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Abstract
Background: Freshwater unionoidean bivalves, and species representing two marine bivalve orders (Mytiloida and
Veneroida), exhibit a mode of mtDNA inheritance involving distinct maternal (F) and paternal (M) transmission routes
concomitant with highly divergent gender-associated mtDNA genomes. Additionally, male unionoidean bivalves have a
~550 bp 3' coding extension to the cox2 gene (Mcox2e), that is apparently absent from all other metazoan taxa.

Results: Our molecular sequence analyses of MCOX2e indicate that both the primary and secondary structures of the
MCOX2e region are evolving much faster than other regions of the F and M COX2-COX1 gene junction. The near N-
terminus ~2/3 of the MCOX2e region contains an interspecifically variable number of predicted transmembrane helices
(TMH) and interhelical loops (IHL) whereas the C-terminus ~1/3 is relatively conserved and hydrophilic while containing
conserved functional motifs. MCOX2e displays an overall pattern of purifying selection that leads to the preservation of
TMH/IHL and C-terminus tail sub-regions. However, 14 amino acid positions in the MCOX2e TMH/IHL sub-region might
be targeted by diversifying selection, each representing a site where there exists interspecific variation for the constituent
amino acids residing in a TMH or IHL.

Conclusion: Our results indicate that Mcox2e is unique to unionoidean bivalves, likely the result of a single insertion
event that took place over 65 MYA and that MCOX2e is functional. The predicted TMH number, length and position
variability likely stems from substitution-based processes rather than the typically implicated insertion/deletion events.
MCOX2e has relatively high rates of primary and secondary structure evolution, with some amino acid residues
potentially subjected to site-specific positive selection, yet an overall pattern of purifying selection leading to the
preservation of the TMH/IHL and hydrophilic C-terminus tail subregions. The more conserved C-terminus tail (relative
to the TMH/IHL sub-region of MCOX2e) is likely biologically active because it contains functional motifs. The rapid
evolution of primary and secondary structure in MCOX2e, combined with the action of both positive and purifying
selection, provide supporting evidence for the hypothesis that MCOX2e has a novel reproductive function within
unionoidean bivalves. All tolled, our data indicate that unionoidean bivalve MCOX2 is the first reported chimeric animal
mtDNA-encoded protein.
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Background
Cytochrome c oxidase (COX) is a multimeric enzyme that
is located in the inner mitochondrial membrane of
eukaryotes, belongs to the terminal enzymatic complex
(IV) of the respiratory chain and facilitates the transfer of
electrons from cytochrome c to molecular oxygen [1]. The
three mitochondrially-encoded subunits of COX (COX1,
COX2, COX3) typically possess conserved primary and
secondary structures, including a relatively invariant
number of transmembrane helices (TMHs) per subunit
[2-4], with COX1 and COX2 containing highly conserved
catalytic sites. Unique among the mtDNA-encoded COX
subunits, COX2 has two N-terminus TMHs embedded in
the inner mitochondrial membrane while the C-terminus
half of the protein, containing the CuA center catalytic site,
is located in the intermembrane space. These two distinct
regions of COX2 are referred to as the COX2_TM and
COX2 Pfam domains, respectively. Most mitochondrial
protein coding genes have been shown to evolve under
purifying selection [5-9]. However, a few recent studies
have detected a signature of positive selection in COX2
lineages and/or sites [10-12]. Nevertheless, the typically
conserved pattern of COX2 domains is violated in one cat-
egory of animal mitochondrial genomes, namely those
paternally transmitted in unionoidean bivalves.

Freshwater unionoidean bivalves, as well as representa-
tives of two marine bivalve orders (Mytiloida and Venero-
ida), exhibit doubly uniparental inheritance (DUI) of
mtDNA, which involves distinct maternal (F) and pater-
nal (M) transmission routes concomitant with highly
divergent gender-associated mtDNA genomes [13-20].
For a general review of DUI, see [21]. Female bivalves
transmit their mitochondria (carrying F mtDNA) to sons
and daughters, as in standard maternal inheritance, but
males are believed to effectively transmit their mitochon-
dria (via sperm carrying M mtDNA) to only sons (e.g.,
[22] but see [23]). In the latter, F mtDNA predominates in

the somatic tissues while principally M mtDNA is found
in the testes. Thus, this genetic system yields homoplas-
mic female and heteroplasmic male individuals. Intra-
and inter-specific comparisons suggest that the M genome
is evolving more rapidly than the F genome [16,17,24-
27]. The F and M mitochondrial genomes of unionoidean
bivalves form reciprocally monophyletic groups [13-
16,19], are highly divergent [28] and fossil evidence sug-
gests that the F/M divergence occurred >200 MYA [29].

Recent studies revealed that cox2 from the male-transmit-
ted genomes of unionoidean bivalves has a 3' coding
extension that typically yields an ~80% increase in gene
length relative to the female-transmitted cox2 genes
[13,14]. Because of the pattern of nucleotide substitution
and evidence of transcription, it was hypothesized that the
MCOX2 extension (MCOX2e) is functional, rapidly evolv-
ing and subject to relaxed purging selection [13,14]. It has
been demonstrated that the extended Mcox2 gene is trans-
lated, most heavily expressed in testes and the protein
product is localized to sperm mitochondria [30]. These
findings are consistent with the predictions of a male-
transmission route for the M genome and functional sig-
nificance of the extended Mcox2 gene. Furthermore, a sec-
ondary structure analysis indicated that the MCOX2e
domain has multiple transmembrane helices (TMHs)
which suggests a membrane-bound location for this
region [30]. These previous studies indicate that the COX2
protein coded by unionoidean bivalve M genomes has a
novel third domain (MCOX2e) at its C-terminus.

To obtain further insights into the molecular patterns of
primary and secondary structure evolution, and the proc-
esses directing these changes, we compared patterns of
nucleotide and amino acid substitutions in Mcox2e with
those in the other portions of the cox2 and cox1 gene junc-
tion region (Fig. 1) from both the F and M genomes
among 21 unionoidean bivalve species (Unionoidea:

Schematic of the F and Mcox2-cox1 gene junction regions in Venustaconcha ellipsiformisFigure 1
Schematic of the F and Mcox2-cox1 gene junction regions in Venustaconcha ellipsiformis.
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Unionidae: Ambleminae). Our molecular sequence anal-
yses of the MCOX2e region indicate (1) relatively high
rates of primary and secondary structure evolution, (2)
potential instances of site-specific positive selection and
(3) an overall pattern of purifying selection leading to the
preservation of the TMH/IHL and C-terminus tail sub-
regions of MCOX2e. The pattern of amino acid substitu-
tions indicated that, despite the relatively high degree of
sequence divergence observed in some cases, most of the
changes did not drastically alter the biochemical proper-
ties of the involved amino acid sites. Therefore, the gen-
eral structure of the MCOX2e region has been preserved
since these sequences diverged from a common ancestor
> 65 MYA.

Results
In the 21 bivalve species examined, we obtained compa-
rable sequences of the following lengths: 672 bp of Fcox1,
279 bp of Fcox2, 651 bp of Mcox1, and 279 bp of Mcox2h
(the region of Mcox2 that is homologous with Fcox2).
Mcox2e ranged from 543 (Inversidens and Amblema) to 561
(Ptychobranchus) bp in length (181–187 amino acids; Fig.
2; see Additional file 1). The Mcox2e region contains
indels within nucleotide positions 7–135. The first six
nucleotides and those from position 136–558 aligned
unambiguously and were used in alignment-based analy-
ses containing Mcox2e, while those from positions 7–135
were removed prior to all alignment-based analyses. Thus,
slight length variation occurred either within the first 45

Schematic representation of 21 unionoidean bivalve MCOX2 C-terminus extensions and their evolutionary relationshipsFigure 2
Schematic representation of 21 unionoidean bivalve MCOX2 C-terminus extensions and their evolutionary 
relationships. A Bayesian Inference estimate of phylogeny (with posterior probabilities [via Mr. Bayes], maximum parsimony 
bootstrap percentages [when >50%; via PAUP*], and a "+" to indicate significant maximum likelihood ancestral state recon-
structions [via Mesquite] given at the tree nodes), based on analyses of 2310 unambiguously alignable protein coding nucle-
otides from the F and Mcox2-cox1 gene junction regions, and a maximum likelihood optimization of TMH number are 
presented. The black horizontal lines are proportional to extension length and the red rectangles represent predicted TMH 
locations and lengths (via ConPredII). The 11 constant amino acid positions are indicated by single letter codes; the eight HyPhy 
and six codeml sites potentially inferred to be under positive selection are indicated by blue and orange asterisks, respectively 
(also see Table 2; see Additional file 1).
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amino acid positions, or at the C-terminus end (i.e., the
two Quadrula MCOX2e sequences were one amino acid
shorter than the others due to the deletion of the terminal
residue). No indels were observed between amino acid
positions 46 and 186 (constant amino acid positions Y1
and Y2; Fig. 2), and 11 constant amino acid positions were
observed (Fig. 2; see Additional file 1). Pairwise amino
acid and nucleotide distances (based on Poisson-cor-
rected and Tamura-Nei-corrected models, respectively)
are given in Additional file 2. The average corrected amino
acid and nucleotide distances were 0.143 and 0.203 for
the MCOX2h+COX1 region, 0.013 and 0.137 for the
FCOX2+COX1 region, and 0.710 and 0.524 for the
MCOX2e region.

Database searching
TBLASTX searches of the NCBI database failed to find
sequences with significant similarity to the newly charac-
terized MCOX2 extensions. Even when a relaxed search
was conducted (cut-off expectation value of E = 1), no sig-
nificant matches were found outside of mitochondrial
genomes from unionoidean bivalves, indicating that this
extension is indeed a unique feature of the M mitochon-
drial genomes of these animals [13,14]. Likewise, PSI-
BLAST [31] searches using the deduced amino acid
sequences of MCOX2e resulted in convergence (no new
matches found) being achieved at the 3rd iteration, and
no additional homologs outside of those described above
were identified.

A search of the Pfam database (release 21) for entries
whose architecture contains the COX2 domain results in
10705 sequences, of which 9511 are eukaryotic (6978 are
partial sequences). Most of the remaining 9511 sequences
(8442 or 88.8%) exhibit an architecture with a conserved
transmembrane domain (Pfam A domain COX2_TM; avg.
size: 76.7 residues) 5' of the COX2 domain. A COX2_TM
domain is identified for 71 sequences but the model's sig-
nificance is below the threshold for inclusion in the
sequence architecture. Approximately 97% (972) of the
remaining 998 sequences are incomplete with less than
39 residues upstream of the COX2 domain, leaving 26
sequences with greater than 39 residues upstream of
COX2 and no predicted COX2_TM domain. We analyzed
these sequences with the TMH prediction algorithm Con-
Pred II and identified for 13 sequences two TMHs 5' of the
COX2 domain. The cytochrome c oxidase subunit II locus
is duplicated in the F genome of the bivalve Venerupis phil-
lipinarium and one copy lacks any 5' TMHs (pfam_acc:
Q8WF43), but a COX2_TM domain is present in the sec-
ond copy. The remaining 12 sequences consist of species
from the taxa Alveolata and Viridiplantae and do not
exhibit upstream THMs when examined with ConPred II.

In contrast, 13 (0.015%) of the 9513 eukaryotic
sequences contain TMHs downstream of the COX2
domain. This result is not an artifact of the large number
of incomplete sequences in the Pfam database as only two
(0.079%) of the 2532 complete eukaryotic COX2
sequences have TMHs 3' of the COX2 domain. These 13
sequences have between one and five TMHs and are all
from the male-transmitted, mitochondrial genomes of
unionoidean bivalves and represent the previously identi-
fied MCOX2e region [13,14].

Phylogenetic analyses
The majority rule consensus tree from the Bayesian analy-
sis of the concatenated M and Fcox2-cox1 nucleotide
sequences (including Mcox2e) using GTR+G+I is shown in
Figure 2. A Bayesian analysis that omitted Mcox2e (still
using GTR+I+G) produced essentially the same results, the
only difference being a three-clade polytomy near the root
that was resolved in Figure 2. The species relationships
indicated by our gene phylogeny (Figure 2) are very simi-
lar to those displayed in the most comprehensive pub-
lished study of amblemine bivalve phylogeny [32] but our
Figure 2 displays generally higher nodal support values.

Transmembrane helix (TMH) prediction and tree-based 
TMH number optimization
The number and positions of the predicted MCOX2e
TMHs are shown in a phylogenetic context in Figure 2
with the number of TMHs ranging from three to five. Two
TMH gain events and two TMH loss events are suggested
from an examination of character state transitions of
nodes with significant ancestral character state reconstruc-
tions (Fig. 2; significance indicated by a "+" at the nodes).
When considering the inclusion or omission of the
Mcox2e region in our phylogenetic analyses, the estima-
tion of ancestral TMH number by ML optimization did
not change for the nodes that were significant in Figure 2.
All tree topology constraint analyses rejected the hypoth-
esis of monophyly for each of the three groups of
sequences possessing the same number of predicted
TMHs (p << 0.001; Table 1). In addition to the indicated
multiple changes in the number of TMHs, Figure 2 also
suggests that the lengths of MCOX2e's interhelical loop
regions can change without an associated TMH number
transition (e.g., compare the Cyrtonaias and Glebula exten-
sions).

Properties of the data: (a) Conservation of Mcox2e 
sequences
Collectively, the 21 MCOX2 extensions display 11 con-
stant amino acid positions (Fig. 2; see Additional file 1),
which is a significantly greater number than that expected
by chance (as determined by simulation with the program
evolver). Of the 5000 data-sets (each 21 sequences, 143
amino acids in length) simulated using the conservative
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mtREV24 model of substitution, only 2.3% had 11 or
greater constant amino acid positions. Using the less con-
servative Poisson model of substitution, 97% of
sequences do not have any conserved positions and the
remaining 3% had either only 1 or 2 conserved positions.
Within the bounds of these constant positions, no indels
are required for the alignment of a contiguous block of
141 amino acids, but slight length variation is observed
outside of the Y1 and Y2 positions (Fig. 2; see Additional
file 1). The N- and C-termini of each of the 21 extensions
is relatively hydrophilic while the interior ~2/3 is rela-
tively hydrophobic (Fig. 3). The predicted C-terminus tail
sub-region (i.e., the amino acid residues downstream of
the last predicted TMH) is generally more conserved in its
primary structure than is the N-terminus/TMH/IHL sub-
region of the extensions (Fig. 4), and contains conserved
N-glycosylation (in 20 of the 21 tail regions) and casein
kinase II phosphorylation motifs (in 20 of the 21 tail
regions) (see Additional file 1).

Properties of the data: (b) Estimates of amino acid 
substitution rates and positive selection
The hypervariability of the MCOX2 extensions is con-
firmed by a sliding-window plot (Fig. 4) which illustrates
that the overall amino acid substitution rate in the exten-
sion is approximately six times greater than that of the
MCOX2h+MCOX1 region, and more than 20 times
greater than the FCOX2+FCOX1 region. These are likely to
be conservative estimates because the most variable por-
tion of the MCOX2e region (i.e., the unalignable N-termi-

nus) was omitted from this analysis. The substitution rate
is especially high in the relatively hydrophobic region
containing the TMHs and IHLs (see Figs. 2, 3 and 4). Even
though the relatively hydrophilic C-terminus tail region is
the most conserved portion of the extension, the substitu-
tion rate in this region is at least double that of any por-
tion of the MCOX2h+MCOX1 region and at least three
times greater than any portion of the FCOX2+FCOX1
region.

Codeml (using Bayes Empirical Bayes method using the
M8 model) and HyPhy (using Empirical Bayes method
and MG94xHKY85x3_4x2_Rates model) analyses of site-
specific positive selection identified six and eight (respec-
tively) of the 143 unambiguously alignable MCOX2e
amino acid positions (9.8%) as potential targets of posi-
tive selection (interpreted here as diversifying selection)
(Table 2; Fig. 2; see Additional file 1). However, we should
note that different sites were identified by different meth-
ods; interestingly, sites identified by different approaches
are located close to each other, almost adjacent, in the
overall amino acid sequence. Further, none of the individ-
ual sites have passed the stringent criterion of being statis-
tically significant at 95% or higher level (based on PP >
0.95 in codeml and Bayes factor > 100 in HyPhy), although
one site in each analysis passed a less stringent criterion of
> 90% confidence (codeml PP > 0.90; HyPhy Bayes factor >
50). These analyses are suggestive that there is positive
selection operating on specific sites in MCOX2e. There-
fore, we propose that one or more of these sites may be of

Table 1: Topology test results.

Parsimony-based tests: Test

Tree Length Difference KH Templeton Winning sites

Unconstrained 2832 Best
Taxa with 3 helices constrained 2987 155 p < 0.0001 p < 0.0001 p < 0.0001
Taxa with 4 helices constrained 3251 419 p < 0.0001 p < 0.0001 p < 0.0001
Taxa with 5 helices constrained 3175 343 p < 0.0001 p < 0.0001 p < 0.0001
All taxa constrained 3418 586 p < 0.0001 p < 0.0001 p < 0.0001

Likelihood-based tests: Test

Tree -ln L Difference AU KH SH WKH WSH

Unconstrained - 13059.96460 Best
Taxa with 3 helices constrained - 13286.28131 226.31671 p = 7e-10 p = 0 p = 0 p = 0 p = 0
Taxa with 4 helices constrained - 14055.57046 995.60586 p = 1e-08 p = 0 p = 0 p = 0 p = 0
Taxa with 5 helices constrained - 13764.70315 704.73856 p = 2e-05 p = 0 p = 0 p = 0 p = 0
All taxa constrained - 14218.22053 1158.25593 p = 6e-44 p = 0 p = 0 p = 0 p = 0

Results of the parsimony-based Kishino-Hasegawa (KH), Templeton (Wilcoxon signed-ranks) and winning sites (sign) tests calculated using PAUP*, 
and the likelihood-based approximately unbiased (AU), Kishino-Hasegawa (KH), Shimodiara-Hasegawa (SH), weighted Kishino-Hasegawa (WKH), 
and weighted Shimodiara-Hasegawa (WSH) tests calculated using CONSEL. The phylogenetic trees compared were the best topology from the 
unconstrained Bayesian analysis versus analyses where the species with 3, 4, and 5 helices were individually constrained to be monophyletic, and an 
analysis where all species with equal numbers of helices were simultaneously constrained to be monophyletic.
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Kyte-Doolittle plots of three MCOX2 amino acid sequencesFigure 3
Kyte-Doolittle plots of three MCOX2 amino acid sequences. ConPred II-generated Kyte-Doolittle plots of three rep-
resentative MCOX2 amino acid sequences (one each representing species with three, four and five TMHs respectively) showing 
the hydrophobic nature of the TMH region of MCOX2e. The vertical dashed line demarcates the boundary between MCOX2 
homologous and extension regions.
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potential interest for future studies of MCOX2e, so we are
reporting all of the sites with a HyPhy Bayes factor > 20 or
a codeml PP > 50. The log-likelihood values and parameter
estimates for the four codeml models applied to the M and
F COX2+COX1 regions are displayed in Additional file 3.
In contrast, none of the MCOX2h+MCOX1 or
FCOX2+FCOX1 amino acid positions (Fig. 1) displayed
evidence of diversifying selection using either method.
Each of these 14 amino acid positions in MCOX2e sug-
gested as potential targets of diversifying selection repre-
sent a site where there is interspecific variation for the
constituent amino acids residing in a predicted helix vs.
inter-helical loop structure (Fig. 2). Overall, these results
suggest the possibility of positive selection driving the
sequence changes at particular individual sites, although
further experimental studies are needed to determine
functional significance of these sites.

Properties of the data: (c) Changes in amino acid 
composition and properties
Because nucleotide composition can (and is known to)
influence the amino acid content (e.g., [33]), we com-
pared the overall amino acid composition of MCOX2e to
that of the F and M COX counterparts to see whether they
differ. Overall amino acid composition was found to be

essentially the same between FCOX2+COX1 and
MCOX2h+COX1 gene regions (see Fig. 5). Amino acid
composition of MCOX2e differs significantly from that
observed in FCOX2-COX1 and MCOX2h-COX1 (both
comparisons yield significant differences with p < 0.001),
primarily due to significantly lower GC-rich codon con-
tent. The proportion of AT-rich or neutral codons were not
significantly different between the three regions.

The TreeSAAP evaluation of physicochemical changes of
31 amino acid properties for the three gene regions
(MCOX2h+MCOX1, MCOX2e and FCOX2+FCOX1) are
given in Additional file 4. Following [34], we concentrate
on six amino acid properties shown to be correlated with
rates of amino acid substitutions: composition of the side
chain, polarity, molecular volume, polar requirements,
hydropathy, and isoelectric point (Table 3). We also con-
sidered alpha-helical properties and turn tendencies,
which could affect the formation of TMHs. The hypervar-
iability of MCOX2e is confirmed by both primary and sec-
ondary structure analyses (see Figs. 2 and 4). However, the
TreeSAAP results indicated that very similar patterns of
amino acid substitution exist between the three gene
regions, i.e., most amino acid properties are subject to
purifying selection on destabilizing changes. Of the 31
properties examined, 30 (96.8%) showed statistically sig-
nificant signs of purifying selection for the
MCOX2h+MCOX1 region, as compared to 27 (87.1%) for
MCOX2e, and 23 (74%) for the FCOX2+FCOX1 region.
Only two properties (helical contact area and partial spe-
cific volume) showed statistically significant signs of pos-
itive selection, and only in the FCOX2+FCOX1 region (see
Additional file 4). Interestingly, similar trends were

Table 2: MCOX2e amino acid sites that may be under positive 
selection.

Site Bayes factor (HyPhy) Posterior probability (codeml)

62 39.618 --------
67 -------- 0.589
77 70.465 --------
78 -------- 0.743
82 31.017 --------
85 -------- 0.801

107 29.190 --------
112 35.985 --------
122 -------- 0.521
124 28.480 --------
128 -------- 0.607
135 28.515 --------
140 24.688 --------
152 -------- 0.904

Bayes factors for the eight sites potentially inferred to be under 
positive selection by HyPhy and posterior probabilities for the six sites 
potentially inferred to be under positive selection by the codeml 
algorithm in PAML. Site numbers correspond to those in Additional 
file 1.

Sliding window plot of amino acid substitutions per siteFigure 4
Sliding window plot of amino acid substitutions per 
site. Sliding window plot of ML-estimated amino acid substi-
tutions per site in the unionoidean bivalve F and MCOX2-
COX1 gene junction regions (representing a total of 42 junc-
tion regions encoded by 21 F and 21 M genomes and based 
on a window width of 20 amino acids using five amino acid 
increments). Regarding the MCOX2 extension region, only 
the unambiguously alignable (without indels) 143 amino acid 
positions were utilized in the evaluation of substitution rates. 
The bracket denotes the C-terminus tail region of MCOX2e.
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detected when only the MCOX2e sequences were consid-
ered, although to a somewhat lesser extent (i.e., of 31
amino acid properties, a smaller proportion of properties
deviated from neutrality), indicating that purifying selec-
tion plays a role in shaping the amino acid composition
of MCOX2e. In particular, such properties as beta-struc-
ture tendencies, helical contact area, polarity and polar
requirements, among others, were found to have a signif-
icantly smaller number of observed than expected amino
acid substitutions (p < 0.05; see Additional file 4). More-
over, two properties related to the formation of trans-

membrane helices were either neutral in all three regions
or under purifying selection.

Discussion
The MCOX2e region is unique to unionoidean bivalve M 
genomes
Our TBLASTX, PSI-BLAST and Pfam database searches
failed to find any significant matches between the new
Mcox2e/MCOX2e sequences analyzed herein and any
non-M genome sequences in the current sequence data-
bases. The multiple similarities among the 21 Mcox2e

Table 3: Summary of TreeSAAP output.

M seq MCOX2-extension only F seq

Amino Acid Property 1 -- 3 6 -- 8 1 -- 3 6 -- 8 1 -- 3 6 -- 8
Composition neg/destab
Hydropathy neg/destab neg/destab neg/stab neg/destab
Isoelectric point neg/stab neg/stab
Molecular volume pos/stab neg/destab pos/stab
Polar requirement neg/destab neg/destab pos/stab neg/destab
Polarity neg/destab pos/stab neg/destab pos/stab neg/destab
Alpha-helical tendencies neg/destab
Turn tendencies neg/destab neg/destab neg/destab

The six "most important" TreeSAAP categories according to [34]. Two additional properties (Alpha-helical tendencies and Turn tendencies) are 
given due to their potential importance to transmembrane helix formation. Absence of selection means neutrality.

Overall amino acid composition of different COX protein sequencesFigure 5
Overall amino acid composition of different COX protein sequences. Data based on average proportions of individual 
amino acids among different taxa.
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sequences analyzed herein are consistent with the hypoth-
esis that the Mcox2e region was acquired in a single inser-
tion event that took place in a distant common ancestor
that lived > 65 MYA [29], rather than by accretionary
acquisition. Furthermore, Mcox2e was found in represent-
atives of the genus Margaritifera [14], the hypothesized
basal unionoid bivalve lineage [35-38], indicating an ori-
gin for the Mcox2e region ≥ 200 MYA. Unfortunately, the
original source of the DNA now comprising the Mcox2e
region may remain unidentified given the extremely high
substitution rate in this region and the relatively large
amount of time over which this region has accumulated
substitutions.

Another feature novel to unionoidean bivalve M genomes
is the presence of the TMH/IHL sub-region of MCOX2e
downstream of the COX2 domain. We have shown in the
sequences analyzed herein, that there are between three
and five such TMHs, and that there has been a minimum
of four changes in TMH number (two gains and two
losses) during the evolution of MCOX2e (Figure 2) in the
21 amblemine bivalve species analyzed herein. Further-
more, in 20 of the 21 C-terminus tail sub-regions of
MCOX2e, both N-glycoslylation and casein kinase II
phosphorylation motifs are observed (see Additional file
1) along with this subregion being more conserved in pri-
mary structure than the TMH/IHL sub-region (Fig. 4).
Thus, while MCOX2e appears volatile with respect to pri-
mary structure and the number and position of TMHs/
IHLs, purifying selection (TreeSAAP analyses) is appar-
ently acting to preserve the general character of the TMH/
IHL and C-terminus tail sub-regions of this unique region.

Is the MCOX2e region functional?
In a study of four freshwater mussel species' (representing
three genera) MCOX2 extensions, Curole and Kocher [13]
concluded that the "...extension is protein-coding and
functional." Their claim was based on three factors: (1)
the extension is in frame for each Mcox2 gene and the stop
codon is located just upstream of the putative cox1 initia-
tion codon, (2) the relative rates of nucleotide substitu-
tion among the three codon positions in the extension are
typical for protein coding loci and (3) a polyadenylated
transcript of the Mcox2 gene, containing the extension,
was detected in testes. Subsequently, Chakrabarti et al.
[30] demonstrated that Mcox2e is translated and strongly
expressed in testes and sperm mitochondria (as would be
expected for a functional, paternally transmitted mito-
chondrial gene) and they hypothesized "...the C-terminus
extension has functional significance for male unionoi-
dean bivalve reproductive success." Our study strongly
supports the hypothesis of functionality for the MCOX2e
region because the 21 extension sequences in this report
(1) are in reading frame with the homologous portion of
COX2 and have a 3' stop codon near their putative cox1

initiation codon, (2) show typical relative rates of substi-
tution among the three codon positions, (3) have 11 con-
stant amino acid positions, a number greater than
expected by chance, juxtaposed within a relatively larger
number of amino acid sites with extremely elevated sub-
stitution rates, (4) have at least three predicted transmem-
brane helices, (5) have conserved functional motifs in the
C-terminus tail sub-region, (6) have amino acid composi-
tions indicative of a putative functional state and one that
is quite similar to that of the MCOX2h+MCOX1 and
FCOX2+FCOX1 regions, (7) have generally conserved
hydropathy plots and (8) are evolving largely under the
influence of purifying selection (e.g., TreeSAAP analyses),
but may potentially be influenced by positive selection at
~10% of sites (as suggested by codeml and HyPhy analy-
ses).

The observed conservation of general MCOX2e features
could be due to (1) purifying selection acting on the
MCOX2e region per se or (2) purifying selection acting to
maintain an ancestral sequestration of the extension so as
to prevent it from interfering with vital mitochondrial
functions. Because MCOX2 is found in two sub-cellular
locations (inner and outer mitochondrial membranes in
sperm [39]) vs. the single ancestral location (inner mito-
chondrial membrane) seems to rule out the second
hypothesis. Thus, it is likely that purifying selection is
maintaining the general characteristics of a functional
MCOX2e region in the face of an extremely high overall
amino acid substitution rate. This hypothesis is bolstered
by the observation that, similar to the MCOX2h+MCOX1
and FCOX2+FCOX1 regions, two amino acid properties
related to transmembrane helix formation (alpha-helical
and turn tendencies; Table 3) were found to be evolving
under either neutral or purifying selection acting to pre-
serve the physicochemical properties of MCOX2e.

Within the extension region bounded by the Y1 and Y2
conserved amino acid positions (Fig. 2), the juxtaposition
of hypervariability and conservation is consistent with the
hypothesis that the predicted TMH number and position
variability is due to substitution-based processes rather
than the typically implicated duplication/deletion events
(e.g., [40]). This hypothesis is supported by "mutating"
the MCOX2e sequences in members of sister taxon pairs
that have different numbers of estimated helices (Fig. 2),
and subsequently employing ConPred II to estimate helix
number for the "mutated" sequences. For example, when
comparing the Pleurobema and Fusconaia MCOX2e
sequences, changing the amino acid at position 138 (see
Additional file 1) of Fusconaia's MCOX2e to that in Pleu-
robema (A to V) resulted in the gain of a 5th helix in Fusco-
naia's MCOX2e which was in the same position as the 5th

helix in Pleurobema. Similarly, a single amino acid substi-
tution (from T to I at position 79; see Additional file 1) in
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Lemiox's MCOX2e sequence resulted in the gain of a 5th
helix in Lemiox which is in the same position as the 3rd

helix in Ptychobranchus MCOX2e (Fig. 2). Thus, a single
amino acid substitution in MCOX2e can be sufficient to
transform an interhelical loop sub-region into a TMH.
Furthermore, the suggestion of positively selected sites in
the areas of MCOX2e in which some species contain
TMHs and others do not (Fig. 2; see Additional file 1) cou-
pled with the possibility of single amino acid substitu-
tions resulting in a change in TMH number, could help
explain the volatility in TMH number and position
inferred from our MCOX2e sequences. The above results
suggest that while the preservation of the TMH/IHL and
C-terminus tail subregions is a general feature of MCOX2e
evolution, the specific number and positions of TMHs are
readily changed.

There are other known genes that exhibit a similar pattern
of being composed of a mixture of highly variable and
more conserved sites. For example, in mammalian genes
of the major histocompatibility complex (MHC), the
highly variable antigen recognition sites are subject to
strong positive selection [41,42] while other sites evolve
under purifying selection. Likewise, different regions of
the gamete-recognition protein bindin in sea urchins
exhibit signs of both positive and purifying selection [43].
Moreover, the substitution patterns observed within
MCOX2e are inconsistent with it being a pseudogene.
Generally, pseudogenes experience a relaxation of selec-
tion and are gradually degraded through the accumula-
tion of random substitutions [44,45]. While some
pseudogenes appear to be relatively conserved (e.g., beta-
esterase genes in Drosophila melanogaster; [46,47]), they
are unlikely to persist for many millions of years, as is the
case with MCOX2e which is shared among taxa that
diverged ≥ 200 MYA [29]. Moreover, overall amino acid
composition of MCOX2e is quite similar to that of the
homologous COX genes analyzed herein (Fig. 5), with the
exception of GC-rich codons. However, because the com-
position of pseudogenes has been shown to strongly cor-
relate with the overall AT composition of the genome
[48], similarity of AT-rich and neutral codons' content
between MCOX2e and the other COX regions may serve as
additional evidence indicating a functional role for
MCOX2e.

Significance of rapid evolutionary rate for a functional 
MCOX2e region?
Both the primary and secondary structures of the
MCOX2e region are evolving much faster than in the
MCOX2h+MCOX1 and FCOX2+FCOX1 regions. The
amino acid substitution rate in the MCOX2e region is ~6×
faster than that in the MCOX2h+MCOX1 gene junction
region and >20× faster than that in the F gene junction
region (Fig. 4). TMH number in the MCOX2e region is

evolving much faster than in the typical TM domains of
COX proteins (e.g., [2-4]) which generally show no TMH
number variation over more than 600 million years of
divergence (vs. the ~65 million years of divergence repre-
sented by the species in Fig. 2). Furthermore, secondary
structure analyses of the two complete Mcox2 sequences
available in the GenBank (Anodonta woodiana [GenBank
accession no. AB055626] and Inversidens japanensis [Gen-
Bank accession no. AB055624]) confirm the presence of
two TMHs near the N-terminus of the protein (i.e., the
standard metazoan COX2 TMH number and location).
The extremely rapid evolution in both primary and sec-
ondary structure of the MCOX2e region relative to the
other domains of the F and M COX2-COX1 gene junction
regions, along with the multiple sub-cellular locations of
MCOX2 in sperm mitochondria [39], suggest that
MCOX2e has a unique function and consequently a selec-
tive regime that is distinct from that of the other mtDNA
protein coding domains. The male-specific transmission
of M genomes [[24,49], but see [23]], the testes-biased tis-
sue distribution of Mcox2 [50,51], predominant expres-
sion of MCOX2 in testes tissue [30], and MCOX2 maximal
expression immediately prior to fertilization [39] are all
consistent with the hypothesis of a reproductive function
for M genomes [52-56]. Relatively rapid rates of evolution
are frequently observed for proteins involved in reproduc-
tion (e.g., [57-59]). Thus, the rapid evolution of primary
and secondary structure in MCOX2e, combined with the
action of purifying and possibly site-specific positive
selection on this unique domain, provide additional evi-
dence for the reproductive function hypothesis.

Given the published evidence supporting the hypothesis
that MCOX2 is localized in the outer mitochondrial mem-
brane of sperm [39], the IHLs and/or C-terminus tail of
MCOX2e may serve to "tag" paternal mitochondria in
early embryos to facilitate their gender-specific movement
[60,61] which is likely a requisite for the maintenance of
paternal mitochondria transmission. The impact of posi-
tive selection on just a few amino acid sites in the TMH/
interhelical loop region of MCOX2e could have a propa-
gating effect on protein function (e.g., paternal mitochon-
dria recognition) by shifting the actual sequence of amino
acids that are in the loops (i.e., exposed on the cytoplas-
mic side of the outer mitochondrial membrane). Positive
selection at just a few sites could: (1) lead to switches in
the signaling pathway from one to another (i.e., by alter-
ing the paternal mitochondria's "tags") and/or (2) diver-
sify the pathway by adding extra recognition sites (i.e.,
adding new "tags"). Whenever a helix changes position,
so does the size and amino acid composition of the two
adjacent interhelical loops. A change in helix position
could cause a change in the (exposed) loop sequence,
even though the overall amino acid sequence in the pro-
tein changes by only one amino acid (as in the Fusconaia-
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Pleurobema and Lemiox-Ptychobranchus MCOX2e compari-
sons [discussed above]). Adding helices (we see this twice
in our gene phylogeny) could expand the number of sign-
aling receptors. The fact that each of the 14 sites in
MCOX2e potentially experiencing diversifying selection
are sites whose constituent amino acids show interspecific
variation as to whether they are within a helix or inter-hel-
ical loop, illustrates the potential importance that just a
few positively selected sites could have on the evolution of
MCOX2 protein function.

Conclusion
Our results indicate that (1) Mcox2e is unique to unionoi-
dean bivalves, (2) MCOX2e is functional and is likely the
result of a single insertion event that took place over 65
MYA, (3) the predicted TMH/IHL number, length and
position variability likely stems from substitution-based
processes rather than the typically implicated insertion/
deletion events, (4) MCOX2e has relatively high rates of
evolution in its primary and secondary structures, (5)
MCOX2e displays evidence suggestive of site-specific pos-
itive selection, (6) MCOX2e has an overall pattern of puri-
fying selection that leads to the preservation of the TMH/
IHL and hydrophilic C-terminus tail sub-regions, and (7)
the more conserved C-terminus tail (relative to the TMH/
IHL sub-region of MCOX2e) is likely biologically active
because it contains functional motifs. The rapid evolution
of primary and secondary structure in MCOX2e, com-
bined with the action of purifying and possibly positive
selection, provide supporting evidence for the hypothesis

that MCOX2e has a novel reproductive function within
unionoidean bivalves. Furthermore, the presence of
TMHs on the C-terminus side of the COX2 copper-bind-
ing site has never before been observed in metazoan
mtDNA. All tolled, our data indicate that unionoidean
bivalve MCOX2 is a chimeric animal mitochondrial pro-
tein that contains a unique and functional domain of
unknown origin.

Methods
Taxa used
We obtained sequences from a thorough cross-section (n
= 21 species; Table 4) of the unionoidean bivalve sub-
family Ambleminae including 14 genera (16 species) rep-
resenting the Amblemini and Lampsilini, two genera (two
species) from the Pleurobemini, one genus (two species)
representing the Quadrulini and one species from the
Gonideini. The use of Inversidens japanensis (Gonideini) as
the outgroup in our phylogenetic analyses is justified by
the results of [19,32]. Paleontological evidence suggests
that the sequences analyzed herein diverged from a com-
mon ancestor between 65 and 100 MYA [29].

DNA Sequencing
The gender of the sampled unionoidean bivalve individu-
als was determined by microscopical examination of
gonadal tissues. Total genomic DNA was isolated from
mantle and testes tissues using the Qiagen DNeasy animal
kit. The largely M-specific primer pair used in [30] along
with those in [62] were used to amplify the Mcox2-cox1

Table 4: Species and GenBank accession numbers for the taxa used in this study.

Species Fcox1 Fcox2 Mcox1 Mcox2

Actinonaias ligamentina EF033263 EF033283 EF033300 EF033320
Amblema plicata EF033258 EF033278 EF033295 EF033315
Cyrtonaias tampicoensis EF033259 EF033279 EF033299 EF033319
Fusconaia flava EF033261 EF033281 EF033307 EF033327
Glebula rotundata EF033264 EF033284 EF033304 EF033324
Hamiota subangulata EF033266 EF033286 EF033305 EF033325
Inversidens japanensis AB055625 AB055625 AB055624 AB055624
Lampsilis hydiana EF033270 ------------ EF033298 EF033318
Lampsilis ovata EF033262 EF033282 EF033303 EF033323
Lampsilis straminea EF033271 EF033289 EF033297 EF033317
Lemiox rimosus EF033256 EF033276 EF033302 EF033322
Obliquaria reflexa EF033254 EF033274 EF033292 EF033312
Obovaria olivaria EF033267 EF033287 EF033306 EF033326
Plectomerus dombeyanus EF033252 EF033272 EF033290 EF033310
Pleurobema sintoxia EF033253 EF033273 EF033291 EF033311
Popenaias popeii EF033257 EF033277 EF033294 EF033314
Ptychobranchus fasciolaris EF033265 EF033285 EF033301 EF033321
Quadrula quadrula EF033268 EF033288 EF033308 EF033328
Quadrula refulgens EF033269 AF517643 EF033309 AF517638
Toxolasma lividus EF033255 EF033275 EF033293 EF033313
Venustaconcha ellipsiformis EF033260 EF033280 EF033296 EF033316

Female-transmitted cytochrome c oxidase subunit I (Fcox1); female-transmitted cytochrome c oxidase subunit II (Fcox2); male-transmitted 
cytochrome c oxidase subunit I (Mcox1); and male-transmitted cytochrome c oxidase subunit II (Mcox2).
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http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF033282
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF033303
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF033323
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF033271
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF033289
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF033297
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF033317
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF033256
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF033276
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF033302
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF033322
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF033254
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF033274
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF033292
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF033312
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF033267
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF033287
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF033306
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF033326
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF033252
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF033272
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF033290
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF033310
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF033253
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF033273
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF033291
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF033311
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF033257
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF033277
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF033294
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF033314
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF033265
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF033285
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF033301
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF033321
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF033268
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF033288
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF033308
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF033328
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF033269
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF517643
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF033309
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF517638
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF033255
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF033275
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF033293
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF033313
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF033260
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF033280
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF033296
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=EF033316
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junction region [13] (Fig. 1) from testicular tissue-based
DNA isolates. These primers amplified an ~1.7 kbp frag-
ment from the M genomes. A largely F-specific primer pair
[19] was used to amplify the corresponding Fcox2-cox1
junction region (Fig. 1) from mantle tissue-based DNA
isolates. These primers amplified a ~1.1 kbp fragment
from the F genome. PCR reactions consisted of 1× Qiagen
PCR buffer, 0.2 mM each dNTP, 0.5 μM each primer, 1 U
Qiagen Taq and ~20 ng of template DNA. Reactions using
the male-specific primers were cycled at 94°C for 60s,
50°C for 60s, and 72°C for 120s for a total of 40 cycles.
Reactions involving the female-specific primer followed
the same profile as above but were annealed at 46°C. The
above PCR primers ultimately yielded F and Mcox2-cox1
DNA sequences obtained via cycle sequencing with Perkin
Elmer AmpliCycle Sequencing Kits. The sequencing prim-
ers utilized were identical in sequence to the PCR primers
and sequencing template purification was done following
[63]. Sequences were visualized using Li-Cor 4200L-2 and
4200S-2 DNA sequencers. Forward and reverse sequenc-
ing reads were assembled and verified using AlignIR v2.0
(LI-COR, Inc.) and final sequence alignments were com-
pleted manually with MacClade v4.0 [64].

Database searching
To identify potential homologs, Mcox2e nucleotide
sequences were used as queries for TBLASTX [31] searches
(six-frames, translated nucleotides for both query and
subject) against the non-redundant Genbank database.
We searched with a relaxed expectation value of E = 1 to
ensure completeness. Putative translated Mcox2e
sequences, using the Drosophila mtDNA genetic code, were
used in subsequent PSI-BLAST [31] searches of the Gen-
Bank with an expectation E-value of 0.5 for inclusion.

To understand better the secondary structure of the cox2
gene we searched the Pfam database (release 21; [65]) for
all sequences with an architecture containing the COX2
Pfam A domain. Sequences from Danaus plexippus plexip-
pus (Pfamseq_acc: Q6J977), Tirumala hamata (Q6J937)
and Agathis sp. DMA-1998 (Q9T6C7) were excluded
because of the large number of ambiguous residues
present at the 5' end of the sequences. A Caenorhabditis
briggsae sequence (Q60IM7) was excluded because it is a
whole genome shotgun entry consisting of a cytochrome
c oxidase II periplasmic domain, a NADH:ubiquinone
oxidoreductase subunit 5 domain and a NADH-Ubiqui-
none/plastoquinone domain; thus, it is likely an unanno-
tated clone of the C. briggsae mitochondrial genome.
Sequences were split into two groups based on the pres-
ence or absence of a COX2_TM Pfam A domain. A small
subset of sequences have a putative COX2_TM Pfam A
domain, but the model significance is too low for inclu-
sion in the sequence architecture. A large number of
sequences have a small number of residues upstream of

the COX2 domain. To estimate a minimum cutoff length
for COX2_TM prediction, we generated the distribution of
upstream sequence length (length 5' of the COX2
domain) for all sequences whose architecture includes the
COX2_TM domain. We chose a 1% cutoff level, which
corresponds to 39 residues (i.e. 99% of sequences with a
COX2_TM~COX2 architecture have an upstream
sequence length greater than 39 residues). Sequences with
greater than 39 upstream residues and no COX2_TM Pfam
A domain were subjected to transmembrane helix predic-
tion using the ConPred II algorithm [66]. Transmembrane
helices are considered upstream if the 3' end of the trans-
membrane helix is upstream of the 5' end of the COX2
Pfam A domain. In addition, we scanned the Pfam anno-
tation for TMHs 3' of the COX2 domain.

Phylogenetic analyses
Our Mcox2 sequences were aligned with unionoidean
bivalve Fcox2 nucleotide sequences (which have a uni-
form length) obtained from the Genbank to determine
the boundaries and length of Mcox2e. The 5' end of
Mcox2e is designated as the nucleotide of the Mcox2
sequence that aligns with position one in the stop codon
of the Fcox2 sequences. The 3' end of Mcox2e is the stop
codon for Mcox2. The F and Mcox2-cox1 nucleotide
sequences were translated to protein sequences using the
Drosophila mtDNA genetic code. All DNA sequences gen-
erated herein were submitted to the GenBank database
(Table 4).

Phylogenetic trees were reconstructed using Bayesian
inference (BI) and maximum parsimony (MP)
approaches. Bayesian analyses were conducted using the
program MrBayes (v3.1.2; [67,68]). Bayesian searches
were run for 10 million generations with 10 search chains
and the data were partitioned by gene region and by
codon position (five gene regions × three codon positions
for the full data-set; four gene regions × three codon posi-
tions for the data-set with the Mcox2e sequences
removed), saving 10,000 trees (one tree saved every 1000
generations) and using GTR+G+I substitution model [69],
as selected by the program Modeltest [70]. To allow each
partition to have its own set of parameter estimates, rev-
mat, tratio, statefreq, shape, and pinvar were all unlinked
during the analysis. The burn-in was determined by visual
inspection of the likelihood score plot obtained as the
trees were written to the tree file. In all analyses, stationar-
ity was reached before one million generations, and the
first 1000 trees were discarded (i.e., the first million gen-
erations) from each analysis as the burn-in. To obtain the
most accurate branch length estimates possible, the
option prset ratepr = variable was employed as per the rec-
ommendations of [71]. Maximum parsimony analyses,
using PAUP* (v.4.0b10 [72]), were run on a transformed
data-set wherein only transversions were coded for all
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third codon positions. Reliability of the internal nodes
was estimated by bootstrapping the data-set with 100,000
full heuristic replications for the MP analysis using
PAUP*. Reliability of the Bayesian topologies was evalu-
ated with the posterior probabilities from the majority-
rule consensus tree.

Transmembrane helix (TMH) prediction and optimization
Secondary structure prediction was done using the Con-
Pred II software package [66] that utilizes five TM predic-
tion methods. The "Markov k-state one parameter model"
(MK1; [73]), which assumes equally probable forward
and backward rates of change, was used for maximum
likelihood estimation of the ancestral number of
MCOX2e TMHs. Ancestral states were determined using
the Bayesian phylogenetic estimate from the 2,310 bp
data-set under the GTR+G+I model and MK1 model
parameters with the software package Mesquite (v.1.05;
[74]). Ancestral character state estimates with a log likeli-
hood two or more units lower than the best state estimate
(decision threshold [T] set to T = 2) were rejected [75,76].

Because the best phylogenetic estimates suggested sub-
stantial MCOX2e TMH number volatility, the robustness
of the ancestral state inferences was evaluated using con-
straint analyses. Separate BI analyses were conducted on
our non-transformed 2,310 bp nucleotide dataset to pro-
duce trees in which terminals with identical TMH number
were individually constrained to be monophyletic, and a
tree in which all terminals of equal helix number were
simultaneously constrained to be monophyletic. Differ-
ences in topology between these trees and the best tree
from an unconstrained analysis were tested with the par-
simony-based Kishino-Hasegawa test (KH; [77]), the
Templeton test (Wilcoxon signed-ranks test; [78]) and the
winning sites test [79] in PAUP*. Differences between
these topologies were also tested with the likelihood-
based approximately unbiased test (AU; [80]), the Shimo-
daira-Hasegawa test (SH; [81]), the weighted Shimodaira-
Hasegawa test (WSH; [80]), the Kishino-Hasegawa test
(KH) and the weighted Kishino-Hasegawa test (KWH) in
CONSEL [82].

Properties of the data: (a) Conservation of MCOX2e 
sequences
To determine whether the observed number of conserved
amino acid positions in the MCOX2e region would be
expected by chance alone, we generated a null distribu-
tion of the number of MCOX2e conserved amino acid
sites. Data-sets consisting of 21 sequences each 143 amino
acids in length were simulated (5,000 total) with the pro-
gram evolver (from the PAML package; [83]) using the
Mtrev model of substitution [84]. Evolver simulates data
sets by generating a root sequence from user defined
amino acid frequencies and then evolving this sequence

along the user specified tree. Branch lengths used for
sequence simulation were estimated by subjecting the
extension region's 143 unambiguously aligned amino
acids and the topology in Figure 2 to a maximum-likeli-
hood analysis with PAML assuming a constant substitu-
tion rate across sites and the mtREV24 substitution
matrix. The average amino acid frequencies across the 21
species were used as the starting frequencies for simula-
tion. To reflect the null hypothesis that this region is
evolving in the absence of selection the simulation
assumed a constant substitution rate across sites. Simula-
tions were done with both the conservative mtREV24
model and the less conservative Poisson model of
sequence substitution rates. Each of the 5,000 simulated
sequence data-sets was then scanned for conserved posi-
tions. The number of conserved positions for each simu-
lated data-set was used to construct a probability density
distribution. In addition, PROSITE [85] was used to
search for conserved functional motifs in the MCOX2e
region.

Properties of the data: (b) Estimates of amino acid 
substitution rates, hydropathy indices, and positive 
selection
The ML-based program HyPhy [86] was used to generate
sliding window estimates of amino acid substitutions per
site in the COX2+COX1 regions (Mtrev substitution
model; [87]) using the topology from Figure 2. Kyte-
Doolittle hydropathy plots were generated for the
sequenced MCOX2 region (MCOX2h+MCOX2e) using
ConPred II [66]. The codeml program (PAML; [83]) and
HyPhy [86] were used to search for positively selected
codons in the M and F COX2-COX1 junction regions.
These programs estimate model parameters by numerical
optimization of the likelihood function (maximum likeli-
hood) via reference to a user-specified tree topology. We
explored four models of codon substitution with codeml
in a pairwise fashion.  First, a nearly neutral model (M1a)
that does not allow for positive selection (ω1 = 1 and
0<ω0<1) was compared with a positive selection model
(M2a), which is an extension of model M1a that has an
additional (third) site class with ω >1. Differences in log-
likelihood values were tested against a X2 distribution. If a
majority of sites in a gene have undergone purifying selec-
tion or neutral evolution, models M1 and M2 may not be
sufficiently sensitive to detect positive selection. There-
fore, a similar X2 test is employed with two models (M7
and M8) that assume a β distribution of ω ratios among
sites. Unlike the M7 model, the M8 model allows for
some sites to have ωs > 1. If the positive selection models
are found to be significantly better than the other models,
codeml employs the Bayes empirical Bayes method [87] to
calculate the posterior probabilities (PP) that sites are
experiencing positive selection. Some authors [e.g., [88-
90]] report the presence of positive selection with a PP >
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0.9, while others [e.g., [91]] feel a more stringent cutoff of
PP > 0.95 is more appropriate. The HyPhy analysis utilized
the "MG94xHKY85x3_4x2_Rates" model of codon substi-
tution [92] and searched for positively selected sites using
the empirical Bayes method [6] following the procedure
in [92]. Following [92], Bayes factor values >20 show
some evidence for positive selection and Bayes factor val-
ues > 50 correspond to "extremely high posterior proba-
bilities" (at least greater than PP = 0.9) [89].

Properties of the data: (c) Changes in amino acid 
composition and properties
The program TreeSAAP (v.3.2; 93]) was used to measure
the influences of selection at the amino acid level using
quantitative amino acid properties. Distribution of poten-
tial changes in physicochemical amino acid properties
was inferred using the topology from Figure 2, and differ-
ences between expected and observed changes were eval-
uated. Positive and negative z-scores indicate positive and
negative (purifying) selection, respectively [34,93,94].

We also compared overall amino acid composition of
MCOX2e with that of the male and female COX1 and
COX2h proteins. Amino acids were partitioned into three
categories: those encoded by GC-rich codons (i.e., FYM-
INK amino acids, namely, phenylalanine, tyrosine,
methionine, isoleucine, asparagine, and lysine), those
encoded by AT-rich codons (GARP amino acids, namely,
glycine, alanine, arginine, and proline) and those
encoded by neutral codons [95]. The proportion of each
individual amino acid was estimated for each sequence. A
chi-square test was used to determine whether the average
amino acid composition significantly differed between
different regions.
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