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Abstract
Background: Evolution involves both deterministic and random processes, both of which are
known to contribute to directional evolutionary change. A number of studies have shown that
when fitness is treated as a random variable, meaning that each individual has a distribution of
possible fitness values, then both the mean and variance of individual fitness distributions contribute
to directional evolution. Unfortunately the most general mathematical description of evolution that
we have, the Price equation, is derived under the assumption that both fitness and offspring
phenotype are fixed values that are known exactly. The Price equation is thus poorly equipped to
study an important class of evolutionary processes.

Results: I present a general equation for directional evolutionary change that incorporates both
deterministic and stochastic processes and applies to any evolving system. This is essentially a
stochastic version of the Price equation, but it is derived independently and contains terms with no
analog in Price's formulation. This equation shows that the effects of selection are actually amplified
by random variation in fitness. It also generalizes the known tendency of populations to be pulled
towards phenotypes with minimum variance in fitness, and shows that this is matched by a tendency
to be pulled towards phenotypes with maximum positive asymmetry in fitness. This equation also
contains a term, having no analog in the Price equation, that captures cases in which the fitness of
parents has a direct effect on the phenotype of their offspring.

Conclusion: Directional evolution is influenced by the entire distribution of individual fitness, not
just the mean and variance. Though all moments of individuals' fitness distributions contribute to
evolutionary change, the ways that they do so follow some general rules. These rules are invisible
to the Price equation because it describes evolution retrospectively. An equally general prospective
evolution equation compliments the Price equation and shows that the influence of stochastic
processes on directional evolution is more diverse than has generally been recognized.

Background
Evolution involves both deterministic processes, such as
selection, and random processes such as drift. When
deterministic and stochastic processes are combined in
the same model it is common to use the "diffusion
approximation" – essentially assuming that populations

are large (so that evolution can be approximated as a con-
tinuous process), that population size is relatively stable,
and that selection is weak [1-4]. The diffusion approxima-
tion is nearly always used when analytical (rather than
numerical) solutions are sought.
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The diffusion approximation has yielded many important
results concerning the interaction of deterministic and
stochastic evolutionary processes. In particular, a number
of different models have shown that the direction of evo-
lution is influenced not only by the relative mean fitnesses
of different strategies (or alleles) but also by the variances
in possible fitness values associated with each strategy [5-
10]. If the variance in each individual's fitness distribution
influences directional evolution, then it seems likely that
other aspects of the fitness distribution (i.e. other
moments) should do so as well. However, most of the
models that have been studied have used methods (such
as the Itô calculus [11]) which make it difficult to see the
effects of higher moments of the fitness distribution of an
individual.

The most general (in the sense of making the fewest sim-
plifying assumptions) mathematical description of evolu-
tion that we currently have, the Price equation [12], does
not easily accommodate stochastic evolutionary proc-
esses. The Price equation is an exact description of the
relation that must hold between the phenotype of par-
ents, the fitness of parents, the difference between parents
and offspring, and evolutionary change [13]. Unfortu-
nately, all of these parameters must be specified exactly.
The Price equation is thus exact only in hindsight, after
reproduction has taken place and we know the precise
value of each individual's fitness and the mean phenotype
of its offspring.

Despite this apparent limitation, the Price equation has
been used extensively to study social evolution [14-16],
the foundations of quantitative genetics [13,17], and the
analysis of multilevel selection [13,18-20] as well as in
other fields such as ecology [21,22]. Since all of these
fields also involve stochastic processes, it would be of
value to have a theory with the generality of the Price
equation that does not require that all parameters are
known exactly to begin with.

Below, I present a general equation for directional evolu-
tionary change that treats fitness and offspring phenotype
as random variables, rather than numbers, but imposes
no restrictions on the distributions associated with these
random variables. This is essentially a stochastic version
of the Price equation, though it is derived independently
and contains a term not found in Price's formulation. This
theory accommodates all processes that influence direc-
tional evolution, both deterministic and stochastic. Using
this result, I show that deterministic and stochastic proc-
esses interact in complex ways. One result is that stochas-
tic variation in fitness amplifies the effects of selection in
small or fluctuating populations. Furthermore, the role of
fitness variation within an individual is more complex
than has generally been recognized. The well known ten-

dency for populations to be pulled towards phenotypes
with minimum variance in fitness turns out to be one
instance of a more general rule that, all else held equal,
populations are pulled towards phenotypes with mini-
mum symmetrical variation in fitness, as measured by all
of the even moments of an individual's fitness distribu-
tion. This process can actually cause the variance in fitness
to increase (so long as higher even moments decrease).
There is also a tendency for populations to be pulled
towards phenotypes with maximum positive asymmetry
in fitness (as measured by the odd moments). Finally, this
equation contains a term, capturing the direct effects of
reproduction on offspring phenotype, that has no analog
in the Price equation.

Results
In the following analysis, the fitness of an individual (w)
measures the number of descendants that the individual
has at some future time, potentially including the individ-
ual itself [13]. We consider a population of individuals
that have not yet reproduced, and therefore treat fitness
and offspring phenotype not as fixed values, but as ran-
dom variables, each having a distribution of possible fit-
ness values. The mean of an individual's fitness

distribution, , is the number of descendants that the
individual is expected to leave.

Because each individual has a distribution of possible fit-
ness values, the mean fitness in the population ( ),
which determines population growth rate, is also a ran-
dom variable. If  = 0 then the population goes extinct,
and the change in mean phenotype is undefined. We thus

define  as the ratio of individual fitness to

mean population fitness, conditional on the population
not going extinct. Throughout this discussion,  refers to

the average value of x in a population, and  refers to the
expected value of random variable x.

The general equation

Using the notation given in Table 1, the expected change

in mean phenotype over some interval (denoted ) is

given by (see Methods for derivation):

This is essentially a stochastic version of Price's theorem.
Note, though, that it contains a term that has no analog in

Price's formulation. This new term, , describes

the population average of the covariance, within an indi-
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vidual, between the average phenotype of that individ-

ual's offspring (ϕo) and the individual's contribution to

population growth (Ω). This term does not appear in
Price's theorem because that equation treats offspring
phenotype and fitness as parameters, rather than random

variables (i.e. each individual has a specific value of ϕo and
of fitness, rather than a distribution of possible values for
each of these). This is why Price's theorem is exact only
after reproduction has taken place.

We can write Equation 1 in more familiar form by defin-
ing δ as the difference between the mean phenotype of an
individual's offspring and that individual's own pheno-
type, then substituting ϕ + δ for ϕo, to yield:

Note that ϕ, the current phenotype of an individual, is not
treated as a random variable. This is because, at whatever

time we look at the system, ϕ already has a value for each

individual. By contrast, w and δ are random variables
because they concern future events and thus could have a
range of possible values. Terms in Equation 2 containing

δ concern processes, such as mutation and recombina-
tion, that cause offspring to, on average, differ from their

parents. If we set δ = 0, we are left with only cov(ϕ, ),
which is the change due only to differential survival and
reproduction. This term corresponds to the "selection dif-
ferential" term in the Price equation [13]. However, we
will see that because both individual fitness (w) and mean
population fitness ( ) are now random variables, the

term cov( ) now contains more than just selection.

Because it is the expected value of the ratio of two corre-

lated random variables,  (the expected value of the
ratio of individual k's fitness to mean population fitness

conditional on  ≠ 0) can behave in unexpected ways. In

order to tease these apart, we can expand  to yield (see
Methods):

Here, H( ) is the harmonic mean of the distribution of

possible values of , and μi+1 (wk ) is the (i + 1)st mixed

central moment of wk and . (The first of these terms,

μ2(wk ), is the covariance between individual fitness

and mean population fitness). The value of the μi+1(wk

) terms is determined by the source of random varia-
tion in fitness. We will consider two special cases: pure
demographic stochasticity and random environmental

change. For this discussion, we will set δ = 0, which is
equivalent to looking only at the "selection differential",
S, which ignores mutation, recombination, and other
processes that could cause offspring to not resemble their
parents.

Demographic stochasticity in a constant environment
Even in an environment that seems constant to an outside
observer, there will be variation in individual fitness val-
ues, even among individuals with the same phenotype.
This variation corresponds to what is generally called
demographic stochasticity, and it will be present in all
populations [23]. Pure demographic stochasticity is
roughly equivalent to the "within-generation" compo-
nent of variation discussed by Gillespie [7].

If the fitness values of different individuals are independ-
ent (meaning that the number of descendants of individ-
ual j is independent of whether individual i leaves more
or fewer descendants than expected), and the environ-
ment does not change from generation to generation,
then we can find the selection differential (S) by expand-

ing cov(ϕ, ). Considering only the first three terms in
the expansion, this yields:

Here, N designates actual, rather than effective, popula-
tion size. The three terms on the right-hand side of Equa-
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Table 1: Symbols and notation.

Symbol Meaning

N Population size
ϕ Phenotype of an individual
ϕo Mean phenotype of an individual's offspring
δ ϕo - ϕ

Expected mean value of δ in the population
w Fitness of an individual

Expected fitness in the current environment
fϕ Frequency of phenotype ϕ in the population
Ω

 conditional on  ≠ 0

H( ) Harmonic mean of 
μi(w) ith central moment of w

 or Ave (X)
Average value of X in population

 or E(x)
Expected value of random variable X

δ

w

w
w w

w w
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tion 4 each correspond to different directional
evolutionary forces acting on the population. These are:
1) selection (here a function of N because of the H( )
term), 2) a force pulling the population towards pheno-
types with minimum variance in fitness, and 3) a force
pulling the population towards phenotypes with maxi-
mum positive skewness in fitness. The terms correspond-
ing to higher moments of the distribution of fitness
follow the same pattern; those containing even central
moments are negative and those containing odd central
moments are positive.

Random environmental change

In addition to pure demographic stochasticity, the envi-
ronment may change over time in ways that differentially
affect different phenotypes (the "between-generation"
component of Gillespie [7]). In this case, the expected fit-
ness of individuals with a particular phenotype will itself
vary over time, so the total fitness distribution of an indi-
vidual will be a function of both the distribution of
expected fitness values, given its phenotype, and the dis-
tribution of variation around this expected value due to
demographic stochasticity. In such a case, we can write the

fitness of individual i as wi =  + si, where  is the

expected fitness in the current environment of individuals
with the same phenotype as i, and si is the deviation of

individual i from this expectation due to pure demo-
graphic stochasticity.

If we denote the frequency of phenotype ϕ in the popula-
tion as fϕ, then in a very large population, the expected
change in mean phenotype is approximated (to the first
three terms) by:

Equations 4 and 5 have the same form. The difference is
that in Equation 4 we are assuming that the fitness of each
individual is independent of the fitness of every other
individual, whereas in Equation 5 we assume that the fit-
ness values of all individuals with the same phenotype are
correlated, since they are all influenced in the same way by
the environment. For intermediate sized populations
experiencing a varying environment, both var(s) and

var( ) will enter the calculations (see Methods).

Discussion
Equations 1 and 2 apply to any evolving system. These
equations are based only on the assumption of a popula-
tion of things that leave descendants and have measurable
phenotypes, and they encompasses all factors, both deter-
ministic and stochastic, that contribute to directional evo-
lutionary change in a closed population. If we specify the
exact population size in the next generation (fixing the

value of ), and fix the value of δ for each individual,
then Equation 2 becomes equivalent to the Price equation

with fitness simply replaced by expected fitness, [24].
For simplicity, I will often refer to ancestors as "parents"
and descendants as "offspring", with the understanding
that the same equation applies regardless of the time
interval over which we look. Furthermore, the ancestors
and descendants need not be the same type of biological
unit. For sexually reproducing organisms, we can treat a
mated pair as the ancestor and an individual offspring as
a descendant, or an individual as the ancestor and a suc-
cessful gamete as the descendant. Descendants may also
include the ancestors at a later time, allowing for overlap-
ping generations.

The phenotype, ϕ, may be any measurable trait. This fact
allows us to derive much of classical evolutionary theory
from Equation 2 simply by choosing the appropriate phe-
notype. For example, we can derive standard population
genetic models for change in frequency of an allele, A, by

defining the phenotype (ϕ) of an individual as the fre-

quency of A within that individual's genotype (ϕ is there-

fore 0, 0.5, or 1). Defining ϕ in this way,  is equal to the

frequency of the A allele in the population [13,25], so
Equation 2 gives the change in allele frequency.

Many (though not all) of the evolutionary processes that
I discuss in the following sections appear because  is a
random variable. This is a biologically interesting case
because demographic stochasticity – stochastic fluctua-
tions in natural populations due to variation in individual
reproduction – is ubiquitous in nature [23]. In most of the
following discussion, I will focus on the special case in
which the fitness values of different individuals within the
same generation are independent. It is important to note
that this does not preclude density dependent population
regulation. For example, if all individuals in a population
happen to produce more offspring than needed for
replacement, then the population size will increase. In the
next generation, though, the resulting increased competi-
tion may reduce the fitness of all descendants, preventing
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(or reducing the probability of) further population
increase. If this reduced fitness of descendants is manifest
as reduced viability, then this is equivalent to the different
"culling" processes discussed by Gillespie [26]. In the case
of "exact culling" [9], the mean phenotype is unchanged
by the culling process, so the changes in mean phenotype
discussed here will occur even though the population
does not increase over multiple generations.

It is of course possible for density dependence to involve
a direct influence of one individual's reproduction on that
of another. One example is the case of cavity nesting birds
where the number of suitable cavities is fixed. In this case,
the act of one pair locating a cavity directly reduces the
probability that another pair will do so. In such cases,
there will be a negative covariance between the fitness val-
ues of different individuals (or pairs). This negative covar-

iance will appear in the values of the μi+1(w ) terms in

Equation 3. Specifically, making no assumptions about
independence of fitness values,

. The term

 is the average covariance between individ-

ual i's fitness and that of other members of the popula-
tion.

The first term on the righthand side of Equation 2, cov(ϕ,

), captures the contribution of differential survival and
reproduction to directional evolutionary change. Though
this is traditionally called the "selection differential" [13],
the expansion of this term (Equations 4 and 5) shows that
stochastic processes can contribute substantially to direc-
tional evolution, both in small populations and in popu-
lations subjected to random environmental variation. In
this discussion, I will define "selection" as differential
expected production of descendants that is causally deter-
mined by differences in phenotype. Under this definition,

some of the processes that contribute to cov(ϕ, ) are not
kinds of selection. I will nonetheless continue to use
"selection differential", designated S, because it is the
standard term.

Equations 4 and 5 show the expected selection differential
for cases corresponding to different sources of fitness var-
iation. The difference between these equations makes
sense when we note that, in Equation 5, all individuals
with the same phenotypic value have the same fitness in
any particular generation. What matters is thus the fre-

quencies of the different phenotypic values (fϕ). This is

also true in Equation 4. Here, however, each individual's
fitness is independent of that of all other individuals, so
each individual is effectively its own "type", with fre-

quency . It thus makes sense that the powers of  in

Equation 4 are replaced, in Equation 5 by powers of fϕ.

The expected selection differential is amplified by random 
variation in fitness

The first term on the righthand side of Equation 4, cov(ϕ,

)/H( ), shows that the magnitude of the expected
selection differential increases with increasing variation in

. This follows from the fact that the term cov(ϕ, )
which captures the effects of selection, is divided by the
harmonic mean of , H( ). Since the harmonic mean is

disproportionately influenced by small values, H( ) will

tend to decrease as the variation in  increases, as is
expected in small populations or in a variable environ-
ment. Equation 17 in the Methods section shows how 1/
H( ) depends on variation in .

To understand the biology behind this phenomenon,
note that the selection differential is inversely propor-
tional to mean population fitness ( ); it is thus dispro-

portionately influenced by small values of  (Fig. 1A).

For a population of size N,  is essentially the mean of a
sample of N points drawn from the overall fitness distri-
bution. In a very large population (i.e. a very large sam-
ple), the value of  will nearly always be very close to the

expected value, . By contrast, in a small population,

there is a significant chance that  will be much larger or

much smaller than . Since the small values have a dis-
proportionate effect on the selection differential, the
expected selection differential increases as population size
decreases. The same thing occurs even in large popula-
tions if  is uncertain due to random environmental fluc-
tuations. In order to test this conclusion, I performed
monte-carlo simulations, following a population over
one generation, using the fitness distributions in Fig. 1C.

The mean change in , averaged over 100,000 runs, is

shown in Fig. 1D. Note that in this case, the expected
change due to selection in a very small population can be
substantially larger than would be expected from classical
theory. In this example, the environment is held constant,
so the amplification of the selection differential decays
with increasing population size. If the variation in  is a
consequence of environmental variation that differen-
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tially affects different phenotypes, then we will see the
same amplification in large populations as well. The
"Worked example" section in Methods explains how to
calculate 1/H( ) from the individual fitness distribu-
tions.

Though this phenomenon is not generally recognized in
the literature, a special case can actually be derived from

equations in Gillespie's 1977 paper [27] and in Proulx [9].

(In Equation 7 in [27], set var(X) = var(Y) and ,
using the notation of that paper. I am indebted to Steve
Proulx for pointing this out). In this special case, the
expected change increases with the variance in individual
fitness values. In general, Equations 3 and 17 show that all
of the moments of the individual fitness distributions
contribute to 1/H( ), and Figure 5 shows that consider-
ing only the variance can easily underestimate the degree
to which the effects of selection are amplified.

This phenomenon at first seems at odds with the theoret-
ical [28] and experimental [29] studies that have sug-
gested that the average long term response to selection
increases with increasing N, resulting from the increased
availability of genetic variation in larger populations [29].
The reason that this effect has been missed is that theoret-
ical studies have treated  as a fixed parameter (or, equiv-
alently, they hold population size fixed, as in Robertson's
theory of selection limits [28]). Holding  fixed means

that , which is independent of population size

(compare with Equation 14, in which  is not fixed).
Experimental studies have effectively done the same
thing, by choosing the same number of individuals in
each round of selection and by using truncation selection
[29], minimizing the variation in individual fitness.
Recent theoretical and empirical studies concerning the
adaptive potential of small populations [30,31] have con-
sidered the effects of population size only on genetic var-
iation, assuming that the selection differential is
independent of population size. The loss of heritable var-
iation should indeed cause the long term response to
selection to be reduced in small populations. Over the
short term, though, the amplification described here
should facilitate a rapid adaptive response over the first
few generations. Such an amplified selection response
could contribute to population differentiation in periph-
eral isolates.

The even-moment effect: Populations are pulled towards 
phenotypes having minimum symmetrical variation in 
fitness
Symmetrical spread about the mean of a distribution is
measured by the even central moments. In the summa-
tion on the right-hand side of Equation 3, the terms con-
taining even moments are all negative (since, if i + 1 is
even, i is odd so (-1)i = -1). The covariance between phe-
notype and these terms thus corresponds to the popula-
tion being pulled towards phenotypes with minimal
symmetrical variation. This is apparent in Equations 4 and
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Amplification of expected selection differentials in small pop-ulationsFigure 1
Amplification of expected selection differentials in 
small populations. Fitness distributions for two pheno-
types; the size of the dot indicates the probability of that fit-
ness value. In (A) and (B), Individuals with phenotypic value 0 
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those with phenotype 1 leave either 1 or 2 descendants with 
equal probability. In (A), there is one individual with each 
phenotype. The lines show the four possible (and equally 
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= 1 will always be 3 times greater than the total contribution 

of individuals with ϕ = 0, yielding , which is 

the prediction of classical theory. (C): Another example of 
fitness distributions leading to directional selection. Numbers 
adjacent to dots are probabilities. (D): Results of monte-
carlo simulations using the fitness distributions in (C). The 
dashed line is the value for N = ∞.
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5, in which the term containing the variance (the second
moment) is negative.

This is illustrated in Figs. 2A and 2B. The even-moment
effect results from the fact that the fitness of individuals
(or phenotypes) with the most variable fitness covary
most strongly with [32]. When those individuals with
high variation in fitness leave many descendants, the

value of  also tends to be high, reducing the magnitude
of change. Conversely, when those with high variation
leave few descendants (and therefore decrease in fre-
quency),  tends to be low, increasing the magnitude of
the decline (Fig. 2A). In a constant environment, this
effect drops off with increasing population size, since the
even moments of  are all divided by increasing powers
of 1/N. As with the amplification of selection differentials
discussed above, though, the even-moment effect remains
strong in large populations when variation in individual
fitness is due largely to environmental variation.

The tendency of populations to be pulled towards pheno-
types with low variance in fitness has been noted by many
authors [5,6,8,9,32-34]. Most of these studies used some
form of the diffusion approximation, and thus assumed
that higher moments could be ignored (though Proulx [9]
presents an equation that can be expanded to yield the
effects of higher moments, and notes that these need to be
considered when the variation in fitness for each individ-
ual is not small). Equation 3 shows that, in fact, all even
moments contribute to this phenomenon. To illustrate
this, Figure 2C shows a case in which the expected direc-
tion of evolution is towards the phenotype with the
higher variance in fitness. The reason is that the fourth
and higher even moments of the fitness distribution asso-
ciated with the phenotype with higher variance are much
smaller than those associated with the other phenotype. If
the variation in fitness is due to pure demographic sto-
chasticity alone, then in this example variance in fitness is
expected to increase only in very small populations, since
the fourth moment term will be divided by N3 and so will
drop off quickly as N increases. On the other hand, if var-
iation in fitness is primarily a result of environmental var-
iation, then the fourth moment term will be multiplied by

 rather than , so the higher moments may have an

influence even in large populations, especially when the
different phenotypes have similar frequencies.

The even-moment effect has sometimes been associated
with the idea that selection acts on the geometric mean of
individuals' fitness distributions. [35,36]. While geomet-
ric mean fitness is appropriate when fitness varies in a
deterministic and predictable manner over time, it is not
relevant in the case discussed here, where fitness is a ran-
dom variable within a generation [24,27,32]. To illustrate
this, Fig. 2D shows a case in which the strategy with the
lowest geometric mean fitness is the one that is expected
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of a case in which, for N = 2, the expected direction of evolu-
tion is towards the phenotype with lower geometric mean 
fitness.
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to increase in frequency. Instead, the direction of evolu-

tion is determined by . Specifically, when  > 1, the
descendants of individual i are expected to comprise an

increasing proportion of the population. Though 
resembles traditional "relative fitness", the fact that  is

a random variable that is correlated with w means that 
does not scale like relative fitness (which preserves the rel-
ative order of the fitness values of different individuals

[37]). This is why it is possible to have  even if

 > , in which case the trait that is expected to

increase in frequency is also the one that causes individu-
als possessing it to have the lowest expected reproductive
output (Fig. 2A). The "expected relative fitness" discussed

by Lande [32] is a special case of  (See Methods). Note
that the term "relative fitness" is used in different ways in
the literature. In some cases, relative fitness refers to the
fitness of an individual (or a phenotype) divided by mean

population fitness (i.e. ) [10,24]. In other cases, rela-

tive fitness refers to the fitness of one individual or pheno-
type divided by the fitness of another individual or
phenotype (this is the interpretation that suggests the
importance of geometric mean fitness [38,39]). The exact
reason that these two interpretations yield different results
will be discussed elsewhere. For now, Fig. 2D is sufficient
to show that geometric mean fitness does not necessarily
identify which strategy will increase. Though the even
moment effect is sometimes referred to as selection acting
on variance, I argue below that the even-moment effect
should not be treated as a kind of selection.

Previous discussions of the even-moment effect have
treated it as a function only of population size. However,

Equation 4 shows that this effect scales as 1/( ); it is

thus amplified if  < 1, meaning that the population is
expected to decline in size. The pull towards phenotypes
with minimum variance in fitness can thus be important
even in larger populations if they are rapidly declining.
The degree to which declining population size amplifies
the even-moment effect will depend on how the variance
(and higher even moments) scales with the mean. In the
extreme case in which the variance in fitness is independ-
ent of the mean, declining populations will be strongly
influenced by the even-moment effect. As an example,
consider a population of 10,000 individuals that is declin-
ing such that the expected number of individuals in the
next time interval is 1000. In this case, The strength of the

force pulling the population towards phenotypes with
minimum variance in fitness is the same as it would be in
a stable population with the same variances in fitness and

size N = 100. (since, if N = 10,000 and  = 0.1, N  =
100.) If the fitness distributions are approximately Pois-
son, then the variance will scale linearly with the mean

and so dividing by  will still amplify the even-moment
effect, though to a lesser degree.

The fact that declining populations may be particularly
prone to the even-moment effect could have conse-
quences for the probability of extinction. Stochastic
extinction – resulting from chance fluctuations in popula-
tion growth rate – is a substantial threat to very small pop-
ulations [40,41]. If a declining population shifts towards
phenotypes that have minimum variance in fitness, then
this could reduce the chance of stochastic extinction when
the population becomes very small. Further study will be
necessary to determine if this phenomenon can signifi-
cantly influence extinction probabilities.

The odd-moment effect: Populations are pulled towards 
phenotypes with maximum positive asymmetry of fitness

This follows from the fact that the odd moment terms on
the right-hand side of Equation 3, which measure asym-
metry of the fitness distribution, are all positive. Real fit-
ness distributions will almost always be asymmetrical.
This follows from the fact that individual fitness can not
be less than zero but could possibly be very large, and that

 will usually be close to 1.

In the case of pure demographic stochasticity, the odd-
moment effect will be noticeable only in very small pop-
ulations, since the third moment term in Equation 3 is
divided by N2, the fifth moment term by N4, and so on. As
with the even-moment effect discussed above, the odd-
moment effect may be significant even in large popula-
tions when fitness variation is due to environmental fluc-
tuations. For example, a phenotype that normally has
moderate fitness but does much better than others during
rare good years may show a long term increase that is
greater than would be expected from the mean and vari-
ance of its fitness distribution.

Note that the asymmetry that we are considering here is in
the distribution of possible fitness values of an individual
(e.g. the distribution associated with ϕ = 1 in Figure 3A).
This is quite different from the "asymmetric fitness func-
tion" often discussed in the evolutionary genetics litera-
ture [25,42], which describes a case in which the plot of
fitness as a function of phenotype is asymmetrical (i.e. fit-
ness drops off more quickly in one direction than in the
other when we move away from an optimum phenotype).
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It is also different from asymmetry in the distribution of
breeding values, which has long been known to influence
evolution [43], as well as the asymmetry in the expected
change under selection that appears in some diffusion
models [44]. Rather, the odd-moment effect is a direc-
tional evolutionary force that appears when different indi-
viduals have different degrees of asymmetry in their
fitness distributions.

Associations between offspring number and offspring 
phenotype

Equation 2 contains two terms representing covariance
between the degree to which offspring differ from their

parents (δ) and contribution to population growth ( ).

The first of these, cov( ), captures the degree to which

the individuals that have the highest expected contribu-
tion to population growth are also those that produce off-
spring that deviate most from their parents. In this term,
the covariance is over the entire population, and may
result either from a direct causal influence of fitness on
offspring phenotype, or any fortuitous association in

which the phenotype that confers the highest value of 
happens to also be associated with individuals who's off-
spring differ most (or least) from their parents.

By contrast, the term covi(δ, Ω) measures the covariance
within an individual between w and δ, meaning that if
that individual produces more offspring than expected,
then its offspring's phenotypes are expected to deviate
more (or less) from its own (In Equations 1 and 2, this
property of individuals is averaged over the entire popula-
tion). This term will be nonzero when there is a direct
connection between how many offspring an individual

produces and the phenotypes of those offspring. One
example of this would be a case in which, for any given
individual, producing more offspring directly causes
those offspring to be smaller. Such "offspring-size/clutch-
size tradeoffs" [45] are expected in cases in which parents
provision their offspring with limited resources, so pro-
ducing more offspring necessitates giving fewer resources
to each one. This term would also be nonzero in cases in
which the offspring of a particular individual interact with
one another in such a way that their development is influ-
enced by how many siblings they have (this will include
in-utero interactions).

Relation between selection and directional stochastic 
evolution
Definition of selection

As mentioned above, I am defining selection as differen-
tial expected production of descendants that is causally
influenced by variation in phenotype. Under this defini-

tion, selection is captured by the term cov(ϕ, ), assum-

ing that the association is due to causal impacts of ϕ on

. Some researchers (and reviewers) define selection dif-
ferently, as any process involving differential survival or
reproduction that leads to a predictable change in allele
frequency [33]. This definition runs into problems with
processes like balancing selection, that do not lead to any
directional change.

Furthermore, defining selection as everything that leads to
directional change effectively precludes it from being a
specific evolutionary mechanism, since it is defined as the
set of all mechanisms that produce a particular result.
Defining selection in this way makes it effectively synony-
mous with directional evolution.

By contrast, if we define selection as differential produc-
tion of descendants (or differential survival and reproduc-
tion) that is causally determined by variation in
phenotype, then we have identified a particular class of
mechanisms that will produce predictably different conse-
quences under different conditions. Balancing and stabi-
lizing selection are easily accommodated by this
definition.

These definitional issues have no bearing on the evolu-
tionary importance of the processes discussed above.
Readers who prefer to define selection as anything that
produces directional change may read the following sec-
tion as a discussion of different components of selection.

Directional stochastic effects

The even- and odd-moment effects discussed above result
from the same random variation in individual reproduc-
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tion that causes drift. To understand the relationship
between directional stochastic evolution, drift, and selec-
tion, it is important to distinguish between two different
factors that can produce directional change: 1) the relative
probabilities of the mean phenotype increasing or
decreasing, and 2) the expected magnitude of change in
each direction (Fig. 4). In the case of pure drift, these fac-
tors exactly cancel one another out – a higher probability
of moving in one direction is exactly balanced by a larger
step size in the other direction – leading to a net expected
change of zero (in some special cases, such as two alleles
at equal frequency, both the probability and step size are
the same in both directions). Drift is thus non-directional

(E(Δ ) = 0), but has a magnitude measured by the vari-

ance in Δ . Drift can occur only if there is variation in the

fitness distributions of individuals. As population size
increases, the magnitude of drift decreases, approaching

zero as N → ∞. (In Fig. 4, all fitness variation results from
pure demographic stochasticity. If fitness variation results
from environmental variation, then there can be direc-
tional change even in cases like that in Fig. 4A.)

Directional stochastic effects behave like drift insomuch
as they require that individuals have distributions of pos-
sible fitness values. However, the probability of moving in
each direction and the expected step size in each direction
do not cancel one another out. In a constant environ-
ment, the expected magnitude of change declines towards
zero as N → ∞, as in the case of drift.

In the case of selection, there is both a higher probability
of the mean phenotype changing in one direction and a
larger expected step size in that direction. Unlike drift and
directional stochastic evolution, selection can take place
even if there is no variation in any of the individual fitness
distributions. As population size increases, the expected
change due to selection decreases somewhat, but does not
go to zero; instead asymptotically approaching the value

. Furthermore, the probability of the population

changing by this amount in the direction specified by
selection approaches 1 as population size approaches
infinity.

Selection also differs from the directional stochastic terms
in that it involves covariance between phenotype and the
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Schematic illustration of different evolutionary processesFigure 4
Schematic illustration of different evolutionary processes. Examples of fitness distributions corresponding to different 
processes. The variation in fitness for each phenotype is due to pure demographic stochasticity. The dashed gray lines show 
the regression of expected fitness ( ) on phenotype. Below each fitness distribution are diagrams illustrating both the proba-
bility of the trait increasing or decreasing (indicated by the thickness of each arrow) and the magnitude of change in each direc-
tion (indicated by the length of each arrow).
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ŵ

Page 10 of 16
(page number not for citation purposes)



BMC Evolutionary Biology 2008, 8:262 http://www.biomedcentral.com/1471-2148/8/262
first raw (not central) moment of the fitness distribution.
By contrast, all of the directional stochastic terms involve
central moments of w. Also, the denominator in the first
(selection) term is the harmonic mean of , (H( )),
whereas all subsequent terms involve dividing by powers

of the expected value of , ( ).

Consequences for adaptive landscape models
The concept a surface describing fitness as a function of a
set of phenotypic traits (one version of the "adaptive land-
scape"), has a long history in evolutionary theory [46,47],
and variants of this idea have recently been presented as
unifying concepts in evolutionary biology [48,49]. This is
indeed an important kind of abstraction that both hones
our intuition about evolution and allows us to visualize
an important set of formal evolutionary models. The
results presented above, though, show that thinking of
evolution in terms of an adaptive landscape can also lead
us to miss important evolutionary processes.

By its nature, an adaptive landscape treats  as a number,
rather than as a random variable (which has a distribu-
tion, rather than a single value). Because of this, both the
amplification of selection differentials and all directional
stochastic evolutionary processes are eliminated from
adaptive landscape models. Even in a stable environment
with frequency independent selection, directional sto-
chastic effects could pull a population downhill on an
adaptive landscape.

One possible way around this would be to to consider a

surface of expected relative fitness, essentially plotting ,

rather than  or , as a function of phenotype [10,32].

However, Equation 3 shows that  is itself a function of
population size, meaning that such a landscape would
change shape as N changes even if selection is not density
dependent in the classical sense (meaning that the fitness
distribution of each individual is independent of N).

The more appropriate visual image would be an adaptive
fog, with variable density and thickness corresponding to
different fitness distributions for different phenotypes.
The dynamics of evolution through such a fog are
described by Equations 1 and 2, and are determined not
only by the slope of expected mean fitness ( ) but also
by variations in the thickness of the fog and by population
size (since this will influence H( )). Unfortunately, this
image lacks the visual simplicity of the adaptive land-
scape, which remains a very useful concept but should be

recognized as an approximation based on the assumption
that fitness values are fixed.

Relation between Equation 1 and the Price equation

I refer to Equation 1 (and 2, which is equivalent) as a sto-
chastic version of the Price equation because it is derived
in an analogous way. Equations 1 and 2 are not, however,
equivalent to the Price equation and can not be derived

directly from it (specifically, the term  can not

be derived simply by treating w and δ as random variables
in the Price equation). The reason for this is that the Price
equation is derived by treating fitness and offspring phe-
notype as parameters, having numerical values, rather
than as random variables, which have distributions. This
is why the Price equation is exact only in hindsight, when
we know how many descendants each individual had and
what their phenotypes are. (Graffen [24] derived an equa-

tion equivalent to 2 under the assumption that δ = 0).

We can, of course, apply the Price equation to looking for-
ward in time if we are willing to assume that expected fit-

ness ( ) can be used in place of the actual number of
descendants that an individual will leave, and to further
assume that we can predict the phenotypes of offspring.
(Price himself appears to make this assumption in his
example of students with different IQs taking a course
[12]). However, the preceding discussion shows that con-

sidering only expected fitness (instead of ) leads us to
miss an entire class of evolutionary mechanisms.

How, then, is it possible for both Equations 1 and the
Price equation to be exactly true given that they are differ-
ent? Any evolving system must satisfy both Equation 1
and the Price equation. However, if we focus on change
over a particular generation, these equations are appropri-
ate at different times. Prior to reproduction, when fitness
and offspring phenotype are not yet exactly determined,
Equations 1 and 2 are exact descriptors of the expected
change over the coming generation. After reproduction
has taken place, the Price equation will, retrospectively, be
an exact description of what just transpired.

The limitations of general theories in biology
Equations 1 and 2 and Price's equation are general in the
sense that they apply exactly to any evolving system. Note,
though, that this does not mean that they answer all of
our questions about evolution. Two objections that are
sometimes raised about the Price equation (and which
apply to Equations 1 and 2 as well) are that it is not
dynamically sufficient [16], and that it does not directly
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ŵ ŵ

Ω

w

w

cov ( , )i δ Ω

ŵ
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address some important evolutionary questions, such as
the probability of fixation of an allele.

As discussed in the Methods section (see "Worked exam-
ple"), whether or not Equation 1 can be iterated into the
future (i.e. is dynamically sufficient) is determined by the
kinds of phenotypes that we are studying and what
assumptions we make about them (see also [50]). In the
case of a population containing two distinct phenotypes
(such as a one locus haploid model with two alleles), the
entire distribution is uniquely defined by the mean. In
such a case, we can iterate Equation 1 through time with
no further simplifying assumptions. If there are more than
two phenotypes (such as in diploid models where geno-

types take the role of ϕ), then some further assumption,
such as Hardy-Weinberg equilibrium, is necessary to
achieve dynamic sufficiency. In the case of a continuous
phenotypic trait, a simple way to make the model dynam-
ically sufficient is to assume that the trait is normally dis-
tributed, meaning that we need only calculate the change
in the mean and variance (change in variance is obtained

from Equations 1 or 2 by substituting (ϕ - )2 for ϕ
[13,51]).

These are exactly the same assumptions that make models
in population and quantitative genetics dynamically suffi-
cient. Thus, the general equations discussed here are no
less dynamically sufficient than any of the standard mod-
els (since these are special cases). The general equations
simply apply to a much broader set of cases, some of
which do not allow for a single, compact, dynamically suf-
ficient equation [52].

Another criticism is that these equations describe only the
change over a generation, which does not, by itself,
answer some evolutionary questions. However, the
change in mean phenotype (of which a special case is
change in the frequency of an allele or strategy) is one of
the most basic pieces of formal evolutionary theory. In

some fields, such as quantitative genetics, change in  is

the primary quantity of interest. In other cases, such as
evolutionary game theory, it is a key factor in evaluating
the quantity of interest (evolutionary stability). In popu-
lation genetics, change over a generation is sometimes the
quantity of interest, and even when it is not (such as when
the goal is to calculate fixation probabilities), change in
allele frequency is an essential part of the answer (e.g. it
defines M (p) in a diffusion equation). Though the general
models discussed here do not answer all of our questions,
their value lies in their ability to generalize and unify spe-

cial case models, and to give us insights into the mechan-
ics of evolution that can be obscured by the assumptions
necessary to predict the long term behavior of particular
model systems.

Conclusion
The interplay of deterministic and stochastic processes is
central to much of evolutionary theory. Unfortunately,
our most general mathematical description of evolution,
the Price equation, is not well suited to the study of sto-
chasticity. This is because the Price equation describes
evolution exactly only after change has taken place, mean-
ing that it contains no stochastic terms (since all parame-
ters are known exactly in hindsight). A general stochastic
evolution equation, derived in a similar way to the Price
equation but different in that fitness and offspring pheno-
type are treated as random variables, reveals a number of
general rules about the interaction of deterministic and
stochastic processes in evolution.

One result is that variation in mean population fitness,
resulting either from small population size or environ-
mental fluctuations, tends to amplify the effects of selec-
tion. This suggests that the adaptive potential of small
populations may be greater than has been assumed.
Another result is that the well known tendency for popu-
lations to be pulled towards phenotypes with minimum
variance in fitness turns out to be a special case of a gen-
eral trend to minimize symmetric variation in fitness. This
process can actually cause variance in fitness to increase,
so long as higher even moments decrease. This even-
moment effect is matched by an odd-moment effect,
which tends to pull populations towards phenotypes with
maximum positive asymmetry in fitness.

Both the even- and odd-moment effects can drive a popu-
lation to evolve towards phenotypes with lower expected
fitness. This is consistent with (and is a generalization of)
previous results showing that differential variance in fit-
ness can drive directional evolution. It is not, however,
consistent with the idea that geometric mean fitness deter-
mines the direction of evolution. Instead, in cases of per-
fect heritability, the direction of evolution is determined
by the expected value of individual fitness divided by

mean population fitness ( ), conditional on the popula-

tion not going extinct. This confirms the importance of
"expected relative fitness" [10,32], when defined properly,
as a determining factor in evolutionary dynamics.

Finally, the general equations presented here contain a
term capturing the direct influence of parental fitness on
offspring phenotype. This term, which has no analog in
the Price equation, may be important in the many cases in
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which parents provision their offspring or in which indi-
vidual development is influenced by interactions with sib-
lings. This also illustrates the value of treating offspring
phenotype, like fitness, as a random variable.

Methods
Derivation of Equation 1

In the following derivations, it is essential to distinguish
between: 1) the expected value of a random variable and
2) the average value of that variable in a population. For
example: before reproduction takes place, individual fit-
ness (w) is a random variable, meaning that each individ-
ual has a distribution of possible fitness values. The
expected value of this distribution, for a particular indi-

vidual, is . It is critical to distinguish between this
expected value and the average value of w in the popula-
tion, denoted , which is an important term in its own

right (it measures per capita population growth rate). 
is itself a random variable, since prior to reproduction we
can not know exactly how the population will change in

size. We thus have  as the expected value of average fit-
ness. An important identity is E(Ave(x)) = Ave(E(x)) or

 (this is easily shown by noting that

 ).

Define  as the mean phenotype in the population after

one time interval, and  as the phenotype of the jth

descendant of individual i in the current population.

Then, conditional on :

If we denote the average phenotype of descendants of

individual i as simply , then  and

, and Equation 6 becomes:

Using the fact that E(Ave(x)) = Ave(E(x)) and noting that
the rule E(xy) = cov(x, y) + E(x)E(y) applies as well to
Ave(), we can expand Equation 7 to yield:

Defining , noting that Ave[E(w/ )] =

E[Ave(w/ )] = 1, and using the fact that

 , we get:

Defining  and noting that  = ϕi + δi

yields Equation 1.

Derivation of Equation 3 and 4

For a random variable, x, denote the difference between x
and its expected value as x*; so x = E(x) + x*, E(x*) = 0, and
E[(x*)n] is the nth central moment of x (this is just the delta

method). We can now write  as:

The Taylor series expansion of Equation 10 does converge
(so long as we calculate all probabilities conditional on

 ≠ 0), but it contains a rather non intuitive mix of terms

involving both w and , producing a mix of higher
moments that is difficult to interpret biologically. We can
make things clearer by noting that Equation 10 involves
the sum of two different series. One of these contains
terms involving the mixed moments of w and , while

the other contains only moments of . This second series
can be pulled out by noting that it is the reciprocal of the
harmonic mean of :

Combining Equations 10 and 11 yields:
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Expanding  in a Taylor series and taking the

expected value yields Equation 3:

Where μi+1(wk ) is the (i + 1)st mixed central moment of

wk and . If we assume that H( ) =  and consider

only the first term in the summation, then Equation 13

yields Lande's expected relative fitness [32] (since μ2(wk

) = cov(wk, )). Proulx [9,34,53] has presented a series

that groups terms differently than does Equation 13,
grouping them based on their order in an approximation
of small variance in offspring numbers.

If the actual number of descendants of different individu-
als are independent – meaning that the number of
descendants of individual k is independent of whether
individual j leaves more or fewer descendants than
expected – then cov(wk, wj ≠ k) = 0, so

  and . We

thus have:

Substituting Equation 14 into cov(ϕ, ) yields Equation
4.

Derivation of Equation 5

Consider a case in which individuals with certain pheno-
types are consistently influenced the same way by envi-
ronmental variation across generations (e.g. wet and dry
years occur at random, and wet years influence the fitness
of large individuals differently from the way that they
influence small individuals). In such a case, we can write

individual fitness as wi =  + si, where  is the expected

fitness, in the current environment, of individuals with
the same phenotype as individual i, and si is the deviation

from this expected fitness due to pure demographic sto-
chasticity. In this case,

If the effects of pure demographic stochasticity are inde-
pendent of the environment, and N is large, then we need

only consider the term  var( ).

Under the same assumptions, the third moment effect is
captured by:

Substituting  and

 into Equation 3 yields Equation 5.

Worked Example

Figure 5 shows a case in which directional selection is act-
ing simultaneously with the even- and odd-moment
effects. In order to analytically solve for the selection dif-
ferential as a function of population size, we need to cal-

culate . The most difficult term in Equation 3 to
calculate is the first one, containing the reciprocal of the
harmonic mean of . For very small populations, we can

sometimes calculate 1/H( ) directly. For larger popula-
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Approximating the curve of  using momentsFigure 5

Approximating the curve of using moments. A fit-
ness distribution (A) and the corresponding expected change 
in mean phenotype for different population sizes (B). The 
solid black curve in (B) is the curve resulting from 100,000 
monte-carlo runs per value of N. The dashed blue line in (B) 
shows the result of using Equation 17 and considering only 
the first two terms in the expansion (up to and including 
var( )). The dashed red line shows the result of using the 
first four terms of the expansion (up to and including μ4( )).
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tions, though, we need to use a series approximation.
Expanding the right-hand side of Equation 11 yields:

Next, we need to calculate the moments of  from the 
moments of the fitness distributions associated with each 
phenotype (which is what we are starting out with). If the 
actual fitness of each individual is independent of that of 
others in the same generation, then for the case in which 

there are P distinct phenotypes and ni individuals with 

phenotype i, the second, third, and fourth central 
moments of  are given by:

Equation 20 is derived using the fact that  is a sum of
different values, and assuming that the fitness values of
different individuals are independent. The equations for
the higher moments get large, but have a straightforward
form. The number of terms in the series in Equation 17
that are needed to get a good approximation is deter-
mined by the individual fitness distributions and popula-
tion size. Figure 5 shows an example in which using only
the first two terms yields an underestimate for small pop-
ulations, but using the first four terms yields a good fit at
all population sizes. In the example in Figure 5, there are

two phenotypes, scored as 0 and 1, with  = 1,  = 2,

var(w0) = 2, var(w1) = 1.5, μ3(w0) = 2, μ3(w1) = 1.5, μ4(w0)

= 6, μ4(w1) = 4.5.

Next, we need to specify the current frequencies of each
phenotype and solve for the covariance terms. For the case
of only two phenotypes, assigned values 0 and 1 and hav-
ing frequencies f0 and f1, the general rule is:

cov(ϕ, μi(w)) = f0f1 [μi(w1) - μi(w0)] (21)

For this example, I set the frequencies to be equal, so that

n0 = n1 = N/2. For this case, we have  = 1.5, cov(ϕ, ) =

0.25, cov(ϕ, var(w)) = -0.125, cov(ϕ, μ3(w)) = -0.125,

cov(ϕ, μ4(w)) = -0.375, The dashed curves in the figure

were derived by using the moments of the fitness distribu-
tions for each phenotype to approximate 1/H( ) (using
Equations 18 – 20 and Equation 17) and to calculate the
covariance terms using Equation 21.

Note that, for the case of two phenotypes, we can calculate
all of the necessary terms using only the fitness distribu-
tions for each phenotype and the mean phenotype (from
which we can calculate the phenotypic frequencies if there
are only two). We can thus iterate this process forward in
time. If there are more than two phenotypes, then itera-
tion is not possible unless we make further assumptions
(such as assuming Hardy-Weinberg frequencies for geno-
types or a normal distribution with fixed variance for a
continuous trait), that allow us to specify the entire distri-
bution given only the mean.

It is sometimes necessary to use moments higher than

μ4( ) for very small populations with highly asymmetri-

cal fitness distributions. As Equations 18 – 20 show,
though, the higher moments of  contain increasing

powers of . Using only the first few terms on the right-

hand side of Equation 17 thus tends to give a very good
approximation for populations larger than a few dozen
individuals.

Monte-carlo simulations

The monte-carlo simulations used asexual individuals

with non overlapping generations. The value of Δ  was

calculated by looking over a single generation starting
with N individuals, evenly divided between the two phe-

notypic values (so initially  = 0.5). Each individual's

contribution to the next generation is drawn at random
from its fitness distribution and the new mean phenotype
is calculated. The curves presented are the averages of
100,000 runs for each population size.
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