,37,52]. With functional syndactylous digits, the
net loss of a single digit may have had a mild impact, com-
pared to a loss of flexing capacity, as is the case in syndac-
tylous human hands. This may have aided the spread of
marsupial syndactyly through the ancestral populations.

Phenotypes resembling marsupial syndactyly in that the
digits display identical morphologies have existed in
some of the earliest tetrapods such as Acanthostega; this
similarity has been ascribed to identical patterns of mor-
phogen expression in the digits [48]. Identical digits have
also been created through biochemical manipulation of
developing autopodia of mice, chicks, and frogs [68-71].
These experiments largely involve alteration in the expres-
sion or concentration of morphogens [mostly bmp family
transcription factors; [68,69,72,73]]. It is notable that
many of these are intimately associated with retention of
the inter-digital membrane as it occurs in syndactylous
marsupials. As ossification heterochrony and integration
of digits IT and IIT hint at ontogenetic changes in these two
digits, it should be tested whether the switch to syndactyly
involves a naturally occuring change in one of these path-
ways. Should this be the case, it would be predicted that
the ancestral phenotype of syndactyly arose rapidly and
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was largely similar to that of the more plesiomorphic syn-
dactylous marsupials today. This would provide an ave-
nue for rapid origin of fully integrated, and as such fully
functional, syndactylous digits. It would also explain the
lack of intermediates of syndactylous feet in extant or
extinct marsupials and the heterochrony observed in this
study. A similar scenario has been argued by Sears [40]
with respect to the origin of bat wings, explaining the con-
servative size relationship of digits across bat species, as
well as the lack of fossil intermediates of bat wings, with a
localized change in bmp expression patterns.

Tarsal-metatarsal articulations are not impacted by
syndactyly

The generalized pattern of tarsal-metatarsal articulations
throughout marsupials is that digit I articulates with the
ectocuneiform, digit II with the mesocuneiform, digit III
with the ectocuneiform, and digits IV and V articulate with
the cuboid bone. This pattern is highly conserved among
marsupials and is already present in the oldest metathe-
rian tarsus known to date, belonging to Sinodelphys szalayi
[74]. Woodburne and Case [27] argued that differences of
tarsal/metatarsal arrangement in Diprotodontia and Per-
amelemorpha suggest convergent evolution of syndactyly
in these clades. However, the results of this study disagree
with Woodburne and Case's [27] reports in several points.
Their claim that the endocuneiform is lost in macropo-
doids cannot be confirmed [see also [25]], and no evi-
dence was found to support a "lateral dislocation" of
peramelemorph metatarsals with respect to tarsals.
Indeed, no difference in articulation patterns of perame-
lemorphs compared to other marsupials was noted, other
than that pertaining to digit IV. Given the conservatism of
tarsal anatomy with respect to metatarsals II and I1I across
all marsupials, it seems that syndactyly is a phenomenon
exclusively confined to digit morphology and has no
impact on tarsal morphology. The peramelemorph tarsal
arrangement also appears in hoofed placentals, where it is
considered to represent an adaptation to the emphasis on
the central digits [15]. It is noteworthy that kangaroos,
whose plesiomorphic locomotion patterns resemble
those of peramelemorphs [75], also show a tendency
towards increased contact between metatarsal IV and the
ectocuneiform. This suggests that the extensive contact
between metatarsal IV and the ectocuneiform in perame-
lemorphs is related to a stabilizing re-arrangement, rather
than a result of syndactyly.

Marsupial and human syndactyly

Marsupial syndactyly derives its name from a congenital
malformation in humans, and has been treated as directly
comparable [13,23,42,50,62]. Human syndactyly is an
overarching term for a diverse congenital condition which
always involves incomplete digit separation during early
development due to a lack of inter-digit membrane cell
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death, or through synostoses [76]. Marsupial syndactyly
only corresponds to a mild subtype of syndactyly termed
"zygodactyly" [77,78]. However, in its worst form human
syndactyly can involve synostoses of the majority of digit
elements [76]. Contrary to a popular notion in the field of
marsupial systematics [21,23,42,62] the genetic back-
ground of syndactyly is complicated and only known for
a few of the over 50 types [76,77]. It is notable that even
the mildest forms of syndactyly in the hand lead to inca-
pacitation of grasping capability of the affected digits and
require surgical treatment, although they are rarely sepa-
rated in the foot [67]. Human syndactyly is only partly
heritable, and within families where syndactyly is passed
on, it manifests variably in terms of severity, the limb
affected, and number of digits involved [77]. The present
results reveal that marsupial syndactyly is a highly specific
phenotype that does not compare to human syndactyly
more than superficially because marsupial syndactyly is
entirely heritable and highly conservative in its manifesta-
tion. As such, the term "syndactyly" is slightly unfortunate
for the unique condition found in marsupials, and has in
the past lead to the uncritical assumption that the two
conditions are directly comparable. It may be desirable to
clearly distinguish between the two conditions by consist-
ently referring to marsupial syndactyly as such, or intro-
ducing a new term (for example, "homodactyly" may be
appropriate given the similarity of digits II and III) alto-
gether.

Conclusion

The diverse methods employed in this study have pro-
vided novel insights on the phenomenon of marsupial
syndactyly. The results demonstrate that the syndactylous
digits of marsupials evolve as a unit which is subject to
functional adaptation like the remaining digits of the foot.
The strong integration between the two digits may be due
to a change in early developmental patterning, as the ossi-
fication heterochrony between syndactylous compared to
non-syndactylous species suggests. No evidence was
found for incipient syndactyly in other marsupials, but
the ossification similarity of pedal digits in Diprotodontia
and Peramelemorpha suggest an underlying developmen-
tal parallelism. We argue that locomotor adaptation is not
likely to be the cause for syndactyly; based on our results,
we suggest a scenario in which syndactyly arose as a single
change in digit ontogeny that amounted to the loss of a
single digit, rather than incapacitation of both digits
through skin webbing. We also show that syndactyly is
restricted to Peramelemorpha and Diprotodontia, and
has no influence on tarsal bone arrangement in either
clade. Together, the results change the relevance of marsu-
pial syndactyly from being an enigmatic phylogenetic
character within marsupials to a rare transformation of
digit morphology whose molecular background has the
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potential to provide important insights into the patterns
of digit evolution.

Methods

Morphometric data collection

Articulated pedal skeletons from specimens of 32 syndac-
tylous marsupial species were measured. Species were
selected to include the full range of pedal diversity in syn-
dactylous marsupials. Raw measurements and accession
numbers can be found in Additional files 1 and 4; for ter-
minology, refer to Figure 2a. Measurements of 11
phalangeroid and petauroid possums, 11 kangaroos, 7
vombatiforms (four extinct), and 4 peramelemorphs were
taken using digital calipers (specified accuracy + 0.02
mm). In most extant species, two adult specimens per spe-
cies were measured and measurements were averaged fol-
lowing Christiansen [79]; all individual measurements
were taken twice and averaged. Measurements comprised
length and mid-shaft width of metatarsals, proximal and
intermediate phalanges II-V (a total of 6 measurements
per digit). Measurements for digit I were not taken since
this digit is reduced or lost in kangaroos and bandicoots.

Matrix comparisons and assessment Of raw measurements
of non-size adjusted data

To assess inter-digit integration patterns across the diver-
sity of syndactylous marsupials, a variance/covariance and
correlation matrix comparison approach was employed.
Matrix comparisons are suited for this problem because
they can quantify integration patterns that may constrain
morphological variability of the trait components with
respect to each other [58,80-83]. Natural logarithm-trans-
formed morphometric measurements were investigated.
The measurements were not otherwise adjusted by size
because relative size variation is an important factor in dif-
ferences between the syndactylous and non-syndactylous
digits. Correlation and variance/covariance matrices of
digit measurements were computed for each digit, result-
ingin 6 x 6 matrices. Correlation matrices were compared
using a Mantel's test [84] implemented by the freeware
Microsoft Excel-addin PopTools [85], which compares the
matrices and provides a non-parametric estimate for the
significance of the correlation. Variance-covariance matri-
ces were compared using the random skewers method
[82,86], run through a Monte-Carlo simulation imple-
mented by PopTools [58]. Matrix repeatabilities were also
computed as a measure of sampling error following
Cheverud [80] and Marroig and Cheverud [82] using the
Monte-Carlo simulation routine in PopTools.

Matrix correlations provide an estimate of correlated evo-
lution between the traits studied, but they do not provide
information on absolute size relationships. In other
words, two anatomical complexes can have highly similar
matrices but be of greatly differing absolute sizes. As
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noted above, size relationships between digits are a crucial
component in this study because syndactyly manifests
itself in unusually "synchronized" - looking size relation-
ships between digits II and III. To address this, raw length
measurements were plotted for visual assessment and
their correlations were compared using Fisher's z test [87].

Locomotor indices — proportional differences
Morphometric correlates of locomotion of non-syndacty-
lous autopodial anatomy are well understood [7,52], so
that it is possible test whether the syndactylous foot is
subject to generally recognized patterns of locomotor
adaptation. The species measured were divided into three
locomotor groups: hopping and bounding species (kan-
garoos/rat kangaroos and bandicoots), arboreal species
(phalangeroid and petauroid possums), and terrestrial
plantigrade species (vombatiforms). Based on the mor-
phometric measurements, differences in morphometric
locomotor predictor indices were computed. Using ratio-
based locomotor indices is a convenient way of focusing
on that part of the variation which is explained exclusively
by proportional, rather than size-related, differences. The
phalangeal index [proximal and intermediate phalangeal
length as a percentage of metatarsal length; [59,88]] and
metatarsal, proximal phalangeal, and intermediate slen-
derness ratios [SRs; element length*100/element width;
[7]] were employed because they are known to be reliable
proxies of locomotor habit. Locomotor index compari-
sons were conducted on two levels: Firstly, measurements
in single digits were compared between locomotor
groups. Secondly, ratios between locomotor indices of
digit pairs were compared to capture some of the dispari-
ties in between-digit proportions in species of different
locomotor types.

Because of disparate and relatively small sample sizes in
each locomotor group, the non-parametric Kruskal-Wallis
test was performed to assess whether significant differ-
ences existed within the three locomotor groups. Indices
for which significant results were found were also investi-
gated using post-hoc Wilcoxon signed rank sum tests to
assess whether all three locomotor types are distinguished
using the predictor indices.

Digit ossification sequences

To investigate pedal digit ontogeny in syndactylous mar-
supials, ossification sequences of pedal digit elements
were recorded for ontogenetic series of 5 diprotodontian
species, the peramelemorph Isoodon macroura, 2 dasyu-
rids, the ameridelphian Didelphis virginiana, the placental
mouse Mus musculus, and the skincid lizard Hemiergis per-
onii as an outgroup. Museum accession numbers are listed
in Additional file 4. Sequence data were collected from the
literature for Hemiergis peronii [89], Mus musculus [54],
Sminthopsis macroura [90], and Didelphis virginiana
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[91,92]. Pouch young from the personal collection of VW
were clear stained according to Dingerkus and Uhler [93],
modified by Prochel [94]. The remaining specimens were
investigated by acquiring X-ray images (using a SkyScan
1172 desktop micro-computer tomography scanner) of
the specimen's lower half of the body, taken at 30° inter-
vals during a 360° rotation to allow a multi-angle view of
the foot.

The ossification onset of metacarpals and phalangeal ele-
ments in all digits was recorded. For each species, ranks
were given to ossifications in the order in which they
occur, and compared across species. Sequence hetero-
chrony in the appearance of ossification sequences was
also summarized by coding the sequences into event pairs
[46,95] and analysing these using the Parsimov program
package [96]. The consensus of ACCTRAN and DELTRAN
optimized analyses is presented here. This means that
ambiguous transformations are not considered, which
results in a conservative but more reliable estimate [96].
Because the sample for peramelemorphs contained only
one poorly resolved species, Parsimov was run without it.

Tarsal-metatarsal articulations and "incipient syndactyly™
The tarsal-metatarsal joint was investigated in 23 species
from 5 marsupial orders. Accession numbers can be found
in Additional file 4; for terminology, refer to Figure 2a.
When possible, several individuals per species were inves-
tigated. The tarsal/metatarsal articulations were listed for
each species.

A literature search for reports of "incipient syndactyly"
was conducted, and species for which reports exist were
re-investigated (Table 1). This was done using study skins
whose pedal skeleton was left in the skin, and articulated
pedal skeletons (for accession numbers, see Additional
file 4).
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Additional material

Additional file 1

Raw morphometric data. Raw morphometric data

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2148-8-160-S1.xls]

Additional file 2

Kruskal-Wallis and Wilcoxon rank-sum test results for differences in loco-
motor indices. Rank-sum test results for differences in locomotor indices.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2148-8-160-S2.doc]

Additional file 3

Ossification data. Ranks of timing, from earliest to latest, for the species
considered in the analysis of pedal digit ontogeny.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2148-8-160-S3.doc]

Additional file 4

Accession numbers. Accession numbers or sources for investigations
related to ossification sequence, tarsal/metatarsal, and “incipient syndac-
tyly".

Click here for file
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