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Abstract
Background: Teleost radiation in the oceans required specific physiological adaptations in eggs
and early embryos to survive in the hyper-osmotic seawater. Investigating the evolution of
aquaporins (AQPs) in these vertebrates should help to elucidate how mechanisms for water
homeostasis evolved. The marine teleost gilthead sea bream (Sparus aurata) has a mammalian
aquaporin-1 (AQP1)-related channel, termed AQP1o, with a specialized physiological role in
mediating egg hydration. However, teleosts have an additional AQP isoform structurally more
similar to AQP1, though its relationship with AQP1o is unclear.

Results: By using phylogenetic and genomic analyses we show here that teleosts, unlike tetrapods,
have two closely linked AQP1 paralogous genes, termed aqp1a and aqp1b (formerly AQP1o). In
marine teleosts that produce hydrated eggs, aqp1b is highly expressed in the ovary, whereas in
freshwater species that produce non-hydrated eggs, aqp1b has a completely different expression
pattern or is not found in the genome. Both Aqp1a and Aqp1b are functional water-selective
channels when expressed in Xenopus laevis oocytes. However, expression of chimeric and mutated
proteins in oocytes revealed that the sea bream Aqp1b C-terminus, unlike that of Aqp1a, contains
specific residues involved in the control of Aqp1b intracellular trafficking through phosphorylation-
independent and -dependent mechanisms.

Conclusion: We propose that 1) Aqp1a and Aqp1b are encoded by distinct genes that probably
originated specifically in the teleost lineage by duplication of a common ancestor soon after
divergence from tetrapods, 2) Aqp1b possibly represents a neofunctionalized AQP adapted to
oocytes of marine and catadromous teleosts, thereby contributing to a water reservoir in eggs and
early embryos that increases their survival in the ocean, and 3) Aqp1b independently acquired
regulatory domains in the cytoplasmatic C-terminal tail for the specific control of Aqp1b
expression in the plasma membrane.
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Background
Membrane intrinsic proteins (MIP) such as aquaporins
(AQP) are molecular channels present from bacteria to
humans that transport water and small molecular weight
solutes across biological membranes [1]. These mem-
brane proteins are classified into two groups: those that
are water-selective, and those that also transport small
neutral molecules, such as glycerol and urea, termed
aqua(glycero)porins. All known AQPs have six transmem-
brane domains connected by five loops (A-E), in which
both the N- and C-termini are cytoplasmic. Their primary
structure can be divided into two similar halves each of
which bear the highly conserved Asn-Pro-Ala (NPA) motif
in loops B and E that are involved in the formation of the
water pore, which is the hallmark of the MIP family [1,2].
In higher vertebrates, 13 different AQPs have been
described, which differ in tissue expression, regulation
and selectivity [1,3].

Recent studies have shown that, in mammals, AQP1 and
AQP2 are essential for water resorption in the kidney [4],
AQP4 is involved in cerebral water balance, astrocyte
migration and neural signal transduction [5], and AQP3
and AQP7 seem to play important roles during skin
hydration and metabolism of adipocytes, respectively [6].
However, there is little information on the functional
properties and physiological functions of AQPs in tele-
osts, vertebrates which form a highly diverse group of
organisms adapted to living both in freshwater and seawa-
ter.

Marine teleosts are thought to have colonized the oceans
after a long freshwater ancestry, which is supported by the
fossil record and by the hypo-osmotic condition and the
presence of a glomerular kidney in extant marine species
(see [7] for review). The re-entry of teleosts into seawater,
however, most likely required new molecular adaptations
to maintain water homeostasis, which is especially impor-
tant for gametes and early embryos that do not have
osmoregulatory systems. The spawning of pelagic eggs by
many marine teleosts (termed pelagophils), where water
content may reach up to 95% in weight, has been pro-
posed as a mechanism to provide a water reservoir in the
embryo to compensate for the passive water efflux due to
the hyper-osmotic effect of the seawater until osmoregula-
tory organs develop [7,8]. In addition, hydration of the
egg contributes to buoyancy, thereby improving oxygen
exchange and dispersal in the ocean.

Egg hydration in marine fish occurs during the later stages
of oogenesis, prior to ovulation (i.e., oocyte meiotic mat-
uration). It is driven by the osmotic gradient created by
the generation of a large pool of free amino acids (FAAs)
in the oocyte, produced from the hydrolysis of vitello-
genin (Vtg)-derived yolk proteins, and the accumulation

of inorganic ions (see [9] for review]. In the pelagophil tel-
eost gilthead sea bream (Sparus aurata), we recently
showed that water influx into the oocyte is facilitated by a
novel water-selective AQP, predominantly expressed in
the ovary, which, being structurally and functionally sim-
ilar to mammalian AQP1, was named the S. aurata
aquaporin-1 of the ovary (SaAQP1o) [10,11]. This finding
illustrates how marine teleosts have evolved novel molec-
ular mechanisms to face life in the ocean. However, sea
bream also expresses another water-selective, AQP1-
related channel, termed SaAQP1, which is more similar to
mammalian AQP1 and is ubiquitiously distributed in tis-
sues, including osmoregulatory organs such as the kidney,
gills and intestine [10,12]. Water channels related to
SaAQP1o and SaAQP1 have also been found in other tel-
eosts [13-15], but the phylogenetic and functional rela-
tionships between these two vertebrate AQPs remain
unclear.

Now that the genome of several teleosts has been com-
pletely or partially sequenced, and there is an increasing
number of expressed sequence tags (ESTs) and cDNAs
available, the phylogeny and functional properties of tel-
eost AQP1-like proteins can be investigated. Using phylo-
genetic reconstruction and genomic analysis, we show
here that the AQP1o gene (aqp1b) is teleost specific and
probably originated by local duplication of a vertebrate
AQP1 ancestor, while tetrapods have only a single AQP1
gene structurally more similar to teleost AQP1 (aqp1a).
Expression analyses and functional characterization in
Xenopus laevis oocytes suggest that teleost Aqp1b repre-
sents a neofunctionalized water channel in the ovary and
some osmoregulatory organs of marine species, which has
evolved unique regulatory domains at the C-terminal
cytoplasmic tail for the control of intracellular trafficking.

Results
Duplication of AQP1 in teleosts
AQP1-related, non-redundant amino acid sequences of
teleosts were obtained by searching available genome and
protein databases, and by cDNA cloning. The teleost
sequences were aligned with the amino acid sequence of
tetrapod AQP1 and the phylogenetic analyses conducted
using the neighbour-joining (NJ), maximum likelihood
(ML), and Bayesian inference (BI) methods (Figure 1; see
also Additional file 1). The phylogenetic tree obtained
consistently separated tetrapod AQP1 from the teleost lin-
eage (NJ: 100; ML: 100; BI: 100), which appeared to have
undergone a duplication event giving rise to the Aqp1a
and Aqp1b subgroups (NJ: 92; ML: 46; BI: 96). The length
of the branches of Aqp1b sequences were in general
longer than those of Aqp1a, specially that of the zebrafish
Aqp1b, suggesting a higher rate of residue mutations than
members of the parent group, and hence a rapid evolu-
tion. Zebrafish (Danio rerio) Aqp1b, however, clustered
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significantly outside the Aqp1a and Aqp1b subgroups,
which may be a result of the well-known long-branch
attraction effect that can pull long branches towards the
outgroup (in this case the tetrapods). In the amphibian
Bufo marinus, two AQP1 sequences were found, termed
Bufo a and Bufo b, that clustered together with the other
amphibian AQP1, confirming that neither was a homolog
of the teleost Aqp1b subgroup. These results confirmed
the presence of two paralogous gene copies early in the
Actinopterygii (Teleostei) lineage, related to human
AQP1, that may have arisen after an early duplication
event of an ancestral AQP1 gene. Thus, the two paralo-
gous genes were termed aqp1a and aqp1b according to the
nomenclature established for zebrafish [16]. The cDNAs
encoding sea bream SaAQP1 and SaAQP1o, and Senega-

lese sole (Solea senegalensis) AQP1o, previously isolated
[10], correspond to the transcripts of aqp1a and aqp1b par-
alogs, respectively. The European eel (Anguilla anguilla)
Aqp1b cDNA that we cloned here is 100% identical to that
recently isolated from the same species and named
AQP1dup [14].

Genomic organization of teleost aqp1 and aqp1b and 
primary structure of the encoded polypeptides
In the genome of pufferfish (Tetraodon nigroviridis),
zebrafish, stickleback (Gasterosteus aculeatus) and fugu
(Takifugu rubripes), aqp1a and aqp1b are located in the
same chromosome (15, 2, III, and scaffold 68, respec-
tively). In all these species, both chromosome loci were
found to be linked, aqp1b being downstream of aqp1a.

Phylogenetic relationships of AQP1-like proteins in vertebratesFigure 1
Phylogenetic relationships of AQP1-like proteins in vertebrates. Bayesian majority rule consensus phylogenetic tree 
for the amino acid alignment of teleost and tetrapod AQP1-like sequences. Nodes with ≥70% Bayesian posterior probabilities 
are shown. Branch lengths are proportional to BI estimates of numbers of amino acid substitutions. The GenBank accession 
number, scaffold, or chromosome group are indicated in parenthesis for each sequence.

Teleost
AQP1-like

Aves AQP1

Mammals
AQP1

Amphibians
AQP1

Gallus
(XP_418489)

Passer
(AAV65290)

Sparus a (AAV34610)

Gasterosteus a (DV005019)

Danio a (NP_996942)

Pimephales (DT351671)

Anguilla anguilla a (CAD92027)
A. japonica (BAC82110)

Oncorhynchus (CA378544)

Takifugu a (SCAF68)
Dicentrarchus (AAV34611)
Tetraodon a (SCAF98423)

Oryzias (BJ489731)

Centropristis (AAV34607)

Solea a (DQ889223)

Sparus b (AAV34609)
Takifugu b (SCAF68)

Tetraodon b (SCAF14556)

Solea b (AAV34612)

Gasterosteus b
(BROADS1groupIII)

Ictalurus (CK418363)

A. anguilla b
(CAD92028)

Danio b
(EU327345)

X. laevis (AAH72092)

Xenopus tropicalis (AAH75384)

Bufo a (AAD10842)

Bufo b (2206276A)

Hyla (BAC07470)

Rana (AAC38016)

Homo
(NP_932766)

Rattus (NP_036910)
Mus (NM_007472)

Bos (NP_777127)
Ovis (NP_001009194)

Canis (BAA93428)

0.1 substitution/site
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Based on this synteny, the corresponding genomic region
in sea bream was obtained by PCR, employing cDNA-
based oligonucleotides, and sequenced, to compare the
genomic organization of aqp1a and aqp1b between extant
and more primitive teleosts (Figure 2). In zebrafish, aqp1a
and aqp1b were separated by 16.4 kb and were 11.6 kb and
3.6 kb in length, respectively, whereas in sea bream both
loci were separated by approximately 10 kb and were 2.1
kb and 2.8 kb in length, respectively. In fugu and Tetrao-
don, which have more compact genomes, aqp1a and aqp1b
were 1.4–1.5 kb and 1.1–1.2 kb in length, respectively,
both loci being separated by only 4.1–4.7 kb. However, in
medaka (Oryzias latipes) only the aqp1a loci could be
found in available genome sequence databases and it was
3.1 kb in length. In all teleosts analyzed, aqp1a and aqp1b
were organized into 4 exons of 354–366 bp, 162–165 bp,
81 bp, and 177–204 bp in length, for exon 1, exon 2, exon
3, and exon 4, respectively. Comparison of the nucleotide
sequence of exon 1, exon 2 and exon 3 between aqp1a and
aqp1b within the same species showed 64–74% identity,
while the sequence of exon 4, which encodes the C-termi-
nal amino acid sequence, was only 57–58% identical.

The deduced Aqp1a amino acid sequence was slightly
more similar to human AQP1 (60–61% identity) than
that of Aqp1b (51–56% identity). Comparison of the pri-
mary structure of AQP1-like polypeptides between
human and teleosts (Figure 3) indicated that Aqp1a and
Aqp1b sequences have the six potential transmembrane
domains and the two NPA motifs, as well as the residues
of the pore-forming region (Phe56, His180 and Arg195;
human AQP1 numbering) that are conserved in water-
selective AQPs [17]. In addition, in both Aqp1a and
Aqp1b amino acid sequences, the Cys residue were before
the second NPA motif (Cys178 for sea bream Aqp1a and
Aqp1b), which is the site in mammalian AQP1 potentially
responsible for the inhibition of water permeability by
mercurial compounds [18]. However, teleost Aqp1a and
Aqp1b share only 61–64% identity, the lowest identity
being at the level of the C-terminus (8–27%). The amino
acid sequence of Aqp1a, including the C-terminus, among
teleost species was relatively similar (69–95% identity),
while that of Aqp1b appeared to be more divergent (51–
76% identity among species) especially at the C-terminus
(11–50% identity).

Genomic organization of human AQP1 and teleost aqp1a and aqp1b genesFigure 2
Genomic organization of human AQP1 and teleost aqp1a and aqp1b genes. Schematic representation of human 
AQP1 [67], and zebrafish, fugu, medaka and sea bream aqp1a and aqp1b gene loci. White (human AQP1 and teleost aqp1a) and 
grey (teleost aqp1b) boxes indicate exons with coding regions only. Downstream genes from human AQP1 and teleost aqp1b 
are growth hormone releasing hormone receptor (GHRHR) and THO complex subunit 1 (thoc1), respectively.
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Amino acid sequence alignment of human AQP1 and teleost Aqp1a and Aqp1bFigure 3
Amino acid sequence alignment of human AQP1 and teleost Aqp1a and Aqp1b. The six transmembrane (TM) 
domains and connecting loops A-B of human AQP1 are indicated by brackets and horizontal arrows, respectively. The vertical 
arrows above human AQP1 show the conserved residues Phe56, His180 and Arg195 (human AQP1 numbering) in water-selective 
AQPs. Identical residues between human AQP1 and teleost AQP1-like sequences are indicated with an asterisk, whereas con-
served amino acid substitutions and substitutions with similar amino acids are indicated by a double or single dot, respectively. 
Residues conserved in human and most teleost sequences are shaded in black, and residues different from human but con-
served between most of the teleost Aqp1a and Aqp1b sequences are shaded in grey.



BMC Evolutionary Biology 2008, 8:259 http://www.biomedcentral.com/1471-2148/8/259
Functional Aqp1b is predominantly expressed in the ovary 
of marine and catadromous teleosts
Previous studies have reported that sea bream aqp1b
mRNA is predominantly expressed in the ovary, whereas
sea bream and eel aqp1a mRNA is ubiquitously expressed
[10,19]. We investigated the expression pattern of aqp1b
in teleosts belonging to different taxonomic groups that
also have different reproductive strategies, such as Senega-
lese sole (Pleuronectiformes; marine), European eel
(Anguilliformes; catadromous, i.e., live in freshwater and
migrate to the sea to breed) and zebrafish (Cypriniformes;
strict freshwater). The RT-PCR analysis confirmed that in
pelagophil species, such as sea bream, sole and eel, aqp1b
transcripts were highly abundant in mature (hydrated)
ovaries, although it was also expressed in kidney, intestine
and gills (Figure 4A–C). In contrast, in zebrafish aqp1b
transcripts were detected at lower and similar levels in
brain, ovary and testis (Figure 4D), thus showing a com-
pletely different expression pattern than in the other spe-
cies. In zebrafish and sole, aqp1a mRNA was detected in
all adult tissues examined, similarly to that reported in sea
bream and eel (data not shown).

The highly conserved amino acid sequence of loops B and
E of teleost Aqp1a and Aqp1b with respect to those of

human AQP1 suggest that fish Aqp1b paralogs might
encode functional water channels. To test this, X. laevis
oocytes injected with cRNAs encoding sea bream Aqp1a
or Aqp1b, sole Aqp1b, eel Aqp1b or zebrafish Aqp1b were
compared with oocytes injected with 50 nl of water (Fig-
ure 4E). Coefficients of water osmotic permeability (Pf)
were determined from rates of oocyte swelling after trans-
fer to hypoosmotic MBS. Water-injected oocytes exhibited
low water permeability, whereas the Pf of sea bream
Aqp1a oocytes was increased by 10-fold, sea bream Aqp1b
and eel Aqp1b oocytes by 8-fold, sole Aqp1b oocytes by 6-
fold, and zebrafish Aqp1b oocytes by 4-fold. The presence
of 0.7 mM HgCl2 reduced the Pf of both Aqp1a- and
Aqp1b-injected oocytes (82.6 ± 2.1% and 50.2 ± 3.1%,
respectively). The inhibition was partially recovered (52.2
± 8.3% and 27.5 ± 10.3%, for Aqp1a and Aqp1b, respec-
tively) by incubation of oocytes with 5 mM β-mercap-
toethanol.

Sea bream Aqp1a and Aqp1b are differentially 
translocated into the oocyte plasma membrane
Previous functional analyses indicated that oocytes
expressing sea bream Aqp1a were more permeable than
those expressing Aqp1b. To investigate whether both
AQPs were differentially expressed or translocated in the

Gene expression pattern and functional characterization of teleost Aqp1bFigure 4
Gene expression pattern and functional characterization of teleost Aqp1b. (A-D) Representative RT-PCR analysis of 
aqp1b (upper panels) and bactin (lower panels) transcripts in sea bream (A), European eel (B), Senegalese sole (C) and zebrafish 
(D) tissues. PCR products were detected by Southern blot. Minus indicates absence of RT during cDNA synthesis. The size 
(kb) of PCR products and molecular markers are indicated on the left and right, respectively. (E) Pf and Hg2+ inhibition of X. lae-
vis oocytes expressing teleost Aqp1a or Aqp1b. Oocytes were injected with cRNAs encoding sea bream Aqp1a or Aqp1b (1 
ng), eel Aqp1b (10 ng), Senegalese sole Aqp1b (10 ng) or zebrafish Aqp1b (10 ng), or with 50 nl of water (control). The Pf was 
assayed in the presence or absence of 0.7 mM HgCl2. Some oocytes treated with HgCl2 were incubated with 5 mM β-mercap-
toethanol (βME) for 15 min before swelling measurements. Values represent the mean ± SEM (n = 6–10 oocytes) from a rep-
resentative experiment.
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oocyte cytoplasm, a series of dose-response experiments,
injecting increasing amounts of Aqp1a or Aqp1b cRNA
followed by Western blot and immunocytochemical anal-
yses, were carried out (Figure 5). At all doses tested (from
0.05 to 10 ng cRNA), the Pf of oocytes expressing Aqp1b
was lower than that of oocytes expressing Aqp1a (Figure
5A), while protein expression levels resulting from both
cRNAs were similar (Figure 5B, lane TM). Immunocyto-
chemistry on sections of these oocytes revealed that
Aqp1a was present in the plasma membrane (Figure 5D),
whereas Aqp1b was also detected just below the plasma
membrane, possibly in vesicles (Figure 5E). This staining
was specific for Aqp1b since control oocytes, not injected
or injected with water, were unstained (Figure 5C). West-
ern blots of protein extracts from total and plasma mem-
branes of oocytes showed there was a higher proportion
of Aqp1a in the plasma membrane when compared with
Aqp1b (Figure 5B), confirming that Aqp1b was retained
in the cytoplasm. However, immunoblots of total and
plasma membrane of Aqp1b-expressing oocytes revealed
the presence of two reactive bands of approximately 28
and 29 kDa after incubation with the Aqp1b antisera (Fig-
ure 5B, arrows). Both bands were visible in total and
plasma membrane fractions, although the 29-kDa band
was much weaker in the plasma membrane fraction. Alka-
line phosphatase treatment of total membrane proteins
before SDS-PAGE prevented the detection of the 29-kDa

polypeptide, indicating that this band corresponded to a
phophorylated form of Aqp1b (Figure 5F).

Role of sea bream Aqp1b C-terminus for Aqp1b cell 
surface expression
As indicated, the most divergent region between the
amino acid sequence of sea bream Aqp1a and Aqp1b was
the C-terminus. Since it is known that the cytoplasmic tail
plays a role in the intracellular trafficking of some mam-
malian [20] and amphibian [21] AQPs, we studied
whether this region was involved in the control of Aqp1b
translocation into the oocyte plasma membrane. Expres-
sion vectors were made in which either the C-terminal tail
of Aqp1a was exchanged with that of Aqp1b (Aqp1a-
Ct1b), or the C-terminus of Aqp1b with that of Aqp1a
(Aqp1b-Ct1a), in both cases starting at Pro222. The two
chimeras, as well as wild-type Aqp1a and Aqp1b, were
expressed in oocytes and the Pf and protein expression at
the oocyte plasma membrane monitored (Figure 6A–E).
Expression of Aqp1a-Ct1b reduced swelling by 53.8 ±
5.2% when compared with oocytes expressing wild-type
Aqp1a, whereas water permeability of oocytes expressing
Aqp1b-Ct1a was increased by 37.1 ± 8.1% with respect to
wild-type Aqp1b-expressing oocytes (Figure 6F). Oocyte
permeability positively correlated with accumulation of
intact and chimera AQP in the plasma membrane, with
both Aqp1a and Aqp1b-Ct1a being exclusively localized
at the membrane (Figure 6G and 6J), whereas Aqp1b and

Differential localization of sea bream Aqp1a and Aqp1b expressed in X. laevis oocytesFigure 5
Differential localization of sea bream Aqp1a and Aqp1b expressed in X. laevis oocytes. (A) Pf of oocytes expressing 
increasing amounts of Aqp1a or Aqp1b cRNA. Values represent the mean ± SEM (n = 6–10 oocytes) from 3 independent 
experiments. (B) Immunoblots of total and plasma membrane equivalents (TM and PM, respectively) of oocytes expressing 1 ng 
of Aqp1a or Aqp1b. The arrows indicate two very close Aqp1b reactive bands. (C-E) Immunofluoresence microscopy of 
water-injected and Aqp1a- or Aqp1b-expressing oocytes. Arrows show localization of the protein at the plasma membrane. 
The arrowhead indicates Aqp1b in the cytoplasm below the plasma membrane. Bar, 50 μm. (F) Immunoblot of total membrane 
fraction of Aqp1b-expressing oocytes incubated with or without alkaline phosphatase (AP) for 6 h. In B and F, the apparent 
molecular mass of a 29-kDa marker is indicated on the left and right, respectively.
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Aqp1a-Ct1b were also present in the cytoplasm (Figure
6H and 6I). Western blot of total and plasma membranes
revealed the presence of a single 27-kDa band in Aqp1a
and Aqp1b-Ct1a oocytes, while Aqp1b and Aqp1a-Ct1b
oocytes had the 28- and 29-kDa bands or a smear band of
27 to 29 kDa, respectively (Figure 6K and 6L). These
observations suggest that retention of Aqp1b in the oocyte
cytoplasm may be associated to phosphorylation at the
level of the C-terminus.

In silico analysis of teleost Aqp1b C-terminal amino acid 
sequence
The C-terminal amino acid sequence of Aqp1a and Aqp1b
from different teleosts was searched for potential regula-
tory sites (Figure 7). Unlike human AQP1, both Aqp1a
and Aqp1b sequences showed typical sorting and inter-
nalization motifs ([D/E/R]XXXL [L/V/I]) in the cytoplas-
mic tail, common in transmembrane proteins [22]. These
signals appeared to be highly conserved in fish Aqp1a
(with the consensus sequence R [M/V] [K/R]VLV),

whereas in Aqp1b they were more variable, although all of
them included a di-Leu or Leu-Ile motif. Teleost Aqp1a
and Aqp1b also had a variable number of Ser, Tyr and Thr
residues with a high probability of being phosphorylated.
Among these residues, Ser254 in sea bream Aqp1b had a
high phosphorylation score (0.98) and fulfilled the crite-
ria for a Pro-directed kinase phosphorylation site ([S/T]P
preceded by a docking domain [R/K]XXXXØXØ; Ø
denotes hydrophobic residue; [23,24]). The same consen-
sus site was found in the C-terminus of fugu (Ser245; score
0.97) and sole (Ser230; score 0.95) Aqp1b, but not in that
of eel, stickleback or zebrafish Aqp1b, although these
sequences, except that of eel, had one or more Ser residues
with a high phosphorylation score (≥ 0.9). Some of these
residues matched a casein kinase 1 (CK1) phosphoryla-
tion site (Ser230 and Ser260, in sole and zebrafish Aqp1b,
respectively), or a CK2 site (Ser230, Ser237 and Ser247, in
sole, stickleback and zebrafish, respectively). In addition,
a Thr residue preceding the sorting signal appeared to be
conserved only in teleost Aqp1b sequences (Thr229,

Functional properties and subcellular localization of wild-type (WT) sea bream Aqp1a and Aqp1b, and of their chimeric pro-teins, in oocytesFigure 6
Functional properties and subcellular localization of wild-type (WT) sea bream Aqp1a and Aqp1b, and of their 
chimeric proteins, in oocytes. (A) Membrane topology of AQP family members showing the six transmembrane helices 
with five connecting loops (A-E), and two conserved Asn-Pro-Ala (NPA) motifs in loops B and E. (B-E) WT Aqp1a (B) and 
Aqp1b (C), Aqp1a chimera in which the C-terminus of Aqp1a was exchanged with that of Aqp1b (Aqp1a-Ct1b; D), and Aqp1b 
chimera in which the C-terminus of Aqp1b was exchanged with that of Aqp1a (Aqp1b-Ct1a; E). (F) Pf of oocytes expressing 1 
ng of cRNA encoding WT or chimeric proteins. Values represent the mean ± SEM (n = 5–8 oocytes) from a representative 
experiment. The asterisk denotes statistically significant differences (p < 0.01). (G-J) Immunofluorescence microscopy of 
oocytes localizing WT Aqp1a and Aqp1b-Ct1a exclusively at the plasma membrane, whereas WT Aqp1b and Aqp1a-Ct1b are 
also in the cytoplasm. Sections shown in G and J were probed with the anti-Aqp1a antisera, whereas the sections in H and I 
were probed with the anti-Aqp1b antisera. Bar, 50 μm. (K-L) Immunoblots of total and plasma membrane equivalents (TM and 
PM, respectively) of oocytes expressing the differents cRNAs. Blots were probed as indicate above. The apparent molecular 
mass of a 29-kDa marker is indicated on the left.
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Thr235, Thr229 and Thr230, in sea bream, sole, stickleback
and eel, respectively), except in fugu and zebrafish, where
it was replaced by Phe227 and Lys233, respectively. How-
ever, none of these Thr residues gave a relevant phospho-
rylation score.

Involvement of specific residues in sea bream Aqp1b C-
terminus in intracellular trafficking
To investigate the potential role of the semi-conserved C-
terminal Ser and Thr residues in Aqp1b intracellular traf-
ficking, sea bream Aqp1b Ser254 and Thr229 were inde-
pendently mutated into Ala or Asp to mimic non-
phosphorylated and phosphorylated states, respectively
(Table 1). The Leu234Leu235 motif in this sequence was
also mutated into an Ala pair. Wild-type and mutated pro-
teins were then expressed in oocytes to determine their
permeability and subcellullar localization as indicated
above (Figure 8). Swelling assays showed that Aqp1b-
T229A and Aqp1b-L234A/L235A mutants reduced water
permeability by 38.1 ± 2.4% and 70.1 ± 4.4%, respec-
tively, with respect to oocytes expressing wild-type Aqp1b
(Figure 8A). For Aqp1b-T229A mutant, reduced permea-
bility was apparently caused by retention of the protein in

cytoplasmic vesicles, although it did not affect the phos-
phorylation state of Aqp1b (Figure 8B and 8G). In con-
trast, as the mutant was predominantly localized
surrounding the oocyte nucleus (i.e., germinal vesicle),
the strong inhibition of water permeability showed by
Aqp1b-L234A/L235A was possibly caused by the accumu-
lation of the protein in intracellular compartments, which
could enhance protein-lysosomal targeting and degrada-
tion (Figure 8C and 8H). The Aqp1b-T229D mutant was
less expressed than wild-type Aqp1b (data not shown),
causing low accumulation of the protein in the plasma
membrane, thereby reducing oocyte water permeation
(by 63.4 ± 4.0% inhibition). However, water permeability
was higher in oocytes expressing the Aqp1b-S254A
mutant than those expressing wild-type Aqp1b (65.6 ±
12.8% increase), associated with the absence of a phos-
phorylated form of the protein and increased expression
in the plasma membrane (Figure 8A, D and 8I). Con-
versely, Aqp1b-S254D induced the retention of the pro-
tein in cytoplasmic vesicles as with Aqp1b-T229A, thus
inhibiting protein translocation into the plasma mem-
brane and reducing water permeability (36.7 ± 18.5%
reduction) (Figure 8A, E and 8J). Other Ser residues

Amino acid sequence alignment of the C termini of human AQP1, and Aqp1a and Aqp1b from representative teleostsFigure 7
Amino acid sequence alignment of the C termini of human AQP1, and Aqp1a and Aqp1b from representative 
teleosts. At the bottom, identical residues are indicated by asterisks, whereas conserved amino acid substitutions and substi-
tutions with similar amino acids are indicated by double or single dots, respectively. Residues of teleost Aqp1a and Aqp1b con-
served in human AQP1 are in bold, and conserved residues in Aqp1a sequences are boxed. Double underlined residues 
indicate typical potential sorting and internalization sequences, whereas those single underlined indicate other sorting-like 
motifs. In each sequence, potential Ser, Thr and Tyr phosphorylation sites (score ≥ 0.9) are indicated by arrowheads. Consen-
sus sites for potential kinases are indicated: grey, candidate Pro-directed kinase and preceding docking domain; arrows, casein 
kinase I (CK1); circles, CK2. Other candidate phosphorylation sites shown do not match any eukaryotic linear functional motif 
included in the ELM resource.
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Role of specific residues in the sea bream Aqp1b C-terminal tail for intracellular trafficking in oocytesFigure 8
Role of specific residues in the sea bream Aqp1b C-terminal tail for intracellular trafficking in oocytes. (A) 
Water permeability of oocytes expressing wild-type (WT) or mutant Aqp1b. Oocytes were injected with cRNAs encoding 
WT Aqp1b (0.25 or 1 ng), Aqp1b-T229A (1 ng), Aqp1b-L234A/L235A (1 ng), Aqp1b-S254A (0.25 ng) or Aqp1b-S254D (0.25 
ng). Permeability is expressed in % related to oocytes injected with WT Aqp1b. Values are the mean ± SEM of 3–5 experi-
ments (n = 10–15 oocytes per treatment). The asterisks denote statistically significant differences (*, p < 0.05; **, p < 0.01). (B-
E) Immunoblots of total and plasma membrane equivalents (TM and PM, respectively) of oocytes expressing WT or mutant 
Aqp1b. The apparent molecular mass of a 29-kDa marker is indicated on the left. (F-J) Localization of Aqp1b mutants in 
oocytes. The plasma membrane is indicated by arrows, and retention of Aqp1b-L234A/L235A proteins possibly in the ER is 
indicated by arrowheads (H). Bars, 100 μm.
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present in the C-terminal region of sea bream Aqp1b,
Ser238, Ser253, Ser258 and Ser262, were also substituted by
Ala but these mutants had no effect on water permeability
with respect to wild-type Aqp1b (see Additional file 2).
These data suggest that dephosphorylation of Ser254 may
enhance Aqp1b shuttling into the plasma membrane, and
that Thr229 may also regulate this process through a phos-
phorylation-independent mechanism.

Discussion
We present here strong evidence confirming the presence
of two AQP isoforms in vertebrates that are structurally
and functionally related to mammalian AQP1. These iso-
forms, Aqp1a and Aqp1b, seem to coexist exclusively in
teleost fish since Aqp1b was not found in mammals,
amphibians or birds. The main difference between Aqp1a
and Aqp1b is in the C-terminal tail, which contains spe-
cific residues for regulation of intracellular trafficking in
Aqp1b.

Previous sequence analyses of MIPs suggest that substrate
selective modes (AQPs and aquaglyceroporins) were
acquired early in the history of the family by gene dupli-
cation and functional shift, with the highest level of diver-
sification occurring in vertebrates and higher plants [25].
Analysis of Aqp1a and Aqp1b distribution by searching
currently available genome sequence information and by
cDNA cloning suggest that both isoforms are present
exclusively in the teleost genome. Phylogenetic recon-
struction of vertebrate AQP1-like proteins indicates that
Aqp1a and Aqp1b share a common origin and are likely
to have evolved from duplication of a common ancestor.
Because both isoforms are present in fish species belong-
ing to distant taxonomic groups, from basal (e.g., Anguil-
liformes) to more modern (e.g., Gasterosteiformes,
Perciformes, Pleuronectiformes and Tetraodontiformes)
groups [26,27], this duplication must be ancient and is
likely to have affected most teleosts. As suggested for

many duplicated genes in teleosts, the origin of Aqp1b
might be the whole-genome duplication (WGD) event
that occurred specifically in the ray-finned (Actinoptery-
gian) lineage after splitting from the tetrapod lineage
about 350 million years ago [28]. However, as it has not
been possible to identify Aqp1b in most basal actinop-
terygians (e.g., paddlefish and sturgeon) with the genomic
information available, it is not known whether the AQP1
duplication also affected these groups. In all teleosts
examined, the aqp1a and aqp1b loci were found to be
closely linked, indicating that Aqp1b possibly arose by a
gene duplication event at a local level rather than at the
chromosome or genome level. Local gene duplication has
also been proposed, for instance, to explain the repertoire
of teleost opsins [29,30] and the generation of the Xipho-
phorus Xmrk oncogene [31].

The radiation of teleosts in the ocean most likely required
the evolution of new osmoregulatory mechanisms in eggs
and early embryos to alleviate the passive water loss
imposed by the hyper-osmotic environment [7]. In this
scenario, it is plausible to hypothesize that duplication of
aqp1 genes in teleosts allowed for one duplicate to encode
a product with a new function through innovating muta-
tions in regulatory and/or structural sequences ('neofunc-
tionalization'). This seems to be the case for sea bream
Aqp1b which plays a specialized physiological role in the
oocyte mediating water uptake during meiotic maturation
[10,11]. In other marine and catadromous teleosts, such
as sole and eel, respectively, that like sea bream also
spawn highly hydrated eggs, we show here that aqp1b also
encodes a functional water channel whose RNA is pre-
dominantly accumulated in the ovary, suggesting a simi-
lar role of Aqp1b during oocyte hydration. In other
pelagophil teleosts [32,33], as well as in some species of
catfish, in which oocyte hydration may also occur despite
having a freshwater life cycle (e.g., [34]), Aqp1b-encoding
ESTs have also been found in the ovary. In contrast, in

Table 1: C-Terminal amino acid sequences of sea bream wild-type (WT) and mutated Aqp1b

Construct Aqp1b C-terminus sequence

222 267
| |

Aqp1b-WT PRAQNFRTRRNVLLNGSEDEDAGFDAPREGNSSPGPSQGPSQWPKH
T229A PRAQNFRARRNVLLNGSEDEDAGFDAPREGNSSPGPSQGPSQWPKH
T229D PRAQNFRDRRNVLLNGSEDEDAGFDAPREGNSSPGPSQGPSQWPKH

L234A/L235A PRAQNFRTRRNVAANGSEDEDAGFDAPREGNSSPGPSQGPSQWPKH
S238A PRAQNFRTRRNVLLNGAEDEDAGFDAPREGNSSPGPSQGPSQWPKH
S253A PRAQNFRTRRNVLLNGSEDEDAGFDAPREGNASPGPSQGPSQWPKH
S254A PRAQNFRTRRNVLLNGSEDEDAGFDAPREGNSAPGPSQGPSQWPKH
S254D PRAQNFRTRRNVLLNGSEDEDAGFDAPREGNSDPGPSQGPSQWPKH
S258A PRAQNFRTRRNVLLNGSEDEDAGFDAPREGNSSPGPAQGPSQWPKH
S262A PRAQNFRTRRNVLLNGSEDEDAGFDAPREGNSSPGPSQGPAQWPKH

Amino acid sequence of C termini of WT and Aqp1b mutants from Pro222 to terminal His267. Amino acid substitutions are shown in black boxes.
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zebrafish, a freshwater species where almost no oocyte
hydration is observed [35], we found a completely differ-
ent aqp1b expression pattern, together with a higher muta-
tion rate in the amino acid sequence of the encoded
protein. Based on these data, we argue that, in marine tel-
eosts producing highly hydrated eggs, Aqp1b possibly
represents a neofunctionalized water channel adapted to
oocytes to facilitate water transport. Finn and Kristoffer-
sen [7] recently proposed that neofunctionalization of
duplicated Vtg genes, which allowed one paralog to be
proteolyzed into FAAs driving hydration of the maturing
oocytes, was a key event in the evolution and success of
the teleosts in the oceanic environment. The duplication
and neofunctionalization of aqp1b may have occurred in
parallel to this mechanism to facilitate oocyte water
uptake in marine teleosts.

The Aqp1b isoform found in freshwater teleosts that
spawn non-hydrated eggs, such as zebrafish, might be
inactivated by mutations, or be eventually lost in the
genome. This hypothesis is supported by the absence of
aqp1b in advanced freshwater species, such as medaka,
while the synteny between the aqp1a chromosome loci
and downstream genes (e.g., thoc1) is conserved. How-
ever, in other extant freshwater teleosts that arose later in
evolution, such as Tetraodon, aqp1b is retained in the
genome. The retention of aqp1b in freshwater pufferfishes
is intriguing, given that there appears to have been a mas-
sive elimination of DNA after WGD in most modern tele-
ost genomes, resulting in the retention of only a subset of
the duplicates [36,37]. It is possible to speculate, however,
that the recent evolution of Tetraodontiformes did not
last long enough to allow specific divergence of the
genome and hence of aqp1b. The relatively high amino
acid sequence identity (77%) between fugu, a marine
pufferfish which produces hydrated eggs, and Tetraodon
Aqp1b supports this conjecture. In any event, additional
studies aiming at the characterization of Aqp1b in more
freshwater fish species, as well as the determination of
sites of gene expression and protein accumulation, are
required to better understand the driving force behind
aqp1b isoform evolution.

In addition to the ovary, aqp1b mRNA has been detected
in the posterior intestine, kidney, gills and esophagus of
marine fish (this work, and [10,14,38]). The intestine of
marine teleosts has an important osmoregulatory role, as
hypo-osmoregulating fish have long been known to drink
seawater to replace water lost by diffusion to their envi-
ronment (see [39] for review). Accordingly, Aqp1a and
Aqp1b proteins have been reported to be localized in the
intestinal epithelia of teleosts [12-15]. However, in the sea
bream gastrointestinal tract Aqp1a and Aqp1b have a dif-
ferent distribution pattern. Whereas Aqp1a is localized in
the apical and basolateral membrane of enterocytes in

duodenum and hindgut, Aqp1b is exclusively localized in
the apical microvilli of rectal epithelial cells [12]. Moreo-
ver, freshwater acclimation reduces the synthesis of Aqp1a
in all intestinal segments, and of Aqp1b in rectum. Con-
versely, seawater acclimation of eels increases Aqp1a
expression and protein synthesis in the intestine [13,19].
Therefore, although the specific physiological functions of
Aqp1a and Aqp1b in the teleost gastrointestinal tract
remain unknown, these data may point to an additional
role of Aqp1b in water movement across the intestinal
epithelia.

The primary structure of AQP1-like proteins correspond-
ing to the TM2 and TM5 domains and connecting loops B
and E, which are involved in the formation of the water-
selective pore, is highly conserved between teleost and
mammals. However, Aqp1a and Aqp1b show different
permeability efficiencies when expressed in X. laevis
oocytes, and teleost Aqp1b isoforms also show a marked
structural divergence at the C-terminal cytoplasmic tail
with respect to Aqp1a and mammalian AQP1. Functional
experiments, using artificial expression in oocytes of sea
bream wild-type Aqp1a and Aqp1b, and chimeric proteins
in which the C-terminus of Aqp1a was totally exchanged
for that of Aqp1b, or the reverse, revealed that the Aqp1a
tail drives constitutive targeting to the plasma membrane,
unlike that of Aqp1b which produces partial retention of
the expressed proteins in intracelluar vesicles. These data
strongly suggest that Aqp1b independently acquired spe-
cific regulatory domains in the C-terminal region for the
control of Aqp1b intracellular trafficking.

To investigate the nature of putative regulatory sites in the
Aqp1b C-terminus, we analyzed its amino acid sequence
in different teleosts. Based on this analysis, selected resi-
dues of sea bream Aqp1b were mutated into Ala or Asp
and the resulting proteins were expressed in oocytes to
determine their intracellular localization and permeabil-
ity properties. In the Aqp1b C-terminus, we found typical
sorting and internalisation signals that are common in
many mammalian transmembrane proteins for targeting
from the trans-Golgi network to the lysosomal-endo-
somal compartment [22]. These motifs, however, were
also detected in the Aqp1a C-terminal tail, although their
sequence appeared to be different between the Aqp1a and
Aqp1b isoforms. Thus, in all six teleost Aqp1b sequences
analyzed, but not in Aqp1a, a di-Leu or Leu-Ile signals
appear to be conserved. Mutation of sea bream Aqp1b
Leu234Leu235 motif into Ala234Ala235 produced the reten-
tion of the protein in intracellular compartments and
apparently increased its degradation, thereby reducing
water permeability of these oocytes. These results are sim-
ilar to those observed with the mammalian AQP2 mutant
which has an altered and extended C-terminal tail,
retained in late endosomes/lysosomes triggering degrada-
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tion [40]. Similarly, mutation of the C-terminal
Leu345Leu346 motif in the human vasopressin V3 receptor
produces mis-folding of the protein and abolishes recep-
tor export [41]. It is possible therefore, that the di-Leu
motif in sea bream Aqp1b also plays a role in conforma-
tion, ensuring correct routing to the plasma membrane.
However, di-Leu motifs are also involved in basolateral
membrane targeting and microvilli anchoring of mamma-
lian cell adhesion proteins, ion channels and receptors
[42-45], including AQP4 [46], in polarized epithelial
cells. Further studies are needed to establish whether the
di-Leu motif has an additional function in the control of
Aqp1b expression on the cell surface.

Most notably, functional analyses revealed that two resi-
dues in the sea bream Aqp1b C-terminal sequence, Thr229

and Ser254, were responsible for sea bream Aqp1b translo-
cation from intracellular vesicles to the oocyte plasma
membrane. The probability of the Thr229 residue being
phosphorylated was low, and accordingly the Aqp1b-
T229A mutant did not affect the phosphorylation state of
Aqp1b, although it did inhibit Aqp1b cell surface expres-
sion and oocyte water permeability. Since Thr229 did not
match any kinase phosphorylation consensus site other
than protein kinase C (which apparently is not relevant
here), the specific function of this residue is unknown and
awaits further experimentation. Nevertheless, it was
observed that the Aqp1b-S254A mutant prevented phos-
phorylation and increased Aqp1b translocation into the
plasma membrane and subsequent water permeability,
whereas the Aqp1b-S254D mutant, which mimicked the
constitutively phosphorylated state of Aqp1b, was pre-
dominantly located in intracellular vesicles. These results
suggest that dephosphorylation of Ser254 triggers Aqp1b
shuttling to the cell surface, while its phosphorylation
may retain the protein in intracellular vesicles. This mech-
anism is thus apparently the opposite to that described so
far for mammalian and amphibian AQPs (i.e., AQP2 and
AQP-h2), where channel insertion in the plasma mem-
brane of collecting duct cells or granular cells of the
anuran urinary bladder is triggered by protein kinase A-
mediated phosphorylation of specific Ser residues in the
C-terminal tail [21,47]. Interestingly, the Ser254 in sea
bream Aqp1b, a consensus site for a Pro-directed kinase,
seems to be conserved in modern marine teleosts which
produce hydrated eggs (Ser244 in fugu Aqp1b and Ser244 in
sole Aqp1b). Pro-directed kinases are a large family of
mitogen-activated protein kinases (MAPK) and cyclin-
dependent kinase-like kinases, some of which (e.g., p38
MAPK) are involved in transduction pathways leading to
the activation of the maturation promoting factor (MPF)
during oocyte meiotic maturation [48-50]. In sea bream,
Aqp1b translocation into the oocyte plasma membrane is
a tightly regulated process thought to occur transiently
downstream of MPF activation during meiotic matura-

tion, just before complete hydrolysis of yolk proteins and
maximum K+ accumulation is reached in the oocyte [11].
Therefore, it will be of interest to investigate the potential
role of cell-cycle related kinases, or other kinases activated
during oocyte maturation, in Ser254 phosphorylation and
regulation of Aqp1b trafficking.

Conclusion
We provide phylogenetic and functional evidence for the
teleost lineage-specific duplication of AQP1 channels and
further divergence at the C-terminal tail. The generation
and neofunctionalization of the Aqp1b isoform in
oocytes of marine teleosts most likely contributed with
the production of highly hydrated eggs to ensure survival
in seawater. The neofunctionalization of Aqp1b has also
been accompanied by the acquisition of regulatory
domains in the cytoplasmic C-terminal tail for the specific
control of Aqp1b intracellular trafficking, which are cur-
rently being investigated. The elucidation of the biological
functions of Aqp1a and Aqp1b in teleosts will contribute
to our understanding of the evolution of phenotypic com-
plexity, diversity and innovation in vertebrates.

Methods
Animals
Adult zebrafish, gilthead sea bream, Senegalese sole, and
European eel were purchased from local pet stores or fish
farms and maintained as described [11,51-53]. Naturally
spawning fish, or hormone-stimulated in the case of eel
(see [53] for details), were sedated by immersion for
approximately 15 min in 100 ppm phenoxyethanol, sac-
rificed by decapitation, and samples of mature ovary and
other tissues immediately dissected and frozen at -80°C.
Procedures relating to the care and use of animals were
approved by the Ethics Committee from IRTA in accord-
ance with the Guiding Principles for the Care and Use of
Laboratory Animals.

Cloning and sequencing of teleost AQP1-like cDNAs
Partial cDNAs encoding European eel Aqp1b and Senega-
lese sole Aqp1a were isolated by reverse transcriptase-
polymerase chain reaction (RT-PCR) employing degener-
ate oligonucleotide primers (see Additional file 3). Total
RNA was extracted from kidney, intestine and hydrated
ovaries using the RNeasy Maxikit (Qiagen), followed by
polyA RNA purification with the Oligotex mRNA Minikit
(Qiagen). PolyA RNA (500 ng) was reverse transcribed
using 0.5 μg oligo (dT)17, 1 mM dNTPs, 40 IU RNAse
inhibitor (Roche), and 10 IU MMLuV-RT enzyme
(Roche), for 1.5 h at 42°C. The PCR was carried out with
0.5 μl of the RT reaction in a volume of 50 μl containing
1 × PCR buffer plus Mg2+, 0.2 mM dNTPs, 0.2 μM of each
forward and reverse oligonucleotide primers, and 1 IU of
Taq polymerase (Roche). Reactions were amplified using
one cycle of 95°C, 5 min; then 40 cycles of 95°C, 30 sec;
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54°C, 30 sec; 72°C, 1 min; and a final 7-min elongation
at 72°C. The products were cloned into the pGEM-T Easy
Vector (Promega) and sequenced by BigDye Terminator
version 3.1 cycle sequencing on ABI PRISM 377 DNA ana-
lyzer (Applied Biosystems). Full-length eel Aqp1b cDNA
was isolated by rapid amplification of cDNA ends (RACE;
Gibco) followed by a final amplification with a high-fidel-
ity polymerase (Pwo; Roche). Full-length zebrafish Aqp1b
cDNA was amplified from total RNA extracted from adult
brain using specific forward and reverse primers based on
a predicted cDNA (see Additional file 3). The nucleotide
sequence of Senegalese sole Aqp1a, European eel Aqp1b,
and zebrafish Aqp1b have been deposited in the GenBank
database under accession numbers DQ889223,
EF011738, and EU327345, respectively.

Genomic organization of teleost aqp1a and aqp1b genes
Genomic sequences covering the complete sea bream
aqp1a and aqp1b loci, as well as the flanking cassette, were
amplified by PCR on liver-extracted genomic DNA using
the Expand Long Template PCR system 3 (Roche) and
gene specific primers (see Additional file 3). Products
were cloned into the pGEM-T Easy Vector and sequenced
as described. The nucleotide sequence of sea bream aqp1a
and aqp1b loci have been deposited in the GenBank data-
base under accession numbers EF011739 and EF011740,
respectively. Zebrafish, medaka, fugu, pufferfish, and
three-spined stickleback aqp1a and aqp1b genomic
sequences were retrieved from ENSEMBL [54]. The exon-
intron structure was determined from cloned cDNAs and
available ESTs.

Phylogenetic and sequence analyses
Vertebrate and teleost MIP sequences were retrieved from
the NCBI database [55] and ENSEMBL and analyzed at
the amino acid level. Amino acid sequence alignments
were performed using the ClustalW multiple sequence
alignment program [56] employing the sequence from the
first NPA motif to the start of the C-terminus (when
sequence data was available), and were manually opti-
mized using the Bioedit software [57]. The alignment is
shown in the Additional file 1. The phylogenetic tree and
branch support values were estimated by using the NJ, ML
and BI methodologies of phylogenetic reconstruction.
The NJ analysis [58] of the amino acid alignment was
based on mean character distances using Mega3 software
[59]; bootstrap support values were obtained with 1,000
repetitions. For ML and BI analyses, a Bayesian consensus
tree for the sequence data set was built and used to esti-
mate the best-fit evolutionary model by using ProtTest
v1.4 [60]. Then, ML (including bootstrapping) analysis
was performed with PhyML [61]. To confirm the ML tree,
a BI (including posterior probabilities) of phylogeny was
conducted by using MrBAYES v3.1 [62] with the ProtTest
best-fit model of amino acid substitution (CpRev) pro-

vided in the package. Four independent runs, each with
four simultaneous Markov Chain Monte Carlo chains,
were performed for 1,000,000 generations sampled every
100 generations. Potential Ser, Thr and Tyr phosphoryla-
tion sites in amino acid sequences were predicted using
NetPhos 2.0 [63]. Candidate functional sites were identi-
fied using the Eukaryotic Linear Motif (ELM) server [64].

Gene expression analysis
The abundance of aqp1b transcripts in sea bream, eel, Sen-
egalese sole and zebrafish adult tissues was assessed by
conventional RT-PCR followed by Southern blot. Total
RNA from liver, intestine, kidney, gills, brain, ovary and
testis was extracted, treated with DNase, and first-strand
cDNA synthesized as described above. The PCR was car-
ried out as above on 1 μl of the RT reaction using species-
specific aqp1b forward and reverse oligonucleotide prim-
ers located in exon 3 and 4, respectively (see Additional
file 3). For zebrafish, 500 ng of DNA template was also
amplified using the corresponding oligos (not shown). In
all experiments, β-actin was used as a reference gene; for-
ward and reverse oligonucleotide primers designed in
highly conserved regions of zebrafish β-actin1 (bactin1)
(Additional file 3) were employed for all species. PCR
reactions were performed with an initial cycle of 95°C, 5
min; then variable number of cycles and temperatures for
amplification, depending on the species, to generate half-
maximal amounts of PCR products (not shown); and a
final 7-min elongation at 72°C. For sea bream aqp1b, the
cycles were 28 of 95°C, 30 sec; 62°C, 30 sec; 72°C, 30 sec;
for eel and Senegal sole aqp1b the cycles were 37 and 36,
respectively, of 95°C, 1 min; 60°C, 1 min; 72°C, 1 min;
and for zebrafish aqp1b the cycles were 35 of 95°C, 1 min;
65°C, 1 min; 72°C, 1 min. For bactin1 the cycles were 26
for sea bream and eel, 24 for sole, and 22 for zebrafish, of
95°C, 30 sec; 52°C, 30 sec; 72°C, 45 sec. The PCR prod-
ucts were electrophoresed on 1% agarose gels, and the
DNA blotted to nylon membranes (Amersham). Mem-
branes were hybridized with species-specific digoxigenin-
labelled aqp1b probes using the DIG DNA Labelling Mix
(Roche).

Expression constructs
Sea bream Aqp1a and Aqp1b, and zebrafish, eel and Sen-
egalese sole Aqp1b were cloned into the EcoRV/SpeI sites
of the oocyte expression vector pT7Ts [63]. To obtain the
Aqp1a-Ct1b, in which the C-terminus of Aqp1a was
replaced by that of Aqp1b, the C-terminus-coding nucle-
otide sequence of Aqp1b was PCR amplified using a for-
ward primer partially complementary to Aqp1a, 5'-
CCCCCAAATTCCAAAACTTCAGGACGCGCAG-3', and a
reverse primer bearing a SpeI restriction site, 5'-ACTAGT-
GCTTGTTTTTTCAGTGCTTTGG-3'. In parallel, a fragment
of Aqp1a cDNA lacking the nucleotide sequence encoding
the C-terminus was amplified using a forward primer spe-
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cific to the 5' end of Aqp1a with an EcoRV site, 5'-
GATATCGCCACCACCATGAGAGAG-3', and a reverse
primer partially complementary to the nucleotide
sequence of the C-terminus of Aqp1b, 5'-GAAGTTTT-
GGAATTTGGGGGACAG-3'. After purification, the two
PCR products were used as templates to synthesize Aqp1a-
Ct1b employing the forward and reverse primers bearing
EcoRV and SpeI, respectively. The Aqp1b-Ct1a chimera, in
which the C-terminus of Aqp1b was replaced by that of
Aqp1a, was obtained by amplifying the C-terminus-cod-
ing nucleotide sequence of Aqp1a with the primers 5'-
CACGAGCGGACGACTTCCCCGAGCGC-3' and 5'-ACT-
AGTCGTCTGTGTGGGACTATTTTGACG-3'. The Aqp1b-
Ct1a cDNA was then amplified using the PCR product as
reverse primer and a forward primer specific to the 5' end
of Aqp1b, with an EcoRV site (5'-GATATCTCGACGCG-
GAGATGACAGAA-3'), employing full-length Aqp1b
cDNA as a template. In all cases, PCR reactions were per-
formed using Pwo or Easy-A high-fidelity polymerases
(Stratagene), and the chimera cDNAs were ligated into
pT7Ts after digestion with EcoRV and SpeI. Mutations
into the sea bream Aqp1b C-terminal amino acid
sequence were introduced by using the QuickChange site-
directed mutagenesis kit (Stratagene) on pT7Ts-Aqp1b
(Additional file 4). Sequence analysis of selected clones
was carried out to confirm that only the desired chimeras
or mutations were produced.

Functional expression of teleost AQPs in Xenopus laevis 
oocytes
Complementary RNA (cRNA) synthesis, expression in X.
laevis oocytes, and Pf measurements were performed
essentially as described [65]. Oocytes were injected with
0.25 to 10 ng cRNA. The swelling assays were carried out
in 10-fold diluted modified Barth's solution (MBS: 88
mM NaCl, 1 mM KCl, 2.4 mM NaHCO3, 10 mM Hepes,
pH 7.5, 0.82 mM MgSO4, 0.33 mM Ca(NO3)2, 0.41 mM
CaCl2, and 25 μg/ml gentamicin) in the presence or
absence of 0.7 mM HgCl2 and 5 mM β-mercaptoethanol.
The data shown are an average of 3–5 experiments (each
with different batches of oocytes), or from a representative
experiment out of three different trials producing similar
results. The measured Pf values were statistically analyzed
in an unpaired Student's t test; p values < 0.05 were con-
sidered significantly different.

Western blotting and immunofluorescence microscopy
Total and plasma membranes were isolated from groups
of 10 oocytes as described [66]. Protein samples were
denatured at 95°C for 5 min in Laemmli buffer, electro-
phoresed on a 12% polyacrylamide SDS gel and then blot-
ted onto PVDF or nitrocellulose membranes (Bio-Rad
Laboratories). Membranes were blocked for 1 h with TBST
(20 mM Tris, 140 mM NaCl, 0.1% Tween, pH 7.6) con-

taining 1% nonfat dry milk, and then incubated with
1:300 diluted affinity-purified rabbit antisera against sea
bream Aqp1a or Aqp1b in TBST with 1% nonfat milk
powder at 4°C overnight. The Aqp1a and Aqp1b antisera
were produced against synthetic peptides corresponding
to the C-terminus of the corresponding proteins and they
have been characterized elsewhere [10-12]. As secondary
antibody, a 1:8000 dilution of goat anti-rabbit IgG cou-
pled to horseradish peroxidase (Sigma) was used. Reactive
protein bands were detected using enhanced chemilumi-
nescence (Amersham). In some experiments, protein
dephosphorylation was carried out before SDS-PAGE by
resuspending total membrane extracts of Aqp1b-express-
ing oocytes in 10 mM MgCl2, 10 mM Tris-HCl, pH 7.5 and
treating with calf intestinal alkaline phosphatase (Fer-
mentas) for 6 h at 37°C, following the manufacturer's
instructions.

Immunofluorescence microscopy was carried out on
Aqp1a- and Aqp1b-expressing oocytes fixed in Bouin's
without acetic acid for 4 h, subsequently dehydrated and
embedded in paraplast (Sigma). Sections (7 μm) were
blocked with 5% goat serum in PBST (137 mM NaCl, 2.7
mM KCl, 4.3 mM Na2HPO4, 1.4 mM KH2PO4, 1% BSA,
0.01% Tween, pH 7.5), and incubated at 4°C overnight
with Aqp1a or Aqp1b antisera (1:100) in PBST with 1%
goat serum. Bound antibodies were detected with mouse
FITC anti-rabbit secondary antibodies (1:300). Sections
were mounted with Vectashield (Vector Labs) or Prolong
Gold antifade reagent (Invitrogen) and photos taken
using a Leica SP2 confocal laser scanning microscope.
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Additional file 1
Alignment of the amino acid sequences of vertebrate AQP1 and teleost 
Aqp1a and Aqp1b. Alignment was performed using ClustalW employing 
the sequence from loop B to the start of the C-terminus, manually opti-
mized using the Bioedit software. Conserved residues are shaded in black, 
residues conserved in at least 70% of the species in grey.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-8-259-S1.pdf]

Additional file 2
Water permeability of X. laevis oocytes expressing sea bream wild-type 
(WT) or mutant Aqp1b. The Aqp1b-S238A, Aqp1b-S253A, Aqp1b-
S258A and Aqp1b-S262A mutants are shown. (A) Water permeability of 
oocytes expressing 1 ng cRNA of WT Aqp1b or the different mutants. Per-
meability is expressed in % related to oocytes injected with wild-type 
Aqp1b. Values represent the mean ± SEM of 3 experiments (each per-
formed with different batches of oocytes; n = 10–15 oocytes per treat-
ment). (B) Immunoblots of total membrane equivalents of oocytes 
expressing WT or mutant Aqp1b showing that all proteins were expressed 
at similar levels. The apparent molecular mass of a 29-kDa marker is indi-
cated on the left.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-8-259-S2.pdf]

Additional file 3
Degenerate and gene- or cDNA-specific oligonucleotide primers used 
for cloning and RT-PCR analysis. The table list the oligonucleotide prim-
ers employed for the cloning of teleost AQP1-like cDNAs and sea bream 
aqp1a and aqp1b loci, and for RT-PCR analyses of aqp1b gene expres-
sion.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-8-259-S3.pdf]

Additional file 4
Forward and reverse primers employed to introduce mutations into 
the sea bream Aqp1b cDNA. The table lists the oligonucelotide primers 
employed for the site-directed mutagenesis of the sea bream Aqp1b cDNA.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-8-259-S4.pdf]
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