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Abstract

Background: Genes involved in male reproduction are often the targets of natural and/or sexual
selection. SCMLI is a recently identified X-linked gene with preferential expression in testis. To test
whether SCMLI is the target of selection in primates, we sequenced and compared the coding
region of SCMLI in major primate lineages, and we observed the signature of positive selection in
primates.

Results: We analyzed the molecular evolutionary pattern of SCMLI in diverse primate species, and
we observed a strong signature of adaptive evolution which is caused by Darwinian positive
selection. When compared with the paralogous genes (SCML2 and SCMHI) of the same family,
SCMLI evolved rapidly in primates, which is consistent with the proposed adaptive evolution,
suggesting functional modification after gene duplication. Gene expression analysis in rhesus
macaques shows that during male sexual maturation, there is a significant expression change in
testis, implying that SCML/ likely plays a role in testis development and spermatogenesis. The
immunohistochemical data indicates that SCML/ is preferentially expressed in germ stem cells of
testis, therefore likely involved in spermatogenesis.

Conclusion: The adaptive evolution of SCMLI in primates provides a new case in understanding
the evolutionary process of genes involved in primate male reproduction.

Background

Proteins involved in sexual reproduction often evolve rap-
idly due to positive selection [1-4]. Although the selective
forces are unclear, a variety of hypotheses have been pro-
posed including mate choice, intra-sexual competition
and sexual conflict, which are different forms of sexual
selection. The rapid evolution of these proteins may con-
tribute to several important biological aspects such as
reproduction and speciation. It has long been recognized
that gene duplication is a major source of genomic novel-

ties. Therefore, the newly duplicated genes involved in
reproduction are likely the targets of natural and/or sexual
selection.

Using exon trapping, van de Vosse et al [5] identified a
novel gene in human located on Xp22, named as SCM-
like-1 (SCML1), which is similar with the Scm gene in
Drosophila. In the human genome, SCML1 spans 18 kb
and contains 8 exons. Northern blot analysis detected a
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major SCML1 transcript of approximately 3-kb in all
human adult and fetal tissues tested [5].

SCML]1 gene is a polycomb group (PcG) gene. Most of the
PcG genes are expressed throughout embryonic, larval
and pupal development, and are required continuously to
maintain restricted homeotic expression in Drosophila.
[6-10]. Most mammalian PcG genes have Drosophila
homologs [11,12]. Compared to Drosophila, the mam-
malian PcG genes have acquired novel functions during
evolution because PcG knockout mice exhibit numerous
phenotypes including hematopoietic defects, neural crest
defects, cardiac anomalies, and sex reversal [12,13].
SCML1 is likely a recently duplicated gene during mam-
malian evolution due to the absence of orthologs in Dro-
sophila, zebrafish and chicken.

In the SCM family, there are other two genes, SCML2 and
SCMH1, which have orthologs in all vertebrate species
and are located on chromosome Xp22 [14] and chromo-
some 1p34 [15] respectively. SCMH]1 is a core component
of polycomb repressive complex 1 (PRC1) [16-18] which
is involved in the maintenance of repression and can
block chromatin remodeling[17], and it plays an impor-
tant role in regulation of homeotic genes in embryogene-
sis[19]. SCML2 is also involved in PRC1's regulation[20].
A recent study showed that SCML2 is over-expressed in
acute myeloid leukaemia, suggesting its role in differenti-
ation and cell cycle regulation[21]. As SCML2 and SCMH1
are the ancient copies in the SCM family, they would serve
as the ideal reference genes when dissecting the molecular
evolution of SCML1 in primates.

Through a genome-wide comparison, we have identified
34 candidate genes including SCML1 that showed rapid
nonsynonymous sequence divergence between human
and chimpanzee [22], therefore an implication of adap-
tive evolution of these genes during primate evolution. To
test whether SCMLI1 is the target of selection in primates,
we sequenced and compared the coding region of SCML1
in major primate lineages, and we observed the signature
of positive selection.

Methods

DNA samples

The major lineages of primates were sampled, including
three great ape species (chimpanzee-Pan troglodytes,
gorilla-Gorilla gorilla and orangutan-Pongo pygmaeus), two
lesser ape species (white-browed gibbon-Bunopithecus
hoolock and white-cheeked gibbon-Nomascus leucogenys),
two Old World monkey species (rhesus macaque-Macaca
mulatta and Yunnan snub-nosed monkey-Rhinopithecus
bieti) and one New World monkey species (common mar-
moset-Callithrix jacchus). The common ancestor of the
tested primate species can be traced back to about 45 mil-
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lion years ago [23]. All the DNA samples were from collec-
tion in Kunming Cell Bank of CAS and Kunming Blood
Center in China.

PCR and sequencing

All the samples were sequenced for the full length coding
region of SCMLI. Primers for all the primates were
designed by aligning the published sequences of human
(Esembl ID: ENSG00000047634) and macaque (Ensembl
ID: ENSMMUGO00000012899, Ensemble genome
browser [24]). The primer sequences are listed [see Addi-
tional file 1].

PCRs were performed with 1Taq under conditions recom-
mended by the manufacturer (TAKARA Company).
Sequencing was performed in both directions with for-
ward and reverse primers using the BigDye terminator
sequencing kit on an ABI 3130 automated sequencer.
There are 8 exons in SCML1 gene, and the first exon is
non-translational, therefore, not sequenced in this study.
Overlapping chromatogram files retrieved from the
sequencer were analyzed and edited using the SeqMan
program in the Lasergene software package (DNASTAR
Inc).

Sequence analysis

The DNA sequences were aligned with the CLUSTALW
program implanted in Mega [25,26] and checked manu-
ally. There are several in-dels (do not change the reading
frame) in the coding region of common marmoset, and
those sites were removed in the sequence analysis. The
known phylogeny of primate species was used|[23,27].
The ancestral sequences were inferred by PAML 3.15 [28].
The synonymous (ds) and nonsynonymous (dy;) substitu-
tion rates of each branch were calculated with the use of
the maximum likelihood method under the free-ratio
model [28].

Test of selection

Positive selection can be inferred from a higher propor-
tion of nonsynonymous than synonymous substitutions
per site (dy/dg > 1). To detect specific amino acid sites
under positive selection, we applied the site models in the
codeml program of the PAML package. Using this set of
models, we obtained the log likelihood estimates (L) of a
tree topology under models that impose alternative
assumptions in terms of rate variation (® = dN/dS) over
different codon sites [29,30]. The model MO was used to
evaluate the general sequence substitution pattern of
SCMLI1 in primates assuming a constant o ratio across
codon sites. MO estimates the overall  for the data. The
M1a model estimates single parameter, p0, with @0 = 0,
and the remaining sites with frequency p1 (p1 = 1-p0)
assuming wl = 1. We first compared model MO with M1a
to determine which model is more realistic for the data
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and M1a tuned out to be the better one. Then we com-
pared model M2a (selection) and M1a (nearly neutral) to
test if invoking of positive selection in model M2a would
better explain the data [31,32]. It was suggested that under
certain scenarios, a beta distribution of o is more realistic,
therefore, we also conducted the selection test by compar-
ing model M7 and M8, in which a beta distribution of
owas assumed. We also conducted a more stringent test
by comparing M8 with M8a. The LRTs between nested
models were conducted by comparing twice the difference
of the log-likelihood values (2AL) between two models
[32]. If the log likelihood test suggests the presence of sites
under positive selection, we then identified these sites by
using a Bayesian method to estimate posterior probabili-
ties (P) [33].

Comparative evolutionary analysis among SCMLI, SCML2
and SCMH |

Sequences of SCML2 and SCMH1 genes were obtained
using BLAST (GenBank and Ensembl) for five primate
species including human, chimpanzee, orangutan, rhesus
macaque and common marmoset. The sequence IDs are:
SCML2, Homo sapiens (ENST00000398048), Macaca
mulatta (ENSMMUG00000005084), Pan troglodytess (ENS
PTRG00000021710); SCMH1, Homo sapiens (ENST00000
326197), Pan troglodytess (ENSPTRG00000000601),
Macaca mulatta (ENSMMUGO00000017104). With the use
of human SCML2 and SCMH]1, we searched the genomes
of orangutan and common marmoset with Blastn and
obtained the coding sequences of these two genes[34].

Protein sequences were aligned with the CLUSTALW pro-
gram implanted in Mega4 [26] and the o calculation was
conducted using the codeml program of PAML3.15 [32].
The ratios of dy;and dg were estimated by using PAML3.15,
and the Z test(data not show) was used to evaluate the
ratio difference between each branches [26]. Similar neu-
trality tests described above were used in comparing the
evolutionary patterns among the three genes.

RT-PCR analysis RNAs were extracted using the Tri-Rea-
gent kit based on the manufacturer's specifications (Invit-
rogen Inc.). For gene expression analysis of rhesus
macaques during development, a total of 20 testis sam-
ples were analyzed including ten 1-2 year old monkeys
(sexually immature) and ten 7-8 years old monkeys (sex-
ually matured). The T test was used for statistical evalua-
tion of expression difference.

For tissue expression analysis in rhesus macaques, a total
of 12 tissue types (1-2 year old male macaques) were ana-
lyzed including brain, cartilage, heart, large intestine,
small intestine, liver, lung, muscle, pancreas, spleen,
stomach and testis. All the rhesus macaque tissue samples

http://www.biomedcentral.com/1471-2148/8/192

were collected from the Kunming Primate Research
Center, Chinese Academy of Sciences.

For real-time quantitative RT-PCR analysis, cDNAs were
synthesized with SuperScript™ III (Invitrogen) from 5 pg
of total RNA in a total volume of 20 pl with oligo(dT)
primer in accordance with the manufacturer's instruc-
tions. SYRB Green I-based real-time PCR was carried out
using the DNA Engine Opticon® 2 Continuous Fluores-
cence Detection System (M]J, BioRad). After an initial
denature step for 5 min at 94 °C, conditions for cycling are
40 cycles of 20 sec at 94°C, 20 sec at 58°C, 20 secat 72°C.
At the end of the PCR cycles, a melting curve was gener-
ated to identify specificity of the PCR product. For each
run, serial dilutions of rhesus macaque GAPDH (glyceral-
dehyde-3-phosphate dehydrogenase) plasmids were used
as standards for quantitative measurement of the amount
of amplified DNA. In addition, for normalization of each
sample, mGAPDH primers were used to measure the
amount of GAPDH cDNA. All samples were run in tripli-
cates and the data were presented as a ratio of SCML1/
GAPDH. The ACt values were calculated and then con-
verted into the linear-scale expression levels. Oligonucle-
otides were obtained from Invitrogen. Negative controls
were performed with water as template. The primer
sequences are:

GAPDH F primer 5'ACTTCAACAGCGACACCCACTC3'
GAPDH R primer 5'CCCTGTTGCTGTAGCCAAATTC3'
SCML1 F primer 5'CTCCTACCCTGAAAGTTATAGCC3'
SCML1 R primer 5 TCTGAGGGATGCACTGGAC3'

Immunohistochemical analysis

The liquid nitrogen stored tissue was sectioned (10 um)
using a HM550 tissue processor (Microm). The frozen sec-
tion slides were stored at -80°C in a sealed slide box. Sec-
tions were stained using the standard
immunohistochemical method. The mouse monoclonal
antibodies generated using human SCML1 protein (dilu-
tion 1:100, Abnova) and the goat anti-mouse IgG anti-
body (dilution 1:200, Bethyl) were used following the
manufacturer's instruction. The negative control used is
the buffer-only samples with no mouse antibodies.
Immuno-reactivity was visualized by using 0.025% 3.3'-
diaminobenzidine tetrachloride/0.001% H,0O,. These
slides were washed with phosphate-buffered saline (pH
7.4). The sections were counterstained with hematoxylin
for a few seconds.
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Results

Sequence substitution pattern of SCMLI in primates

A total of nine primate species were sequenced covering
the complete 990-1,002 bp coding region of SCMLI.
There are 215 sites (21.98%, 215/978, in-dels were not
counted) showing sequence substitutions in the nine pri-
mate species tested. When translated into protein
sequences (329-333 amino acids, Figure 1), there are 129
sites (38.51%) having substitutions, an implication of
rapid sequence changes during primate evolution. For
example, the protein sequence substitution rates (meas-
ured by dy) of SCML1 between human and Old World
monkeys are relatively fast (human vs. rhesus monkey,
0.045; human vs. Yunnan snub-nosed monkey, 0.055)
among those male reproduction associated genes in pri-
mates [35].

Test of selection on SCMLI in primates

We calculated the d,/dgratio (also called ®), which meas-
ures the rate of protein evolution as scaled to mutation
rate for all the branches. We also obtained the numbers of
nonsynonymous and synonymous substitutions for each
branch (Figure 2A) [36]. As shown in Figure 2A, most of
the primate lineages have large o values (o > 1) except for
orangutan and rhesus macaque, again suggesting rapid
amino acid changes during primate evolution.

The rapid protein sequence evolution can be explained
either by Darwinian positive selection or by relaxation of
negative (or purifying) selection. To test the hypothesis
that they could be under Darwinian positive selection, we
conducted the analysis for positive selection at individual
amino acid sites using maximum likelihood models by
estimating o values[28,29,37]. The results are presented
in Table 1. We first conducted the analysis using MO. In
the MO analysis, the log likelihood L is -2619.84, and the
estimated ® = 1.169, implying that there are varied evolu-
tionary forces acting on the amino acid sites of SCML1
(neutral, negative selection and/or positive selection).
Model M1a (nearly neutral) assumes two site classes in
the sequence (0 < w < 1 and o1 = 1 fixed), and is signifi-
cantly better than MO (2AL = 13.26, P = 0.0002). There-
fore, we use Mla as the null hypothesis in detecting
selection.

We next compared M1a and M2a (selection model), and
M2a fits the data significantly better than M1la (2AL =
26.52 P < 0.0001), a strong signature of positive selection
on SCMLI in primates. M2a suggests that 12.3% of the
sites are under positive selection with o, = 5.25. In addi-
tion, to avoid the potential bias caused by the assumed
substitution pattern in M1a and M2a, we also conducted
the selection test by comparing M8 (selection model) and
M7 (neutral model), in which a beta distribution for ®
over sites was assumed. M8 provides significantly better fit
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to the data than M7(2AL = 33.9, P < 0.0001), again sug-
gesting positive selection on SCML1 in primates. M8 sug-
gests that 10.8% of the sites were under positive selection
with @ = 5.78. Interestingly, M8 demonstrates a U-shaped
distribution of beta values, suggesting that most sites are
either highly conserved with dN/dS close to 0 or nearly
neutral with dN/dS = 1, and only a small percentage of the
sites were under positive selection. A more stringent test
comparing M8 and M8a also supports the proposed posi-
tive selection (2AL = 27.3, P < 0.0001). The positively
selected sites are shown in Table 1 and Figure 1[33,38].
Collectively, all the tests on selection can be better
explained by the evolutionary model that invokes positive
selection in primates.

Evolutionary pattern comparison between SCMLI,
SCML2 and SCMH

As SCML]1 is likely a recent duplication during mamma-
lian evolution, we compared the evolutionary patterns
between SCML1 and the two other members of the SCM
family, i.e. SCML2 and SCMH1, which are located on
chromosome X and chromosome 1 respectively. The
sequence alignment is showed in Additional file 2.
SCML1 and SCML2 are only 15-kb apart on chromosome
X (Figure 3A), and the intron and exon structure at the C
terminus are highly conserved between them but with
totally different N terminus. The SAM domain (sterile
alpha motif) is highly conserved among all the three genes
(Figure 3B). Strikingly, when comparing the amino acid
sequences of the SAM domain among different primate
species, SCML1 have much more between-specie amino
acid changes than those of SCML2 and SCMH1. In the MO
analysis, the © values for SCMH1 and SCML2 are 0.179
and 0.325 respectively, which are much smaller than that
of SCML1 (® = 1.169). This is an average over all sites in
the protein and all lineages in the tree, therefore, suggest-
ing a dominant role of purifying selection in the evolution
of SCML2 and SCMH1. With the use of free ratio model,
we calculated the dy/dg values of each primate lineages for
SCML2 and SCMH]1, and all the lineages show strong
functional constraint (purifying selection) or neutral evo-
lution (dy/d, < 1) (Figure 2B, 2C). The expression pattern
of the three genes in human is different from each other
though all of them are highly expressed in testis [see Addi-
tional file 3] implying functional divergence after gene
duplication.

Expression analysis of SCMLI

Having shown that the evolution of SCML1 in primates is
consistent with positive selection, by dissecting its expres-
sion pattern, we attempt to understand the driving force
and the functional consequence of selection. We first
detect the expression pattern of SCML1 by testing 12 dif-
ferent tissue types in 1-2 year old macaques and the result
is shown in Figure 4. Testis and pancreas have the highest
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Figure |

Protein sequence alignment of SCMLI in human and nonhuman primates. The SAM domains are indicated. The
SAM domain is 64 amino acids in length. Sterile alpha motif (SAM) domains are known to exhibit diverse protein-protein inter-
action modes[57] (Hum: human — Homo sapiens, Chi: Pan troglodytes, Gor: Gorilla gorilla, Ora: Pongo pygmaeus, HLG: white-
browed gibbon — Bunopithecus hoolock, WCG: white-cheeked gibbon — Nomascus leucogenys, Mac: rhesus monkeys — Macaca
mulatta, and SCM: Yunnan snub-nosed monkey — Rhinopithecus bieti, Mar: common marmoset — Callithrix jacchus.) The sites
under positive selection are highlighted including 23N, 95S, I53L, 20I1T, 270L (P > 95%, labeled with *) and 92H, 242G (P >
99%, labeled with #). The sequence IDs are Hum: EU370780, Chi: EU370781, Gor: EU370782, Ora: EU370783, WCG:
EU370784, HLG: EU370785, Mac: EU370786 and SCM: EU370787. The marmoset's ortholog of SCMLI was obtained through
blast search [34].
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Figure 2

Molecular evolution of SCMLI, SCML2 and SCMH reconstructed over the known phylogenetic tree of pri-
mates. A) The o values of different lineages in primates were calculated using the SCML| coding sequences. The phylogeny
was drawn roughly to the scale of evolutionary time. oo refers to ® value with dS being zero. B, C) The phylogenetic trees of
SCML2 and SCMHI. The o values are shown above each branch. The numbers of nonsynonymous vs. synonymous substitu-

tions (N/S) are shown below each branch.

expression when compared with the other tissues. In
human, according to the micro-array expression data,
SCML1 is also preferentially expressed in testis [39]. The
abundant expression of SCMLI in testis confirms its
involvement in male reproduction. However, in humans
[see Additional file 3], liver, fetal liver, and pituitary all
show higher expression than pancreas, which is different
from the expression pattern of rhesus macaque, implicat-
ing functional modifications of SCML1 during primate

evolution. This is consistent with the proposed positive
selection on SCMLI in primates.

We then detect the potential expression change of SCML1
during male sexual maturation and a significant change
was detected in testis. We compared two age groups, i.e.
1-2 year old monkeys (sexually immature) and 7-8 year
old monkeys (sexually matured). The result indicates that
both age groups have abundant expression of SCML1, and
there is a significant reduction (about 60%) in the adult
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Table I: Neutrality tests of SCMLI in primates using maximum likelihood estimates (site-model)

Model InL Estimates of parameters 2AInL Positively selected sites

MO: -2619.84 o=1.169 None

Mla -2613.21 p0=0.278 pl =0.722 13.26(1)** Not allowed

M2a -2599.55 p0=0.217 pl =0.660 26.52(2)** 23N I53L 201 T (95 =< P < 99%) 92H 242G (P > 99%)
p2=0.123 ®2 =5.25

M7 -2616.5 p = 1.096 q = 0.005 Not allowed
p0 =0.892 p = 0.020

M8 -2599.65 q =0.005(pl =0.108) 33.9(3)** 3N 95S I153L 201T 270L (P > 95%) 92H 242G (P > 99%)
o =578

M8a -2613.21 p0 =0.278 p = 0.005 27.3(4)** Not allowed

q=1.728 (pl =0.722)
o=1.0

Note: * refers to P < 0.05. ** refers to P < 0.01; (1): Mla versus MO, (2): M2a versus Mla, (3): M8 versus M7 (4): M8 versus M8a. The proportions
of sites under positive selection and selective constraint are p| and p0 respectively. The parameters p and q are used for the beta distribution B(p,

q).
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Figure 3

Gene structure and sequence comparison among SCMLI, SCML2 and SCMHI. A) SCMLI and SCML2 are both
located on the X-chromosome and the transcription directions are indicated by the arrows. B) The protein sequence align-
ment among the three genes. The SAM domains are highlighted. Sterile alpha motif (SAM) domains are known to exhibit
diverse protein-protein interaction modes[57]
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Figure 4

The relative expression levels of SCMLI in different tissues. A -2 year old male rhesus monkey was sampled and
tested using real time quantitative PCR. The pancreas and testis showed the highest expression of SCMLI. The numbers above

the columns are the relative levels of expression.

group (p = 0.015, two-tailed t test) (Figure 5). We next car-
ried out immunohistochemical analysis of the two age
groups (Figure 6). The result shows that SCML1 is prefer-
entially expressed in the germ stem cells of testis (sperma-
togonial stem cells in 1-2 year old monkeys, and
spermatogonia in 7-8 year old monkeys) [40-48], and
again the 1-2 year old group has higher expression than
the adult group. The higher expression in the 1-2 year old
monkeys is probably due to the relative abundance of
stem cells at the sexually immature stage. The preferential
expression in the stem cells of testis suggests that SCML1
is likely involved in spermatogenesis during sexual matu-
ration in rhesus macaque.

Discussion

We demonstrate that SCML1 evolves rapidly in primates,
which was caused by Darwinian positive selection. Genes
expressed exclusively or preferentially in testis are likely
involved in male reproduction and have been shown to
evolve rapidly under positive selection in previous studies
([1-3,49-55]. Our observation of rapid evolution in
SCML1 provides another example of male reproductive
gene under Darwinian positive selection in primates.

Darwinian positive selection may lead to functional
changes of the target genes during evolution. The SAM
domain located in the C terminal (Figure 1) is the only
known functional domain of SCML1[56]. Among pri-
mates, the amino acid sequences of the SAM domains are
relatively conserved across species and there is one site
under positive selection (Figure 1). The SAM domain is
known to exhibit diverse protein-protein interaction
modes, and is involved in developmental regulation [57].
Through functional domain prediction [56-63], besides of
the SAM domain, we identified a total of six frag-
ments[64,65] (amino acid position 1-9, 13-23, 72-79,
88-114, 125-157 and 224-239) in SCMLI containing
potential functional domains. For example, the fragment
1-9 is a signal peptide. The positively selected sites using
95% cutoff are listed in Table 1, and most of them are also
located in the potential functional domains other than
the structural domains (4/1 and 5/2 for model M2a and
model M8 respectively). This distribution bias of the pos-
itively selected sites indicates that Darwinian positive
selection on SCMLI1 targets the putative functional
domains, which is consistent with the proposed func-
tional modification of SCML1 during primate evolution.
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Relative Expression

1-2 year old

Figure 5

7-8 year old

The relative expression levels of SCMLI in testis during male sexual maturation, which was tested using real
time quantitative PCR. Two age groups were tested including the 1-2 year old macaque group and the 7-8 year old

macaque group. Ten individuals were sampled for each group.

Sexual selection is the favored explanation for the
observed adaptive evolution of male reproductive genes
[35,66]. The immunohistochemical and RT-PCR data sug-
gests that SCML1 is important for the development and
normal function of testis in primates. Therefore, it is rea-
sonable to propose that the adaptive evolution of SCML1
in primates is likely due to sexual selection[4]. Sperm
competition, one of the major mechanisms for sexual
selection has been used to define the driving force of selec-
tion in promiscuous species, e.g. chimpanzee and human,
which seems to explain the observed adaptive evolution
of SCML1 since both chimpanzee and human are among
the rapidly evolving lineages (o > 1, Figure 2A). However,
gibbon is a monogamous species with a high o value, and
the highly promiscuous rhesus monkey does not show
accelerated evolution (® = 0.09). Therefore, the branch-
specific rapid evolution of SCML1 in primates does not
provide consistent support for the sexual selection
hypothesis. Other evolutionary mechanisms need to be
tested, e.g. speciation [67-70].

The origin of SCML1 probably occurred at the early stage
of mammalian radiation about 100 million years ago
because we do not identify SCML1 in non-mammalian
species, neither in mouse and rat, but in dog, cow and pri-
mates. The comparison of evolutionary and expression
patterns among the three genes of the same SCML family
suggests that the rapid evolution of SCML1 likely led to
function modification of testis development and sperma-
togenesis in primates [71-73].

Conclusion

The adaptive evolution of SCML1 in primates provides a
new case in understanding the evolutionary process of
genes involved in primate male reproduction.

Abbreviations

Hum: human - Homo sapiens; Chi: chimpanzee - Pan trog-
lodytes; Gor: gorilla - Gorilla gorilla; Ora: orangutan -
Pongo pygmaeus; HLG: white-browed gibbon - Buno-
pithecus hoolock; WCG: white-cheeked gibbon - Nomascus
leucogenys; Mac: thesus monkeys — Macaca mulatta; SCM:
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1-2 year old macaque 7-8 year old macaque

Figure 6

The in-situ immunohistochemical analysis of SCMLI during testis development. Both the 1-2 year old (A, C) and
7-8 year old macaques (B, D) were tested (40x). The expression of SCMLI is mostly located in spermatogonial stem cells (1-2
year old), and spermatogonia (7—8 year old). C and D are the controls without adding SCML| mouse antibodies.

Yunnan snub-nosed monkey - Rhinopithecus bieti; Mar:
common marmoset — Callithrix jacchus.
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