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Abstract
Background: Most human endogenous retroviruses (HERVs) invaded our genome at least 25
million years ago. The majority of the viral genes are degenerated, since no selection preserves
them within the genome. However, a few intact and very old HERV genes exist, and likely are
beneficial for the host. We here address evolutionary aspects of two HERV-V envelope genes,
ENVV1 and ENVV2, located in tandem and containing a long open reading frame.

Results: The ENVV2 gene is preserved with an intact reading frame during simian evolution, but
none of the ENVV genes are found in the prosimian species tested. While we observe many
transposon insertions in the gag and pol regions of the ERV-V2 provirus, the ENVV2 genes have
escaped transposon crossfire in all species tested. Additional analysis of nucleotide substitutions
provides further strong evidence of purifying selection on the ENVV2 gene during primate evolution.
The other copy, ENVV1, seems to be involved in gene conversion of the major part of the envelope.
Furthermore, ENVV1 and ENVV2 show placenta-specific expression in human and a baboon species.

Conclusion: Our analyses show that ERV-V entered our genome after the split between simian
and prosimian primates. Subsequent purifying selection and gene conversion have preserved two
copies of the ENVV envelope gene in most species. This is the first case of gene conversion involving
long open reading frames in HERVs. Together with the placenta-specific expression of the human
and baboon ENVV1 and ENVV2 envelope genes, these data provide strong evidence of a beneficial
role for the host.

Background
Upon retrovirus infection of somatic cells, the integrated
provirus will not be passed on to the host progeny as a
part of the genome. However, following infection of the
germ line, the integrated provirus will be transmitted to
the offspring. Consequently, progeny developed from

infected germ cells will carry the provirus as part of their
genome, and it will be transmitted vertically through gen-
erations as an endogenous retrovirus (ERV). Each inde-
pendent germ line infection event defines a novel ERV
family, which may increase its copy number due to intra-
cellular retrotransposition [1] or extracellularly via re-
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infection [2], and in the end each ERV infection results in
a few to several hundred genomic copies [3]. Most HERVs
invaded our genome at least 25 million years ago (mya)
[4,5], after separation of Old World and New World mon-
keys around 43 mya [6]. ERVs that entered the human
genome before the split of human (Homo sapiens) and
chimpanzee (Pan troglodytes) are characterized as ancient
HERVs. However, some HERVs, characterized as modern
HERVs, are human-specific and have entered the human
genome after the Homo sapiens/Pan troglodytes split. Fur-
ther, some HERV loci have been reported to show inser-
tional polymorphism in the human genome, even one
HERV locus has entered the human genome less than 1
mya [7].

Generally HERV-encoded genes are thought to be inacti-
vated by negative selection, followed by degeneration due
to mutational decay during evolution. However, a few
HERV loci do still maintain intact open reading frames of
viral genes, indicating either recent integration or ongoing
purifying selection. No replication-competent HERVs
have yet been described, although fully intact members of
the HERV-K group have been reported [7]. Nevertheless,
trans-complementation and recombination of human
HERV-K loci can generate functional HERV-K elements,
indicating that human cells still have the potential to pro-
duce infectious retrovirus particles [8,9]. However, other
mammalian species such as mouse, cat and pig harbor
many modern ERVs which are still replication-competent
[4].

Intact envelope genes have been shown to be transcribed
in several healthy tissues [10], and the conservation in an
otherwise degenerated HERV locus has led to speculations
about a likely beneficial role for the host. These include (i)
protecting the fetus due to immunomodulatory proper-
ties via an immunosuppressive domain located in the TM
subunit of the envelope [11,12], (ii) preventing present-
day retroviral infections by inhibiting cell entry of related
exogenous retroviruses that use a common surface recep-

tor, a process called receptor interference in which the
receptor-binding-domain of SU blocks the receptor
[13,14], or (iii) being used as triggers to provide cell-cell
fusion in which the fusion machinery of TM is activated
by binding of SU to a cellular receptor. In particular three
HERV envelope genes can induce cell-cell fusion in vitro,
syncytin 1 [15,16], syncytin 2 [17], and EnvPb1 [18]. All
three are candidates for having a beneficial function
because they are evolutionarily conserved and have
undergone purifying selection during primate evolution
[17,19,20]. Furthermore all single nucleotide polymor-
phisms (SNPs) within the three envelope genes are either
synonymous or they do not influence fusiogenicity
[20,21].

Syncytin 1 and syncytin 2 show placenta-specific expres-
sion [10,15,22,23], which may be an implication of a
physiological role of HERV envelope proteins in mediat-
ing cell-cell fusion in placenta forming the syncytiotro-
phoblast. In fact inhibition of syncytin 1 in human
cytotrophoblasts leads to a decrease in cell fusion [24],
indicating a plausible physiological role of syncytin 1 in
placenta development. Syncytin 2 might protect the fetus
against the mother's immune system due to immunosup-
pressive properties [11], but so far none of them have
been well enough characterized to draw functional con-
clusions.

During a screen of the human genome for retroviral open
reading frames [25], we identified a new group, dubbed
HERV-V [18], containing two almost identical envelope
genes. HERV-V was recently proposed to be a degenerate
syncytin [11]. However, we here demonstrate that selec-
tion has preserved at least one of the envelope genes
through simian evolution, and that the other envelope
gene has been partly preserved by gene conversion.

Results
The two, almost identical, HERV-V envelope genes are
both located on chromosome 19q13.41 with a distance

ENVV2 in primate genomesFigure 1
ENVV2 in primate genomes. The location of ERV-V loci on chromosome 19 in five primate species. The ENVV genes are 
shown in light blue whereas similarity to other HERV proteins are coded as gag (red), pol (green) and env (blue).
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between the two loci of ~34 kb (Figure 1) [25]. In order to
distinguish the two envelopes from each other, we pro-
pose naming one locus HERV-V1 and its envelope ENVV1
(chr19: 58209156–58210586, hg18) and the other locus
HERV-V2 and its envelope ENVV2 (chr19: 58244317–
58245921, hg18). ENVV1 has a 477 amino-acid long
open reading frame and ENVV2 has an open reading
frame containing 535 amino acids. Variation is only
observed in the C-terminus of the genes by a ~60 amino-
acid truncation of ENVV1, due to a one nucleotide inser-
tion leading to a frame shift. A tBLASTn search shows no
other closely related sequences in the human genome and
a sensitive BLASTn search using the cross-species LTR con-
sensus show no sign of solitary LTRs. Further, both enve-
lopes show high similarity in the C-terminal part to two
other HERV envelope genes: ERVWE1 (syncytin 1) and
HERV-FRD (syncytin 2) (Env-FRD) [25]. Phylogenetic
comparison indicates that HERV-V is a small new family
of ERVs, most closely related to that of MER66, MER84
and Z69907 families [18].

The ENVV envelope genes are conserved in simians
Using tBLASTn and BLAT we found ENVV1 and ENVV2 at
homologous positions on chromosome 19 in chimpan-
zee (Pan troglodytes), Sumatran orangutan (Pongo pygmaeus
abelii), rhesus macaque (Macaca mulatta) and marmoset
(Callithrix jacchus, Contig3441) (Figure 1). In all species,
the ENVV2 gene is intact, whereas the ENVV1 gene is pre-
served only in chimpanzee and rhesus macaque, where it
exhibits a full-length ORF with no C-terminal truncation
or stop codons. In orangutan, rhesus macaque and mar-
moset, ENVV1 and ENVV2 are separated by 45–65 kb and
exhibit a third ERV-V locus in between, named ERV-V3.
No ENVV homologues were detected in any genome more
distant than those of New World monkeys.

Additionally, we screened a primate DNA panel with PCR
primers flanking either the ENVV1 or ENVV2 envelope
genes (Figure 2A) and were able to amplify the expected
2.5-kb amplicon from Hominoidea, Old World monkeys
and New World monkeys (Borneo orangutan (Pongo pyg-
maeus), African green monkey (Cercopithecus aethiops)and
squirrel monkey (Saimiri sciureus), respectively). In addi-
tion, the ENVV3 was also detected in the African green
monkey by an internal ~500 bp PCR fragment (data not
shown). Interestingly, sequencing of the PCR products
revealed that the ENVV2 gene is preserved in all species
analyzed and ENVV1 is preserved in Old World monkeys
(Cercopithecoidea), whereas orangutan and squirrel mon-
key only show preservation of ENVV2 (Figure 2B).

We also attempted to PCR amplify the 2.5 kb fragment
from the prosimian ring-tailed lemur (Lemur catta). How-
ever, no amplicon emerged (Figure 2A), in agreement
with a database search on the accessible prosimian

genome-sequencing-trace reads. In summary, both data-
base searches and PCR amplification of ENVV1, ENVV2
and ENVV3 indicated an integration of ERV-V after the
simian-prosimian (Anthropoidea-Strepsirrhini) split (77
mya[6]) and before the Catarrhini-Platyrrhini split (43
mya [6]), immediately followed by a new infection/rein-
fection and a duplication of the genome surrounding the
ERV-V locus, or vice versa. Similarity between the 5' and 3'
genomic regions surrounding the ERV-V1 and ERV-V2 loci
suggests that a genomic duplication has assisted in gener-
ating ERV-V1 and ERV-V2, e.g. a 200 bp fragment
upstream of HERV-V2 (chr19: 58247800–58247999,
hg18) has 77% similarity to a region upstream of HERV-
V1. The same is also found in chimpanzee and rhesus
macaque. This similarity cannot be found in the regions
flanking the ERV-V3 locus. However, the ERV-V3 locus is
absent in Hominidae, indicating a deletion of the ERV-V3
before the human and chimpanzee separation (Figure
2B).

In theory, LTR sequence divergence can be used as a rough
indicator of integration time, since the two LTRs are iden-
tical at the time of integration, but the estimate might be
problematic because of confounding processes such as
recombination and conversion [26,27]. The LTR diver-
gences (human: 0.284, chimp: 0.271 and orangu-
tan:0.370) indicate that the ERV-V locus descended from
an old integration by being even more distinct than
HERV-FRD (syncytin 2) LTRs (human: 0.225, chimp:
0.227 and macaque: 0.316) [28], which integrated on the
same branch of the primate phylogeny. However our LTR-
analysis indicates unrealistic divergence times for both
ERV-V2 (96–217 mya) and syncytin 2 (83–152 mya)
showing the difficulties in using LTR divergence for dating
old, conserved ERV integrations.

Gene conversion between ERV-V envelope genes
On the basis of the finding that both ERV-V copies can be
dated back to before the Catarrhini-Platyrrhini split, we
expect the evolutionary distance between the paralogue
ENVV genes (ENVV1-ENVV2) to be larger than the evolu-
tionary distance between orthologue ENVV genes
(ENVV1-ENVV1 and ENVV2-ENVV2) within the most
distant species (e.g. human/marmoset), resulting in two
monophyletic groups, each following the primate phylog-
eny (an ENVV1 group and an ENVV2 group, Figure 3A).
To our surprise, we observed that the paralogue genes
were more closely related than the orthologue genes
between the most distant species, Hominidae/Cercopitheci-
dae and Platyrrhini (Kimura-2-p. distances: ENVV1-
ENVV2, 0.024 ± 0.004 vs ENVV2-ENVV2 and ENVV1-
ENVV1, 0.140 ± 0.006).

A clear change in the substitution pattern was observed in
the ENVV1/ENVV2 alignment, and a subsequent gene-
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conversion test [29] yielded highly significant results (P <
0.00066, Table 1). The result indicates that gene conver-
sion has taken place in all lineages, with 5' gene conver-
sion breaks situated before the coding sequence or
between position 1–45 as numbered from the initiator
ATG, and 3' gene-conversion breaks between positions
1153–1312. To get an indication of the 5' gene conversion
break, we extracted the variable sites from human, chim-
panzee and macaque 5'UTRs. A shift in mutation pattern
was observed around position -192, upstream of which
the ERV-Vs follow the expected mutation pattern, whereas
the pattern downstream of this position is consistent with
gene conversion (data not shown).

When only looking at variable sites (Figure 3B) we note
that the alignment is divided into two parts. The first part
(Figure 3B, green) contains mutations that are shared by

both paralogue and orthologue ENVV's within the Homi-
nidae and Old World monkey lineage respectively, a pat-
tern consistent with gene conversion. The resulting
phylogenetic tree (Figure 3C, tree 1) shows ENVV
sequences clustering into monophyletic groups, where
ENVV1 and ENVV2 cluster together inside each group.
This is consistent with this region of the ENVV2 locus
being transferred to the ENVV1 locus (or vice versa) by
gene conversion. The other part (Figure 3B, red) is consist-
ent with a model of normal species-like evolution, which
is supported by the corresponding phylogenetic tree (Fig-
ure 3C, tree 2) showing paralogue ENVV genes splitting
into two groups.

Evidence of purifying selection of the ENVV2 gene
The ENVV2 envelope ORFs have been conserved since
integration more than 40 mya (Figure 2B). In some spe-

PCR identification of ENVVFigure 2
PCR identification of ENVV. A) ENVV2 PCR. Lane 1: Human. Lane 2: B. orangutan. Lane 3: Africa green monkey. Lane 4: 
Squirrel monkey. Lane 5: Ring-tailed lemur. B) Primate phylogeny, with hypothetical integrations indicated. Below each species 
is indicated whether a given gene/ORF was detected (+) or not (-). Notes: 1) Contains a 60 amino acid C-terminal truncation. 
2) Detected by an internal ENVV PCR (see methods). 3) Not PCR detected.
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Gene conversion between the ENVV1 and ENVV2 lociFigure 3
Gene conversion between the ENVV1 and ENVV2 loci. Detection of gene conversion between the ENVV1 and ENVV2 
loci. A) Theoretical phylogenetic tree of normal species-like of evolution of ENVV1 and ENVV2. B) Alignment of sequences 
from species containing conserved ENVV1 and ENVV2, including variable sites only. A green box shows unexpected evolution 
and red box shows the expected evolution (following the phylogeny in (A)). The gene conversion break zone between the 
boxes is the region where 3' gene conversion breaks are predicted. C) Neighbor-joining phylogenetic tree (Maximum Com-
posite Likelihood; 1000 Bootstrap) of the 45–1132 region (green) and the 1312-end region (red).

Tree C1 Tree C2Gene conversion 
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A

B
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Table 1: Test of gene conversion between ENVV1 and ENVV2

Aligned Offsets
ENVV1:ENVV2 P-value Begin End Length # poly # dif Total dif

Human 0.00000 1 1153 1153 195 2 64
Chimpanzee 0.00053 1 1312 1312 219 10 67
Orangutan 0.00003 5 1312 1308 218 19 80
African gr. monkey 0.00000 45 1296 1252 212 11 74
Macaque 0.00006 1 1290 1290 216 13 72
Marmoset 0.00066 1 1278 1278 210 12 69

P-values are Bonferroni-adjusted Karlin-Altschul p-vaules. The positions are corresponding to the aligned positions in the ENVV1 and ENVV2 
sequences. "# poly" is the number of polymorphic sites in the fragment. "# dif" is the number of mismatches in the fragment. "Total dif" is the 
number of mismatch between ENVV1 and ENVV2 in the species.
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cies both ERV loci contain an intact ENV gene (ENVV1
and ENVV2) whereas in other species the ENVV1 gene is
degenerated.

All sequences show very high conservation within the
ENVV2 region, whereas the similarity drops in flanking
regions (Figure 4A). Additionally, the hydrophobicity
profile and several characteristic motifs within gammaret-
roviruses are preserved in all full-length ENVV2s during

evolution (Figure 4B). These include a CWIC motif
involved in SU subunit and TM subunit interaction [30]
and in controlling the fusion by a disulfide isomerization
step [31], the cleavage site (RQKR) between SU and TM of
the envelope gene, the hydrophobic domain in the N-ter-
minus of TM corresponding to the fusion peptide, two
heptad repeats in TM, involved in a conformational
change in the envelope during fusion [32,33], the CKS-17-
like immunosuppressive domain that has immunosup-

Purifying selection of ENVV2 sequencesFigure 4
Purifying selection of ENVV2 sequences. (A) The ENVV2 reading frame (blue) is intact in all five primate genomes and 
shows a higher alignment similarity than the flanking regions. (B) Analysis of ENVV2 proteins, hydrophobicity plot for eight pri-
mate sequences. The most likely site specific dN/dS ratios are shown for the accepted model incorporating two classes of dN/
dS ratios (red) and the non-significant model of positive selection incorporating three classes (grey).
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pressive activity [11], and the transmembrane region
anchoring the envelope protein to the membrane.

The HERV-V2 locus contains eight SINE elements all
located closely outside ENVV2, both inside and between
gag and pol fragments (Figure 5). Assuming a random dis-
tribution of SINE elements within the HERV-V2 locus (i.e.
assuming no selection on the ENVV2 region), the proba-
bility of observing the 8 SINE elements outside and 0
SINE elements inside the ENVV2 gene is significant (P =
0.048), indicating that the ENVV2 gene has survived trans-
poson crossfire.

The entire envelope gene shows purifying selection
between all pairs of species, but not between the two
almost identical orangutan sequences when testing the
ratio between nonsynonymous and synonymous substi-
tutions (dN/dS ratio, Table 2). A site-specific selection
analysis using PAML [34] provides strong support for a
model with two site classes (M1 vs. M0: χ2 = 30.5, df = 2,
p < 1e-7), one under strong purifying selection (mean dN/
dS = 0.075, 63% of sites) and one neutral class (dN/dS =
1.000, 37% of sites). Although some positions show signs
of positive selection (Figure 4B), there is no significant
support for a positive selection model (M2a vs. M1: χ2 =
1.46, df = 2, p = 0.4819).

Additionally, ENVV1 and ENVV2 have been shown to
have a placenta-specific expression in humans [18] and
our RT-PCR data confirmed this particular expression
(data not shown). Interestingly, EST-data from both olive
baboon (Papio anubis, Old World monkeys) and human
verify the placental expression of ENVV1 and ENVV2 [35].

Discussion
The HERV-V1 and HERV-V2 loci display a remarkable
evolution. They are the only two copies of the HERV-V
family within the human genome, and there is no evi-
dence of any solitary LTRs. However, the identified LTR
regions are small and fragmented and there has been a

long time span since integration. This prevents efficient
recognition of solitary LTRs using BLAST, hence it is pos-
sible that they are present but remain undetected. In both
HERV-V family members, the envelope genes (ENVV1
and ENVV2) consist of a long ORF. ERV-V1 and ERV-V2
are located in tandem in all species analyzed as a result of
a gene duplication event. In all lineages except Hominidae,
a third copy, ERV-V3, was detected between ERV-V1 and
ERV-V2. The tandem location of this third copy is indica-
tive of a gene triplication at the locus, however, this could
not be directly proven, since no flanking sequence homol-
ogies were found.

The human ENVV1 shows a minor truncation at the C-ter-
minus, due to a 1 nucleotide insert, leading to a frame
shift, which has not been shown to be polymorphic in the
human population, according to SNP databases (data not
shown). However, the truncation has little impact on the
structural prediction of the ENVV1 protein, nevertheless,
the cytoplasmic tail is missing. Both ENVV1 and ENVV2
contain all structural motifs within envelope proteins
reported to be important in viral-cell fusion. This suggests
a similar function of the ENVV genes in the host by medi-
ating cell-cell fusion, as has been observed for three other
HERV envelopes (syncytin 1, syncytin 2 and EnvPb1
[15,17,18]). Phylogenetic studies show that the ERV-V
family was fixed in an ancestral genome before the Catar-
rhini-Platyrrhini split ~43 mya but after simians had evolu-
tionarily separated from the prosimians (~77 mya).
Sequence analyses confirmed that ENVV2 is preserved
among simians, and ENVV1 has been preserved in most
species within Catarrhini, further all species except Homin-
idae enclose an extra ERV-V copy (ERV-V3), which seems
to be lost in the Hominidae lineage (Figure 2B). A detailed
comparative analysis of the ERV-V2 locus shows that the
ENVV2 genes have been subjected to purifying selection
(dN/dS < 1, Table 3 and Figure 4B). Additionally, ENVV2
survival during transposon crossfire inside the ERV-V2
locus supports purifying selection of the ENVV2 gene. It is
unlikely that the envelope gene has been maintained as a

ENVV2 annotationFigure 5
ENVV2 annotation. Annotation of the human HERV-V2 locus showing the high content of SINE elements in this region. Gag, 
pol and env tBLASTn hits are indicated by red, green and blue, predicted LTR regions (yellow). The region undergoing gene 
conversion is indicated by vertical dashed lines (see text). Splice donor site and poly A signal are predicted sites.
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result of retroviral replication through an extracellular
cycle, since the sites of integration have been maintained
through simian evolution. In conclusion, the results pro-
vide a strong argument of their beneficial role of the
ENVV2 gene for the host.

ENVV1 and ENVV2 expression in placenta is particularly
interesting since the two HERV envelope proteins (syncy-
tin 1 and syncytin 2) having been shown to cause cell-cell
fusion in vitro are also highly expressed in placenta
[15,17]. Syncytin 1 appears to display an important role
in placenta development [24] and syncytin 2 may have
immunosuppressive properties in placenta [11]. Further-
more, EST data show placenta expression of ENVV1 and
ENVV2 in olive baboon (Old World monkeys), which
demonstrates that the placental expression is indeed con-
served through simian evolution. The placenta-specific
expression in combination with the purifying selection
documented by our phylogenetic analysis indicates that
ENVV2 (and/or ENVV1) is likely to play a physiological
role in the placenta.

Comparative analysis of the two ERV-V loci suggests that
gene conversion within the ENVV loci has taken place by
DNA transfer of the major part of 5' region of ENVV2 to
ENVV1 (or vice versa). Gene conversion seems to be a
common event in this region, since it has taken place in all
lineages (Table 1 and Figure 3). Gene conversion is a com-
mon event in evolution, and is favored between paralogue
genes located on the same chromosome less than 55 kb
apart [36] just as ENVV1 and ENVV2. Gene conversion
has also been reported within other ERV families [27,37],
however, none of them within coding viral genes. The
gene conversion break points are located just upstream of
the putative translation initiation site and downstream of
the immunosuppressive domain (ISU) resulting in a ~1,5

kb gene conversion tract. Recent results have shown that
the ISU of ENVV2 contains immunosuppressive activity
[11], and we have shown that the ISU of ENVV1 and
ENVV2 are preserved, indicating a conservation of immu-
nosuppressive activity through evolution. Additionally,
the study has shown that an envelope gene truncated after
the ISU maintains the immunosuppressive activity [11].
In this manner, gene conversion in the Hominidae and
Cercopithecidea lineage homogenizes the ENVV genes and
induces two ENVV genes, both having a structure compat-
ible with preservation of immunosuppressive properties.

In most simians, ENVV1 and ENVV2 have been preserved,
raising the possibility of a distinct biological function of
their protein products which differ in their C-terminal
parts. Such function is consistent with the finding that
both loci are expressed in humans as well as in olive
baboon. However, this hypothesis of a separate function
of the two ENVV genes is not supported by phylogenetic
analysis in simians as such, since orangutan and New
World monkeys hold only one intact ENVV gene.

Neither ENVV2 or ENVV1 have been shown to be fusio-
genic [18], but a fusiogenic property of ENVV in placenta
development cannot be excluded, since the selection pres-
sure on the ENVV2 gene is not only restricted to the region
necessary in having immunosuppressive activity, but
includes the entire envelope gene. However, the fusio-
genic properties may be activated by a physiological envi-
ronment in placenta, like high-oxygen pressure has been
found to regulate the pathway of cytotrophoblast differen-
tiation [38,39]. Receptor recognition of the ENVV pro-
teins may also be different to that of other envelope
proteins such as syncytin 1, since the organization of the
CWIC domain (involved in disulfide isomerisation dur-
ing fusion [30,31]) (Figure 4B) within the SU is different.
In ENVV the CWIC motif is located in the N-terminal part
of the SU while it is located more C-terminally in syncytin
1 and envelope proteins of other gammaretroviruses.
However this SU organization is not conflicting with
envelope fusiogenic activity, since this organization is also
observed in the fusiogenic syncytin 2 [10], syncytin A and
syncytin B [40] ERV envelopes.

Another potential function of the ENVV genes could be
the prevention of present-day infections by exogenous ret-
roviruses through blocking the receptor used by the
attacking virus, a process called receptor interference, as
seen for other ERV envelope genes [13,14,41]. This possi-
bility is consistent with the high sequence similarity and
purifying selection of ENVV2 among species, but the host-
receptor and the receptor binding domain of the envelope
protein are unknown. Notably, the gene conversion
events have preserved two copies of the presumed ENVV
receptor binding domain, located in the N-terminal part

Table 2: Codon-based Test of Purifying Selection between 
sequences

H.s. P.t. P.p.a. P.p. M.m. C.a. S.s. C.j.

H.s. 2.456 2.707 2.661 3.244 4.466 3.967 5.856
P.t. 0.008 3.852 3.750 3.665 4.862 4.290 5.939
P.p.a. 0.004 0.000 0.978 3.044 4.253 4.362 6.381
P.p. 0.004 0.000 1.000 2.986 4.143 4.167 6.225
M.m. 0.001 0.000 0.001 0.002 4.289 3.706 6.282
C.a. 0.000 0.000 0.000 0.000 0.000 4.927 7.217
S.s. 0.000 0.000 0.000 0.000 0.000 0.000 6.005
C.j. 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Test of purifying selection (codon-based Z-test). Upper triangle: Z-
value and the lower triangle P-values. Analyses were conducted using 
the Nei-Gojobori method and Z-value variance was computed using 
500 bootstrap replicates. H.s.: Human (Homo sapiens); P.t.: 
Chimpanzee (Pan troglodytes); P.p.a.: S. orangutan (Pongo pygmaeus 
abelii); P.p.: B. orangutan (Pongo pygmaeus); M.m.: Macaque (Macaca 
mulatta); C.a.: African green monkey (Cercopithecus aethiops); S.s.: 
Squirrel monkey (Saimiri sciureus); C.j.: Marmoset (Callithrix jacchus)
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of SU in all known retroviruses. Moreover, in all species
encoding an ENVV1 protein this is predicted to be mem-
brane-anchored and may thus potentially have receptor-
interference activity. This is also the case for humans
where the C-terminal truncation ENVV1 does not abro-
gate membrane anchoring.

Conclusion
Our analyses have shown that the ERV-V family is small,
consisting of two copies in Hominidae. However, orangu-
tan, Old World monkeys and New World monkeys
include an extra copy, all located in tandem on chromo-
some 19. The ERV-V2 envelope ENVV2 has been pre-
served for more than 43 million years in all species tested.
Within Hominidae and Old World monkeys the ENVV1
has been preserved by gene conversion of a 1.5 kb region
encoding the N-terminal part of ENVV2, meaning that
they contain two copies of the ENVV envelope, both
expressed in placenta. These data provide strong evidence
of a beneficial role for the host in placenta. A likely func-
tion of the ENVV gene could be: i) Protecting the fetus
against the immune system of the mother, due to immu-
nosuppressive properties [11]. ii) Mediating cell fusion
and making of the syncytiotrophoblast. iii) Blocking a ret-
roviral receptor through receptor-interference and thereby
preventing present-day retroviral infections.

Methods
DNA samples, PCR amplification, and sequencing
DNA from African green monkey (Cercopithecus aethiops),
Borneo orangutan (Pongo pygmaeus) and squirrel monkey
(Saimiri sciureus) was isolated from cell cultures (using
Invitrogen DNAzol), tissue from ring-tailed lemur (Lemur
catta) was a gift from Living United/Ebeltoft Zoo & Safari
(DNA was isolated using a QIAGEN tissue isolation kit).
All primate DNA samples were verified by amplification
and direct sequence analysis of the cytochrome oxidase I
(COI) gene. Sequences from human (Homo sapiens),
chimpanzee (Pan troglodytes), rhesus monkey (Macaca
mulatta), Sumatran orangutan (Pongo pygmaeus abelii)
were extracted from the ENSEMBL genome database
http://www.ensembl.org[42], marmoset sequences were
extracted from the UCSC Genome Browser Primers, (1)
"ENVV1/V2 forward" CAGCCTGATTTCTCACTAAACACT
CCATCGAAC, "ENVV1 reverse" CTCAGCGTGCAGCGTT-
TCCAAGGAGGCCATCAGCG, (3) "ENVV2 reverse" CTAG
TGCCTTAGTTTTTATGGGAGCT, were designed to
amplify a ~2.5 kb fragment, on both sides of either
ENVV1 or ENVV2. The PCR was performed by the use of
expand high fidelity PCR system (Roche) in 100μl reac-
tion using 300 nM primer, 0.2 mM dNTP, 150 ng of DNA,
and buffers by the supplier. The PCR program was as fol-
lows: 1 cycle (94°C for 1 min), 30 cycles (94°C for 1 min;
60°C for 1 min; 72°C for 2.5 min), and 1 cycle (72°C for
10 min). The internal ENVV PCR was done by the same

procedure by using primer (1) and the "ENVV internal"
primer (2) CTAACATTTGGTTCAGGAATCC. Resulting
PCR products were either directly sequenced from a 5-μl
PCR mixture or after cloning of the fragment into pGEM-
Teasy (Promega) using 2μl of PCR product. Sequencing
were performed using the BigDye® Terminator v3.1 Cycle
Sequencing Kit (Applied Biosystems) (details for
sequence primers are available from the authors upon
request) and analyzed on an ABI3100 (Applied Biosys-
tems). All conserved ENVV1 and ENVV2 ORFs have been
deposited in GenBank under the accession numbers
EU853142 and EU853155.

LTR analysis
We tried dating the integration using the most distant spe-
cies (human and marmoset) to minimize the effect of
uncertainty in known speciation times. LTR regions were
identified in the ERV-V2 locus in human and marmoset
using dot plots, Repeatmasker data, and genomic BLAT
searches. The alignment was cropped to only include sites
with high alignment quality resulting in only 155–158 bp
that aligned unambiguously between species. LTR diver-
gence was calculated in MEGA4 [43] using Tamura 3-
parameter distance allowing different rates among line-
ages (since it is easily observed that 3' LTRs are a lot more
divergent than 5' LTRs between species) and different rates
among sites (gamma = 1.0). The integration time is esti-
mated as:

We used species-pairs to estimate integration time from
independent 5' and 3' LTR substitution rate estimates. E.g.
for the human-chimp pair, we estimated the H-C 5' LTR
substitution rate from the observed H-C 5' LTR divergence
and published H-C speciation time (~5 mya). The
human-macaque pair yields a slightly different estimate
and so forth.

Sequences were aligned using ClustalW [44] and GENE-
CONV [29] was used to predict gene conversion. We
extracted variable sites using FaBox [45]. Phylogenies
(Neighbor-joining phylogenetic tree, Model: Maximum
Composite Likelihood; 1000 Bootstrap replicates) and
evolutionary distances were calculated using MEGA4 [43].

The ENVV2 DNA alignment similarity plot was created
using the EMBOSS plotcon program [46] with a sliding
window of size 32 and EDNAFULL as similarity matrix
(figure 4A). The protein hydrophobicity plots was created
using EMBOSS pepwindowall program [46] with a sliding
window of size 30 (figure 4B). SINE elements in the
human ERV-V2 locus were identified using Repeatmasker
[47] and ENVV2 selection tests were performed using

Time
divergence - LTR

rate LTR rate LTR
integration =

+
5 3

5 3
’ ’

’ ’
.
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MEGA4 [43] (Nei-Gojobori method and Z-value variance
was computed using the 500 bootstrap replicates).
PAML4 [34] was used to run site-specific selection tests
and obtain dN/dS ratios from all ENVV2 sequences. The
models analyzed assumed no molecular clock (clock = 0),
a single omega for all tree branches (model = 0) and we
used likelihood ratio tests to compare the improvement in
likelihood for models incorporating 1, 2 or 3 site classes
(NSsites = 0 1 2). Each analysis ran until convergence
(Small_Diff = 0.5e-6) and the control file is available
upon request.

Abbreviations
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Tags; HERV: Human endogenous retrovirus; ISU: Immu-
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