
BioMed CentralBMC Evolutionary Biology

ss
Open AcceMethodology article
Drawing explicit phylogenetic networks and their integration into
SplitsTree
Tobias H Kloepper* and Daniel H Huson

Address: Center for Bioinformatics ZBIT, Tübingen University, Sand 14, 72076 Tübingen, Germany

Email: Tobias H Kloepper* - kloepper@informatik.uni-tuebingen.de; Daniel H Huson - huson@informatik.uni-tuebingen.de

* Corresponding author

Abstract
Background: SplitsTree provides a framework for the calculation of phylogenetic trees and
networks. It contains a wide variety of methods for the import/export, calculation and visualization
of phylogenetic information. The software is developed in Java and implements a command line tool
as well as a graphical user interface.

Results: In this article, we present solutions to two important problems in the field of phylogenetic
networks. The first problem is the visualization of explicit phylogenetic networks. To solve this, we
present a modified version of the equal angle algorithm that naturally integrates reticulations into
the layout process and thus leads to an appealing visualization of these networks. The second
problem is the availability of explicit phylogenetic network methods for the general user. To
advance the usage of explicit phylogenetic networks by biologists further, we present an extension
to the SplitsTree framework that integrates these networks. By addressing these two problems,
SplitsTree is among the first programs that incorporates implicit and explicit network methods
together with standard phylogenetic tree methods in a graphical user interface environment.

Conclusion: In this article, we presented an extension of SplitsTree 4 that incorporates explicit
phylogenetic networks. The extension provides a set of core classes to handle explicit phylogenetic
networks and a visualization of these networks.

Background
Phylogenetic networks are graphs used for representing
phylogenetic relationships between different taxa, and are
usually employed when a tree representation does not suf-
fice. There are many different types of phylogenetic net-
works and it is useful to distinguish between two main
classes: implicit phylogenetic networks that provide tools
to visualize and analyze incompatible phylogenetic sig-
nals, such as split networks [1,2], and explicit phylogenetic
networks that provide explicit scenarios of reticulate evo-
lution, such as hybridization networks [3-7], HGT net-
works [8] and recombination networks [9-19].

The software currently available for the calculation and
analysis of explicit phylogenetic networks consists of a
spread of basic implementations of algorithms developed
to solve the computational task [6,14,16-18,20]. Most of
the software is command line driven and an appealing vis-
ualization of the results is often lacking. It is essential to
have a tool that allows both broad usage of the methods
available to biologists, and better and further develop-
ment of new methods.

SplitsTree is an application developed in our research
group, originally aiming at the phylogenetic analysis of

Published: 24 January 2008

BMC Evolutionary Biology 2008, 8:22 doi:10.1186/1471-2148-8-22

Received: 16 November 2007
Accepted: 24 January 2008

This article is available from: http://www.biomedcentral.com/1471-2148/8/22

© 2008 Kloepper and Huson; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 7
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2148/8/22
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18218099
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Evolutionary Biology 2008, 8:22 http://www.biomedcentral.com/1471-2148/8/22
sets of splits. The newest version of SplitsTree [2] incorpo-
rates a variety of methods for the calculation, visualiza-
tion and interpretation of phylogenetic trees and implicit
phylogenetic networks. Two main advantages of Split-
sTree are the graphical user interface (GUI) and the inte-
gration of algorithms via an interface driven class loader
(plugins). In this article we present an extension to Split-
sTree that enables the program to handle explicit phyloge-
netic networks. The extension solves two important
problems: an efficient integration of explicit phylogenetic
networks, and visualizing these networks.

Results and Discussion
A tree T = (V, E) is a connected acyclic graph with vertex set
V and edge set E. A vertex of degree one is called a leaf of
T and the set of all leaves is called the leaf set of T. A rooted
tree T = (V, E, ·) is a tree (V, E) that has exactly one distin-
guished vertex called the root, denoted ·. A rooted tree T
has a natural ordering where v ≤ v', if v lies on the path
from the root to v'. If v ≤ v', we say that v is an ancestor of
v' and v' is a descendant of v. For any set of vertices V, a ver-
tex v is called minimal with respect to V if for all v' in V, it
holds that v ≤ v'. For any edge e, we use α (e) and β(e) to
denote the source and target of e. A rooted phylogenetic X-
tree is a pair (T, ν), where T = (V, E, ·) is a rooted tree and
ν : X → V is a bijection from X to the leaf set of T. See [21]
for more details.

Definition 1 Let X be a set of taxa. A rooted reticulate net-
work N = N (V, E, ν) on X is a connected, directed acyclic
graph with vertex set V, edge set E and vertex labeling ν : X →
V, such that:

1. there exists precisely one distinguished vertex · called the
root;

2. every vertex v ∈ V is either a tree vertex, v ∈ VT, that has
exactly one ancestor, or a reticulation vertex r ∈ VR that has
exactly two ancestors;

3. every edge is either a tree edge leading to a vertex of indegree
one or a reticulation edge leading to a vertex of indegree two;
and

4. the set of leaves L (vertices with no descendants) consists
only of tree vertices and is labeled by the set of taxa X, i.e. ν
maps X bijectively onto L.

It follows from these definitions that each reticulation ver-
tex (or reticulation, for short) r ∈ VR is contained in one or
more cycles of the form C = (r, p(r), w1, e1, ..., ek-1, wk, q(r),
r), with wi ∈ V and ei ∈ E\{p(r), q(r)} for all i. (Note that
additionally, r can also be contained in one or more cycles
that do not contain p(r) and q(r)). We say that two reticu-

lations r, r' ∈ VR are dependent if a cycle that contains both
r and r' exists.

In graph theory, a two-connected component of a graph G is
any maximal subgraph G' with the property that any two
vertices v and w of G' are connected by two paths p and p'
that share no vertices except for v and w. For any reticula-
tion vertex r, let pr and qr denote the two associated reticu-
lation edges.

Furthermore, let and denote the two ancestors of r

with respect to pr and qr. The lowest single ancestor lsa(r) of
a reticulation r is the minimum of all nodes in V that is
connected to r by two paths p and p' that share no vertices
except for lsa(r) and r.

Algorithm
One important approach to drawing trees is the equal
angle algorithm which was developed by Meacham (see
[22]). The equal angle algorithm guarantees that no two
edges intersect. Our algorithm for visualizing recombina-
tion networks is based on a generalization of the equal
angle algorithm. The algorithms adds an ordering step at
each vertex, that chooses an optimal ordering of the
descending edges, that minimizes the number of crossings
between reticulations edges and other edges. It can easily
be altered to be used with any drawing algorithm for trees.
We will start out with a description of the equal angle
algorithm and will then define some basic properties.
Finally, we will give solutions to minimize crossing edges
in a drawing of a reticulate networks, and the optimal
placement of reticulation vertices.

The equal angle algorithm is a recursive algorithm that
starts at an internal vertex of a tree. For each subtree con-
nected to the starting vertex, we appoint an angle propor-
tional to the share of leaves it contains. In the next step,
we assign to each subtree a sector of the circle of the size
of the angle appointed to it and draw the edge to the sub-
tree in the middle of the sector. We place the sector of the
subtree in a way that it is centered at the end of the branch
and the branch is pointing at the bisector of the angle. We
then recurse to the starting vertex of the subtree and assign
each newly discovered subtree its proportional share of
the angle. Each subtree is than placed in the sector of the
starting vertex. The recursion is repeated until we have
appointed angles to each branch of the tree. The only
modifications for rooted trees are the explicit start point
(the root of the tree) and the use of a fraction of the cycle.
For a detailed description of the algorithm, see [22].

The rooted equal angle algorithm is not directly applica-
ble to a reticulate network since for each reticulation, we
have to decide which of the reticulation edges we want to

vp
r vq

r

Page 2 of 7
(page number not for citation purposes)

BMC Evolutionary Biology 2008, 8:22 http://www.biomedcentral.com/1471-2148/8/22
use for the drawing algorithm and either choice may be
suboptimal. The idea behind our approach is to use nei-
ther of them. The influence of a reticulation upon the
graph structure is bounded by the reticulation and its low-
est single ancestor, therefore we decided to define an aux-
iliary edge between those two vertices and to use the
auxiliary edges for the layout of the graph. When the algo-
rithm reaches a node each descending edge is checked for
its status (being either a tree-edge, an auxiliary-edge or a
reticulation-edge) and only tree- and auxiliary-edges are
incorporated into the process.

Through these modifications to the rooted equal angle
algorithm, it is possible to visualize reticulate networks,
but these visualizations are not very satisfying. To obtain
an improved method, we will address two key problems.
The first problem is the crossing of reticulation edges:
even though it can not always be avoided, the number of
such events should be minimized. The second problem is
that the auxiliary edges are artifical edges and their opti-
mal edge length must be determined. In the following, we
will show solutions to these two problems.

Minimizing crossing edges
An edge crossing another one is an undesirable event in
drawing a graph. It is well known that solving this prob-
lem is, in general, computationally hard [23]. The equal
angle algorithm ensures that we only have to deal with
reticulation edges crossing other edges. Furthermore, the
construction of the auxiliary edges implies that edges that
can be crossed by the reticulation edges are descendent
edges of the lowest single ancestor of the reticulation. The
optimization starts at the root of the networks and opti-
mizes the arrangement of the directly descending vertices.
It then continues the optimization iteratively at each
directly descending vertex in the order given and keeps
going until it has optimized all placements.

Let be the set of tree vertices directly below a vertex v

and let be the set of reticulation vertices connected to

v by auxiliary edges. We say that a tree path p(v, v') from a
vertex v to a vertex v' exists if v' is a descendant of v and
every edge in p(v, v') is either a tree- or auxiliary-edge. Fur-
thermore, we say that a reticulation r is easily reachable

from a vertex v if a tree path p(v,) exists. Finally, let Rv

be the set of all reticulations that are easily reachable from
the vertex v.

The set Rv can be divided into those reticulations r for

which v = lsa(r), which we will again denote by ; v is a

descendant of lsa(r), denoted by ; and v is an ancestor

of lsa(r), denoted by . If v is the root, is empty. The

set can be divided further. Since for a reticulation r in

, the nodes directly below lsa(r) have been previously

sorted, we can denote the set as containing those r in

 for which r is sorted less than the directly descending

node of lsa(r) leading via a tree path to v.

The aim of our optimization is to find a linear arrange-

ment of the vertices in such that the number of

reticulation edges, in the subtrees of the vertices in

, intersecting with tree edges is minimized. We

define the optimal linear arrangement graph OLAv (V, E) of
a vertex v as one that contains a vertex representative for

any vertex in . We add a weighted edge between

any two vertices (vi, vk) in V and set the weight wik of the

edge to . More formally written:

Problem 1 With

minimize

The optimal linear arrangement problem is known to be
hard [24]. Nevertheless, this arrangement problem is in
general much smaller than the complexity of minimizing
all crossing edges at once. Interestingly, a couple of addi-
tional restrictions exist that we may apply to the ordering,
leading to a "greedy" solution that works well in most
cases. One restriction that we can place upon the structure
is that for any reticulation r, the position in the ordering

should be between and . Consequently, we should

place and before we place r.

Another restriction we can place is a consequence from
the dependency of the reticulations upon each other. For

Vv
T

Vv
I

vp
r

Rv
G

Rv
D

Rv
A Rv

D

Rv
D

Rv
D

Rv
D

Rv
D

V Vv
T

v
I∪

V Vv
T

v
I∪

V Vv
T

v
I∪

R Rv
D

v
D

i k
∩

x
if vertex i takes position k

otherwise
i kik = ∀





1

0

 ,

,
,

w x x k l R R x k

R R R x V k

ij ik jl v
D

n
D

ik

i Vi j E

v
D

n
D

n
D

ik

i

i

− + ∩ +

∩ () −

∈∈
∑∑

(,)

\
ii V

ik

i V

ik

k V

subject to x x i k

∈

∈ ∈

∑
∑ ∑= = ∀ 1 1

1() { ,..., }

, ,and

vp
r vq

r

vp
r vq

r

Page 3 of 7
(page number not for citation purposes)

BMC Evolutionary Biology 2008, 8:22 http://www.biomedcentral.com/1471-2148/8/22
any pair of reticulation r, r' in we say that r is less than

r' if and only if a tree path p(r,) exists. To meet the first

restriction we have to place r before we can place r'. The
graph that can be constructed from the relations between
the reticulations must be cycle free, since the reticulation
network is cycle free. Consequently, we can use a standard
topological sorting algorithm to obtain a linear ordering

Ordl () for the reticulations in .

The optimization algorithm iterates through the ordering

and at each reticulation r it first places and , if nec-

essary, and then r. If all reticulation are placed, the algo-
rithm places all descending tree edges that have not yet
been placed. At each placement, the algorithm positions
the vertex at the position that minimizes the score given
in Problem 1. After all nodes have been placed in the lin-
ear arrangement, the result is returned to the main
method. An Example of the optimization procedure can
be seen in Figure 1.

Optimal placement for reticulation vertices

Having calculated the angle and optimal arrangement for
each edge, we have to place the vertices. Tree vertices can
be placed in the same way as in the standard equal angle
algorithm. But since auxiliary edges do not come with a
given length, we have to calculate an optimal placement

for each of the reticulation vertices. Such a placement has
to incorporate the conditions of the equal angle algo-
rithm, otherwise we might face unnecessary crossings
between edges. Note that there are two cases for which we
have to consider different placement methods. In the first

case, we have a reticulation r where the nodes and

are both different from lsa(r), and in the second case, one
of them is equal to lsa(r).

In both cases, we place the reticulation vertex r on the
bisector of the sector assigned to its auxiliary edge. In the
first case, the distance between r and lsa(r) should be
larger than the minimum distance between lsa(r) and the
line l(vp, vq), indicating that r is a descendant of vp and vq.
In other words, we assume the angles vqvpr and vpvqr are
positive. In the second case, we assume that vq is equal to
lsa(r). We first calculate the point on the bisector rt that
has the same distance to lsa(r) as vp and than ensure that
the angle between rtvpr is positive. We added an option to
the algorithm so that the user can specify the (maximum)
value of this angle; the standard value is 15°. An example
of the drawing algorithm can be seen in Figure 2.

Implementation
We started to integrate explicit phylogenetic networks into
SplitsTree in our RECOMB 2005 article [6]. Originally,
such methods were squeezed into the existing data struc-
tures within SplitsTree. SplitsTree itself is built around a
group of core classes, each one representing a different
type of information. The standard file format of SplitsTree

Rv
G

vp
r ′

Rv
G Rv

G

vp
r vq

r

vp
r vq

r

Example of the layout optimizationFigure 1
Example of the layout optimization. The figure on the left side shows an explicit phylogenetic network. The reticulation
edges of the network are shown as dashed lines. Removing the reticulation edges and integrating the auxiliary edges into the
network leads to a tree structure, as shown on the right-hand side of the figure (auxiliary edges are drawn as dashed lines).

The set of easily reachable edges Rv of the node v contains the reticulations r1, r2, r3, r4 and r*. The set only contains r*

and is equal to . The placement of r* has cost 1 since the reticulation edges only cross the edge that leads to leaf g. The

placement of r4 has cost 2, since the reticulation edges to the right crosses r1 and r3.

f

a

b

c

d

e

g

h

i

r_1

r_2 r_3

r_4

r*

v

v

f

a

b

c

d

e

g

h

i

r_1

r_2 r_3

r_4

r*

v

v

Rv
D

Rv
D

Page 4 of 7
(page number not for citation purposes)

BMC Evolutionary Biology 2008, 8:22 http://www.biomedcentral.com/1471-2148/8/22
is the Nexus [25] file format and each core class has its
own Nexus representation. Consequently, developing a
Nexus representation of explicit phylogenetic networks is
essential for the integration of these into SplitsTree.

To build a Nexus representation for an explicit phyloge-
netic network, one needs to find an efficient way to
present it as a string. We decided to use a version of the
extended Newick (eNewick) [26] format. In general, the
eNewick format allows labels to be present up to two
times within the network. A label is allowed to appear
once as a leaf and once as an internal label. Whenever a
label occurs twice, the leaf is identified with the internal
vertex, thus providing a network with vertices of indegree
two. A lot of research has lately been focused on proving
some interesting decomposition theorems [6,16,20] for
explicit phylogenetic networks. The general motivation of
these theorems is that the calculation of a reticulate net-
work, with a minimal number of reticulation events, from
some given information is hard [27]. The idea is to
decompose each network into its two-connected compo-
nents and to calculate the minimal solutions of each two-
connected component separately.

Following the idea of decomposing explicit phylogenetic
networks, each two-connected component may have sev-
eral solutions and the possible combinations of these
solutions grows exponentially, which is a problem if the
number of two-connected components is large. Conse-
quently, we decided that the Nexus representation of the
network needs to reflect the two-connected components
within it.

Note that any reticulate network contains either a two-
connected component or a tree like element, that contains
the root. We call this particular element the root compo-
nent. The two-connected components are called netted
components, and for each netted component, a number of
solutions may exist. Any connected component that is not
a two-connected component is a tree component. Each tree
component may appear more than once within the possi-
ble configurations. The possible combinations of these
three basics elements is left to the user.

We now describe a Nexus notation for explicit phyloge-
netic networks, the schematic of this notation is shown in
Figure 3. In general, one needs to save the components

Example of the drawing algorithmFigure 2
Example of the drawing algorithm. The figure shows the drawing of a reticulation network that we recently published
[20] which is based on three gene trees described in [28].

root

Alternaria_smyrnii

Alternaria_carotiincultae
Alternaria_radicina

Alternaria_petroselini

Alternaria_selini

Embellisia_novae-zelandiae
Embellisia_hyacinthi

Embellisia_proteae
Embellisia_leptinellae

Embellisia_allii
Nimbya_scirpicola

Nimbya_caricis

Lewia_infectoria

Alternaria_infectoria
Alternaria_ethzedia

Alternaria_triticina

Exserohilum_pedicillatum

Stemphylium_botryosum

Stemphylium_callisteph

Pleospora_herbarum
Stemphylium_vesicarium

Alternaria_japonica
Ulocladium_alternariae

Alternaria_brassicicola

Alternaria_cheiranthi
Embellisia_indefessa

Ulocladium_consortiale
Ulocladium_atrum
Ulocladium_botrytis

Ulocladium_chartarum

Alternaria_dauci
Alternaria_macrospora

Alternaria_crassa

Alternaria_solani
Alternaria_porriAlternaria_tenuissima

Alternaria_destruens
Alternaria_arborescens

Alternaria_alternata

Alternaria_longipes
Page 5 of 7
(page number not for citation purposes)

BMC Evolutionary Biology 2008, 8:22 http://www.biomedcentral.com/1471-2148/8/22
containing the root in the RootComponents section. Any
such string should either be formated in standard eNew-
ick, in Newick format where any two leaves with the same
label are labeled with the name of a tree component, or in
Newick format where at least one leaf is labeled with the
name of a netted component.

The NettedComponents section contains a list of all two-
connected components. Each one must be identified by a
unique name and there must be at least one string repre-
sentation given for each. Any such string must either be
formated in eNewick, or in Newick format where any two
leaves with the same label are labeled with the name of a
tree component.

Finally, the TreeComponents section contains a list of
uniquely named strings in Newick format, where leaves
can be labeled with the name of netted components.

Conclusion
In this article we presented a new algorithm for the visual-
ization of explicit phylogenetic networks. The algorithm is
a generalization of the well known equal angle algorithm
and can be used to adapt most known phylogenetic tree
drawing algorithm to the task of drawing reticulate net-
works. Moreover, we have described a datastructure and
file format for representing reticulate networks in a way
that reflects the structural properties of the networks.

Our implementation of these results in the popular Split-
sTree software will make them accessible to biologists and
other researchers that are interested in using such net-
works.

Availability and requirements
• Project name: Drawing Phylogenetic Networks

• Project home page: http://www.SplitsTree.org

• Operation system(s): Platform independent

• Programming language: Java

The extensions to SplitsTree 4 are freely available for users
of the application. SplitsTree 4 can be downloaded from
the projects home page. Using the application is free.

Authors' contributions
TK designed the algorithm and the integration into Split-
sTree. TK and DH implemented the algorithm and the
integration. TK and DH wrote the manuscript for the arti-
cle.

Acknowledgements
We would like to thank Anand Radhakrishnan, C. Nickias Kienle and K.
Wiederhold for many helpful discussions. Furthermore we thank anony-
mous reviewers for their helpful comments and suggestions.

References
1. Bandelt HJ, Dress AWM: A canonical decomposition theory for

metrics on a finite set. Advances in Mathematics 1992, 92:47-105.
2. Huson DH, Bryant D: Application of phylogenetic networks in

evolutionary studies. Molecular Biology and Evolution 2006,
23:254-267. [Software available from http://www.splitstree.org].

3. Sang T, Zhong Y: Testing hybrization hypotheses based on
incongruent gene trees. System Biol 2000, 49(3):422-424.

4. Linder CR, Rieseberg LH: Reconstructing Patterns of Reticulate
Evolution in Plants. Am J Bot 2004, 91(10):1700-1708.

5. Nakhleh L, Warnow T, Linder CR: Reconstructing reticulate
evolution in species – theory and practice. Proceedings of the
Eighth International Conference on Research in Computational Molecular
Biology (RECOMB) 2004:337-346.

6. Huson D, Kloepper T, Lockhart P, Steel M: Reconstruction of
Reticulate Networks from Gene Trees. In Proceedings of the
Ninth International Conference on Research in Computational Molecular
Biology (RECOMB) Volume 3500. LNCS, Springer Verlag; 2005:233-249.

7. Bordewich M, Semple C: Computing the minimum number of
hybridisation events for a consistent evolutionary history.
Discrete Appl Math 2007, 155(8):914-928.

8. Hallett M, Largergren J, Tofigh A: Simultaneous Identification of
Duplications and Lateral Transfers. Proceedings of the Eight Inter-

Reticulate Nexus Block SchematicFigure 3
Reticulate Nexus Block Schematic. Shown is a sche-
matic of the Reticulate nexus block as it is implemented in
SplitsTree. The block is divided into three parts: the Dimen-
sions contains all information about the dimensions of the
reticulate network; the Format is an optional element that
describes the configuration of the reticulate network; and
the TreeComponents, NettedComponents and RootComponents
contain the string representation of the reticulate network.

Begin Reticulate;
Dimensions
 NTax = number-of-taxa
 NRootComponents = number-of-root-components
 NNettedComponents = number-of-netted-components
 NTreeComponents = number-of-tree-components;
[Format
 [ActiveRoot = position-of-active-root-component;]
 [ActiveNettedComponents = positions-of-active-netted-components;]
 [ShowLabels =[Internal][TreeComponents][NettedComponents];]
]
TreeComponents
 [name = tree-component-specification;]
 [name = tree-component-specification;]
 ...
NettedComponents
 [nettedComponent name=
 [name = netted-component-specification;]
 [name = netted-component-specification;]
 ...
]
 [nettedComponent name=
 [name = netted-component-specification;]
 [name = netted-component-specification;]
 ...
]
 ...
RootComponents
 [name = root-component-specification;]
 [name = root-component-specification;]
 ...

End;
Page 6 of 7
(page number not for citation purposes)

http://www.SplitsTree.org
http://www.splitstree.org

BMC Evolutionary Biology 2008, 8:22 http://www.biomedcentral.com/1471-2148/8/22
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

national Conference on Research in Computational Molecular Biology
(RECOMB) 2004:347-356.

9. Hudson RR: Properties of the Neutral Allele Model with inter-
genic Recombination. Theoretical Population Biology 1983,
23:183-201.

10. Hein J: Reconstructing evolution of sequences subject to
recombination using parsimony. Math Biosci 1990:185-200.

11. Griffiths RC, Marjoram P: Ancestral Inference from Samples of
DNA Sequences with Recombination. J Computational Biology
1996, 3:479-502.

12. Gusfield D, Eddhu S, Langley C: Efficient reconstruction of phyl-
ogenetic networks with constrained recombination. Proceed-
ings of the IEEE Computer Society Conference on Bioinformatics 2003:363.

13. Song Y, Hein J: Parsimonious Reconstruction of Sequence Evo-
lution and Haplotype Blocks: Finding the Minimum Number
of Recombination Events. Proceedings of the IEEE Computer Society
Conference on Bioinformatics 2003:287-302. [Proceedings of the Work-
shop on Algorithms in Bioinformatics].

14. D Gusfield SE, Langley C: The Fine Structure of Galls in Phylo-
genetic Networks. INFORMS J. of Computing Special Issue on Com-
putational Biology 2004, 16(4):459-469.

15. Song Y, Hein J: On the minimum Number of Recombination
Events in the Evolutionary History of DNA Sequences. J Math
Biol 2004, 48:160-186.

16. Gusfield D, Bansal V: A Fundamental Decomposition Theory
for Phylogenetic Networks and Incompatible Characters.
Proceedings of the Ninth International Conference on Research in Compu-
tational Molecular Biology (RECOMB) 2005:217-232.

17. Huson D, Kloepper T: Computing Recombination Networks
from Binary Sequences. Bioinformatics 2005, 21(suppl.
2):ii159-ii165. [ECCB].

18. Song Y, Hein J: Constructing Minimal Ancestral Recombina-
tion Graphs. J Comp Biol 2005, 12:147-169.

19. Lyngsø RB, Song YS, Hein J: Minimum Recombination Histories
by Branch and Bound. WABI 2005:239-250.

20. Huson DH, Kloepper TH: Beyond Galled Trees – Decomposi-
tion and Computation of Galled Networks. 2007. [Accepted to
RECOMB2007].

21. Semple C, Steel MA: Phylogenetics Oxford University Press; 2003.
22. Felsenstein J: Inferring Phylogenies Sinauer Associates, Inc; 2004.
23. MR Garey DSJ, Stockmeyer L: Some simplified NP-complete

graph problems. Theoretical Computer Science 1976:237-267.
24. Garey M, Johnson D: Crossing Number is NP-Complete. SIAM

J Alg Discr Math 1983:312-316.
25. Maddison D, Swofford D, Maddison W: NEXUS: an extendible

file format for systematic information. System Bio 1997,
46(4):590-621.

26. Morin MM, Moret BME: NetGen: generating phylogenetic net-
works with diploid hybrids. Bioinformatics 2006,
22(15):1921-1923.

27. Wang L, Zhang K, Zhang L: Perfect Phylogenetic Networks with
Recombination. Journal of Computational Biology 2001, 8:69-78.

28. Pryor BM, Bigelow DM: Molecular characterization of Embelli-
sia and Nimbya species and their relationship to Alternaria,
Ulocladium and Stemphylium. Mycologia 2003,
95(6):1141-1154.
Page 7 of 7
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6612631
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6612631
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2134501
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2134501
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14745509
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14745509
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16204096
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16204096
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16717070
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16717070
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11339907
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11339907
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results and Discussion
	Algorithm
	Minimizing crossing edges
	Optimal placement for reticulation vertices

	Implementation
	Conclusion
	Availability and requirements
	Authors' contributions
	Acknowledgements
	References

