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Abstract

Background: Group | introns are found in the nuclear small subunit ribosomal RNA gene (SSU rDNA)
of some species of the genus Porphyra (Bangiales, Rhodophyta). Size polymorphisms in group | introns has
been interpreted as the result of the degeneration of homing endonuclease genes (HEG) inserted in
peripheral loops of intron paired elements. In this study, intron size polymorphisms were characterized
for different Porphyra spiralis var. amplifolia (PSA) populations on the Southern Brazilian coast, and were
used to infer genetic relationships and genetic structure of these PSA populations, in addition to cox2-3 and
rbcL-S regions. Introns of different sizes were tested qualitatively for in vitro self-splicing.

Results: Five intron size polymorphisms within 17 haplotypes were obtained from 80 individuals
representing eight localities along the distribution of PSA in the Eastern coast of South America. In order
to infer genetic structure and genetic relationships of PSA, these polymorphisms and haplotypes were used
as markers for pairwise Fst analyses, Mantel's test and median joining network. The five cox2-3 haplotypes
and the unique rbcL-S haplotype were used as markers for summary statistics, neutrality tests Tajima's D
and Fu's Fs and for median joining network analyses. An event of demographic expansion from a population
with low effective number, followed by a pattern of isolation by distance was obtained for PSA populations
with the three analyses. In vitro experiments have shown that introns of different lengths were able to self-
splice from pre-RNA transcripts.

Conclusion: The findings indicated that degenerated HEGs are reminiscent of the presence of a full-
length and functional HEG, once fixed for PSA populations. The cline of HEG degeneration determined the
pattern of isolation by distance. Analyses with the other markers indicated an event of demographic
expansion from a population with low effective number. The different degrees of degeneration of the HEG
do not refrain intron self-splicing. To our knowledge, this was the first study to address intraspecific
evolutionary history of a nuclear group | intron; to use nuclear, mitochondrial and chloroplast DNA for
population level analyses of Porphyra; and intron size polymorphism as a marker for population genetics.
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Background

Group I introns belong to a family of RNAs with catalytic
activities. These ribozymes are mobile elements inserted
within coding sequences of nuclear tDNA, chloroplast
and mitochondrial genomes of some eukaryotes; and less
frequently within coding sequences of eubacteria, phages
and viruses. Group I introns catalyze their own excision
(self-splicing) from pre-mRNA when mature RNA is being
processed. The exact site of intron excision and the perfect
reestablishment of the interrupted message are defined by
specific interactions between intron and exons, deter-
mined by a conserved secondary structure. Group 1
introns fold on a structure, forming 10 conserved paired
elements (P1-P10) with a conserved catalytic core
[reviewed in [1]].

Size polymorphisms in group I introns have been
described [2-5] and are occasionally generated by the
insertion of a mobile element such as homing endonucle-
ase genes (HEG) in peripheral loops of intron paired ele-
ments P1, P2, P6, P8 and P9 [4,6]. Homing endonuclease
genes encode for site specific homing endonucleases
(HEs), which in genetic crosses between an HEG contain-
ing intron allele and an intronless allele, recognize the
intron insertion site and catalyze a double strand break.
The intronless allele is then repaired using the HEG con-
taining intron allele as a template. This mechanism of
intron mobility is known as homing [6]. Homing endo-
nucleases are classified in five different families according
to conserved protein motifs and functional and structural
properties: LAGLIDADG; GIY-YIG; H-N-H; His-Cys box
[6-8]; and the recently described PD-(D/E)-XK motif [9].
His-Cys box motifs are identified in HE exclusively associ-
ated to nuclear group I introns [10]. Homing endonucle-
ases were described for fungi, protists, bacteria and
viruses, but with unknown function for the hosts [6].

Descriptions of group I introns in Rhodophyta are limited
to a few genera [11-13], although it is commonly reported
for the genera Porphyra and Bangia (Bangiales, Rhodo-
phyta) [13-15]. A survey for group I introns presence in
the order (Bangiales) described by Miiller et al. [5], indi-
cated that this order is a particularly rich in these introns.
The use of introns as molecular markers at the intra-spe-
cific level is very limited [2,16,17]. Usually in Rhodo-
phyta, analyses at the intra-specific level are addressed
with molecular markers such as the nuclear rDNA internal
transcribed spacer (ITS) 1 and 2 [18,19]; the plastidial
spacer between the ribulose-1, 5-bisphosphate carboxy-
lase-oxygenase large subunit (rbcL) and the small subunit
(rbcS) genes (rbcL-S) [20,21], and the mitochondrial
spacer between the cytochrome oxidase subunit 2 and
subunit 3 genes (cox2-3) [19,21-23].
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In a previous work, Oliveira and Ragan [2] characterized
introns of different sizes inserted in the nuclear small sub-
unit rfRNA gene (SSU rDNA) close to the 3' end (intron
S$1506) of three Porphyra spiralis var. amplifolia (PSA) indi-
viduals collected at different sites on the Southern Brazil-
ian coast. Open reading frames (ORFs) with His-Cys Box
motifs were described inserted in the P1 paired element,
confined within the conserved pair U*G, located in the
SSU rDNA exon and in the intron respectively in the com-
plementary strand. This region is known as P1-extension
[4]. These findings prompted us to: 1) characterize introns
size polymorphisms at different PSA populations on the
Eastern coast of South America; 2) Infer genetic relation-
ships and population structure of PSA populations using
introns in addition to rbcL-S and cox2-3 regions as genetic
markers; and 3) Verify if the different polymorphisms in
peripheral loop of intron P1 paired element affected qual-
itatively introns excision, through an in vitro self-splicing
assay.

Methods

DNA extraction, PCR amplification and sequencing
Population samples of Porphyra spiralis var. amplifolia were
collected at eight different sites in the Southern Brazilian
shore (Table 1, Figure 1). A minimum of 10 individuals
were obtained from each site. Gametophyte blades were
identified based on morphological description [24], and
did not present any meaningful morphological variation
among and within populations. Samples were screened
for epiphytes using a stereomicroscope, and stored indi-
vidually in silica gel. Each individual was ground in liquid
nitrogen and total genomic DNA was extracted using the
"DNeasy Plant Mini Kit" (Qiagen, Santa Clarita, CA),
according to manufacturer's specifications. Voucher spec-
imens are deposited at University of Sdo Paulo herbarium
(SPF, Table 1).

Total DNA was extracted from 10 individuals for each of
the eight geographic locations. Primers 1400F and 18S3'
were used to amplify part of the 3' end of the first SSU
rDNA exon + intron + the 5' end of the second SSU rDNA
exon; as a positive control for intron presence in the mul-
tiple SSU rDNA copies [25] primers 1400F and iR2 were
used to amplify HEG-containing ORF, including the
flanking 213 bp of the SSU rDNA 5'exon and 175 bp of
the intron. Primers COX 2F and COX 3R were used to
amplify the 3' end of cox2 gene + spacer + 5' end of cox3
gene; and primers F993 and RBCS3'R were used to
amplify the 3' end of rbcL gene + spacer + 5' end of rbcS
gene.

PCR amplification conditions for a total volume of 50 pL
were: 1x PCR buffer, 1.5 mM MgCl,, 0.2 mM each dNTP,
0.2 uM each primer, 20 ng of genomic DNA and 1.25 U of
Tag DNA polymerase (Promega Corporation, Madison,
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Table I: Porphyra spiralis var. amplifolia (PSA) collection information.
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Population Collection location Latitude (S)/Longitude (W) Collector Date Voucher
PSA-V Vermelha do Norte, Ubatuba, SP 23°25'16.96"/45°02'21.75" MCO Aug 1998 SPF 56191
PSA-B! Fortaleza, Ubatuba, SP 23°31'55.48"/45°09'42.28" MCO Oct 1990 *

PSA-D! Cebimar, Sio Sebastido, SP 23°49'41.70"/45°25'20.87" MCO Oct 1990 *

PSA-C Baleia, Sdo Sebastido, SP 23°46'49.78"/45°39'51.53" DM Aug 2002 SPF 56183
PSA-G Tijucopava, Guaruja, SP 23°54'54.72"/46°10'03.21" DM Jul 2002 SPF 56185
PSA-S Itaipu, Santos, SP 24°01'12.02"/46°23'57.57" ECO Aug 1997 SPF 56189
PSA-T Tombo, Guaruja, SP 24°00'45.84"/46°16'08.38" DM Jul 2002 SPF 56180
PSA-I Cibratel, Itanhaém, SP 24°11'26.90"/46°47'33.16" MCO Aug 1997 SPF 56186
PSA-R! llha do Cardoso, SP 25°06'29.49"/47°53'41.20" EJP Aug 1989 *

PSA-A Ponta da Armagio, Florianépolis, SC 27°44'50.77"/48°29'54.22" ECO Nov 1997 SPF 56181
PSA-L Lagoinha, Florianopolis, SC 27°46'43.79"/48°29'15.84" ECO Nov 1997 SPF 56187

SC- Santa Catarina State, SP- Sio Paulo State. Collectors: DM- Daniela Milstein, EJP — EdisonJosé de Paula, ECO — Eurico Cabral de Oliveira, MCO-
Mariana Cabral de Oliveira. * Conchocelis phase in culture (Laboratério de Algas Marinhas Edison . de Paula, Instituto de Biociéncias, USP). ! Data

obtained from Oliveira and Ragan [2].

WI). All PCR reactions were performed in a MiniCycler
thermocycler (M] Research, Watertown, MA) and cycles
varied according to the region to be amplified: Introns —
94°C for 4 min, 35 cycles of 94°C for 30 sec, 60°C for 1
min, 72°C for 2 min, and a final extension step at 72°C
for 7 min. cox2-3 region - 94°C for 4 min, 5 cycles of
93°C for 1 min, 45°C for 1 min, 72°C for 1 min, followed
by 30 cycles of 93°C for 30 sec, 55°C for 30 sec, 72°C for
30 sec, and a final extension step at 72°C for 5 min. rbcL-
S region - 94°C for 4 min, 35 cycles of 94°C for 1 min,
42°C for 1 min, 72°C for 1 min and 30 sec, and a final
extension step at 72°C for 10 min. Primers used for
amplification and sequencing are listed in Table 2. Nega-
tive controls for PCR reactions, that included all reagents
except DNA template, were performed. At least three inde-
pendent PCR reactions were pooled together before
sequencing [26].

PCR products were purified using the MicroSpin™ S-300
HR Columns (Amersham Pharmacia Biotech, Piscataway,
NJ), and were directly sequenced on an ABI PRISM™ 310
Genetic Analyser or 3100 DNA Sequencer (Applied Bio-
systems, Foster City, CA) using the sequencing kit "
BigDye™ Terminator Cycle Sequencing Ready Reaction"
(Applied Biosystems) according to manufacturer's specifi-
cations. Sequences were manually assembled and aligned
with BioEdit version 5.0.6 [27]. Ambiguous nucleotides
within the same individual sequence position were
checked against the sequencing chromatograms, to con-
firm validity of the nucleotide.

Analyses of population structure

Software DNAsp [28] were used to calculate summary sta-
tistics (H), neutrality tests Tajima's D [29] and Fu's Fs [30].
For median joining (MJ) network analyses, sequences pre-
viously aligned with Fluxus' DNA Alignment 1.121 soft-
ware [31] were input in the program NETWORK 4.1 [31].

All parameters implemented in NETWORK were set to
default: Characters weights (10 for all characters), trans-
versions/transitions ratios (1:1) and the distance calcula-
tion method (connection cost). Parameter epsilon, a
weighted genetic distance measure, was set to 0. Popula-
tion genetics analyses for intron + HEG were carried out
using Arlequin [32]. The dataset was input as sequence
length polymorphism (based on PCR results) with ten
individuals per population. Introns were grouped in four
categories according to their size: 1- 616 bp; 2- from 791
to 792 bp; 3- 909 bp; 4- from 1054 to 1058 bp. This data-
set was analyzed for F-statistics implementation. This soft-
ware was also used for Mantel's test of isolation by
distance. PSA-B, PSA-D and PSA-R individuals were
excluded from these analyses (data available for only one
individual per population).

Intron nomenclature adopted in this work (i.e. S1506)
was modified from Johansen and Haugen [33] and the
insertion location of the introns is given according to the
reference position in Escherichia coli SSU rDNA.

Cloning and in vitro transcription

Primers 1400F and 18S3' were used for the amplification
of the nuclear SSU rDNA intron, including the flanking
213 bp of the SSU rDNA 5'exon and 27 bp of the SSU
rDNA 3'exon. Amplicons of one individual of PSA-G,
PSA-L, PSA-T and PSA-V populations were cloned accord-
ing to manufacturer's specifications in pGEM®-T vectors
(Promega Corporation, Madison, WI), and were repli-
cated in E. coli DH10B. Plasmids were recovered and puri-
fied with Wizard® plus SV Minipreps DNA Purification
System (Promega) according to manufacturer's protocol.
Inserts were PCR amplified with primers T7 and 18S3' for
an in vitro transcription assay (Table 2), and purified with
the kit Wizard® SV Gel and PCR Clean up System
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Figure |

Map of South America highlighting Porphyra spiralis var. amplifolia (PSA) collection sites. |- PSA-A; 2- PSA-L; 3-
PSA-R*; 4- PSA-I; 5- PSA-S; 6- PSA-T; 7- PSA-G; 8- PSA-C; 9- PSA-D*; 10- PSA-B*; | |- PSA-V. Additional information on collections
sites are presented on Table |. * Data obtained from Oliveira and Ragan [2].

Table 2: Primers used for intron amplification and sequencing.

Primers Sequences Position in PSA References

1400F 5'-TGTACACACCGCCCGTC-3' SSU rDNA, 1659 Oliveira and Ragan [2]
iF-1 5-ACAAGGTTTCCGAAAGGG-3' Intron, 1798 Oliveira and Ragan [2]
iR-3 5 -TTAATGTCGTGACCGCGCA-3' Intron, 2306 Oliveira and Ragan [2]
iF-2 5-AAGTCGCTTTTGTTGGC-3' Intron, 2382 Oliveira and Ragan [2]
iR-2 5-TTCGGACTGACTGCGTCG-3' Intron, 2461 Oliveira and Ragan [2]
iF-3 5'-CGCTGGATGGTAATAAGGTG-3' Intron, 2580 Oliveira and Ragan [2]
iR-1 5'-GACTCTGCTTTCGCAG-3' Intron, 2730 Oliveira and Ragan [2]
18S3' 5'-GATCCTTCTGCAGGTTCACCTACGGAA-3' SSU rDNA, 2860 Oliveira and Ragan [2]
COX 2F 5'- GTACCWTCTTTDRGRRKDAAATGTGATGC -3' cox2-3, | Zuccarello et al. [43]
COX 3R 5'- GGATCTACWAGATGRAAWGGATGTC -3' cox2-3, 433 Zuccarello et al. [43]
F993 5'- GGTACTGTTGTAGGTAAATTWGAAGG -3' rbel - S, | Freshwater et al. [46]
RBCS3'R 5'- GTTCTTGTGTTAATCTCAC -3' rbcl - S, 571 Freshwater et al. [46]
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(Promega) according to manufacturer's protocol. Nega-
tive controls for PCR reactions were performed.

Transcription reactions (50 pL) were performed with 1 pg
of purified PCR products and T7 RNA polymerase
enzyme, in T7 RiboMAX™ Express large scale RNA produc-
tion system kit (Promega) according to manufacturer's
protocol. Transcription reactions were incubated at 45°C
for 45 min, then were digested with RQ1 RNase-free
DNase (Promega) and RNA transcripts were extracted
with phenol (pH 4.7): chlorophorm: isoamyl alcohol
(125:24:1).

Intron in vitro self-splicing assays

The extracted RNAs were tested for intron qualitative in
vitro self-splicing by the following assay: an aliquot of
each transcription reaction was incubated at 45°C for 45
min, in the presence of the self-splicing buffer as described
in Sogin and Edman [34]: 100 mM (NH,), SO,, 50 mM
Tris-HCI pH 7.5, 60 mM MgCl, and 0.2 mM GTP. The
RNA was extracted with phenol: chlorophorm: isoamyl
alcohol (25:24:1). To verify if introns self-spliced from
RNA, 2 uL of RNA were denatured at 70°C for 10 min in
18 pL of formamide denaturing buffer (according to man-
ufacturer's protocol) and were visualized in an ethidium
bromide stained 2% agarose gel [35].

Reverse transcription reactions followed by PCR (50 pL)
were carried out with 1X AccessQuick™ Master Mix buffer
(Promega), approximately 10 ng RNA, 0.2 uM of each
primer (1400F and 18S3') and 5 units AMV reverse tran-
scriptase (Promega). For cDNA synthesis, the reactions
were incubated at 45 ° C for 45 min followed by PCR cycle:
95°C for 2 min; 40 cycles at 95°C for 30 sec and 60°C for
30 sec; with a final extension step at 72°C for 5 min
according to manufacturer's protocol. All PCR reactions
included negative controls and were performed in a Min-
iCycler thermocycler (MJ Research).

PCR products were purified from agarose gels using Wiz-
ard® SV Gel and PCR clean up system kit (Promega) and
were re-amplified with primers 1400F and 18S3' as
described above. The PCR cycle used was as described for
RT-PCR. PCR products were purified with Wizard® SV Gel
and PCR clean up system kit (Promega) and were directly
sequenced as described above.

Results

Characterization of introns size polymorphisms at
different PSA populations

Group 1 S1506 introns from 80 Porphyra spiralis var. ampli-
folia (PSA) collected at eight different sites in the Southern
Brazilian shore were PCR amplified. Visualization in 0.7%
agarose gel unveiled four introns size polymorphism
among different PSA populations. The smallest introns
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were amplified from PSA-V population (616 bp) and the
largest introns were amplified from PSA-A, PSA-I, PSA-L
and PSA-T populations (1054-8 bp; Table 3). Intron size
polymorphisms within a population were detected only
for PSA-S and PSA-T collections. Presence of two introns
of different sizes occurring in the same sample was
observed for one individual from PSA-S (792 bp + 909
bp) and for one individual from PSA-T (792 bp + 1055
bp). Based on these PCR results, introns from 10 individ-
uals of PSA-S, PSA-T and PSA-V were sequenced, and for
the remaining populations, introns from two individuals
per population were sequenced. Sequencing data from
individuals PSA-B, PSA-D and PSA-R [2] were obtained
from the GenBank. In total, 44 introns sequences were
analyzed | GenBank accession numbers from FI147627 to
F1147667].

Introns size polymorphisms are due to insertions from 42
to 482 bp in intron P1 paired element. Variability among
the 44 PSA sequences (introns and P1-extension) yielded
17 different haplotypes (see additional file 1), with haplo-
type diversity (H) of 0.895. P1-extension is the most vari-
able region presenting nucleotide substitutions and
indels. When P1-extension was excluded from this com-
parison, only six different haplotypes were obtained with
H =0.175, and the substitutions observed were limited to
intron unpaired terminal loops (data not shown). The
neutrality tests results for introns without the P1-exten-
sion were all negative and significant (Tajima's D = -1.99,

Table 3: Seventeen haplotypes (HI to H17) distributed over 11
Porphyra spiralis var. amplifolia (PSA) populations (Table I).

Haplotype/lntron size  PSA Populations ORF His-Cys
HI - 1056 bp PSA-A 137 aa Yes, f/s
H2 - 1058 bp PSA-I 138aa Yes
H3 - 1054 bp PSA-R!2 137 aa Yes,fls
H4 - 1055 bp PSA-L 137 aa  Yes
H5 - 1055 bp PSA-, -L, -T 137232 Yes
Hé6 - 909 bp PSA-D! 87aa Yes,fls
H7 - 909 bp PSA-S, -T 88aa Yes,fls
H8 - 791 bp PSA-C 49aa No

H9 - 792 bp PSA-G 50aa No
H10 - 792 bp PSA-G, -S, -T 50aa No
HIl -792bp PSA-T 50aa No
HI12 - 792 bp PSA-S 50aa No
HI13-791 bp PSA-S 50aa No
H14 - 744 bp PSA-B! 45aa No
HI15 - 616 bp PSA-V 8aa No
H16 - 616 bp PSA-V 8aa No
H17 - 616 bp PSA-V 8aa No

Intron sizes in base pairs (bp), homing endonuclease open reading
frames (ORF) sizes in amino acids (aa) and if the His-Cys box motif is
present are indicated; f/s indicates if frame shifts corrections are
necessary for establishing the correct His-Cys box reading frame.
Data obtained from: ! Oliveira and Ragan [2], 2 Haugen et al [4].
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p <0.05; Fu's F=-3.63, p < 0.02), suggesting a rapid pop-
ulation expansion.

Complementary strands of P1-extensions of the 17 haplo-
types were translated in silico to amino acid sequences
according to Haugen et al. [4]. Open reading frames from
eight to 150 amino acids, were generated (Table 3, Figure
2) and were blasted against other available proteins in
GenBank with BLASTP [36]. Start codons for HEG were
found in all ORFs, however when compared to others
HEs, premature stop codons or stop codon deletions were
observed. His-Cys box motifs, zinc binding sites and
active sites were characterized on intron-coding comple-
mentary strands for six PSA individuals from three differ-
ent populations (Haplotypes H2, H4 and H5, Table 3,
Figure 2). For the remaining introns, His-Cys box motifs,
zinc binding sites and active sites were only verified when
frame-shifts corrections were manually inserted in silico,
or were absent. These results indicate that P1-extension of
the 17 haplotypes are degenerated HEG.

Cox2-3 and rbcL-S analyses

Cox2-3 region was PCR amplified and sequenced for five
individuals of each population analyzed in this work
[GenBank accession numbers from F[147587 to
FI147626]. The amplified region has a total length of 457
bp for all individuals, being the cox2-3 spacer 167 bp long.
Variability among the 40 PSA cox2-3 region sequences
analyzed, yielded five different haplotypes (Table 4). Hap-
lotypes differed from each other by one or two base-pairs
(0.2% to 0.7%), with H = 0.426. Similar to the results
obtained for the intron analyses, the Tajima's D values for
cox2-3 were negative (-1.42), but only marginally signifi-
cant (0.05 <p < 0.10).
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RbcL-S region was PCR amplified and sequenced for five
individuals of populations PSA-S, PSA-T and PSA-V, and
for two individuals of the remaining populations. The
region amplified is 570 bp long for all individuals, being
the rbcL-S spacer 77 bp long. A single haplotype was
obtained for all 25 analyzed individuals, with no diver-
gence within and among populations [ GenBank accession
numbers from F[147668 to FI147694].

Genetic relationships and population structure of PSA
populations

To determine the genetic relationships among the studied
PSA populations, three median joining networks were
constructed. The first one included intron + HEG
sequences (Figure 3A), the second was performed with
intron without HEG sequence data (Figure 3B), and the
third was constructed with cox2-3 region sequences (Fig-
ure 3C).

The network generated for intron + HEG sequences shows
three main clusters connected by median vectors, which
represent missing intermediates, that is extant haplotype
that was not sampled or an extinct ancestral haplotype
[37]. The first cluster comprises introns with 1054-8 bp
represented by haplotypes H1 to H5 and introns with 909
bp represented by haplotypes H6 and H7. The most com-
mon haplotype in this cluster is H5, which occurs in three
geographically distant populations (PSA-L, PSA-I, PSA-T).
Haplotypes H2, H4 and H5 present the intact His-Cys box
motif whereas haplotypes H1 and H3 present His-Cys box
only when frame shifts are inserted. Haplotypes H6 and
H7 present extensive deletions in the HEG, but still have
part of the His-Cys box motif. The second cluster com-
prises exclusively 791-2 bp introns without His-Cys box

30 40 50 60 70

100
e e o I I T e

110 120 130 140

H6 (909 bp intron)

Figure 2

Translation of homing endonuclease gene open reading frames of the five size polymorphisms. The His-Cys box
motif is underlined and zinc binding sites and active sites found in |-Ppol endonuclease are indicated by line above amino acids.
Stop codon is indicated by asterisk. End of sequence without stop codon is indicated by +. H — haplotype.
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Table 4: Cox2-3 region haplotype frequencies for each
population of Porphyra spiralis var. amplifolia (PSA).

PSA Population Hapl A HaplB HaplC HaplD HaplE

PSA-A
PSA-C
PSA-G
PSA-I

PSA-L
PSA-S
PSA-T
PSA-V
Total

WNOULLA ! hNhomouoo,
1
(%)
1

motif, represented by haplotypes H8 to H13. The most
common haplotype in this cluster is H10, which is found
in populations PSA-G, PSA- S and PSA-T. The third cluster
comprises the smaller introns (616 bp and 744 bp) repre-
sented by haplotypes H14 to H17. The most common
haplotype in this cluster is H17, which is from population
PSA-V. The intron + HEG network shows a pattern of iso-
lation by distance for PSA populations.

The results for pairwise Fst analyses of frequency of allele
size polymorphisms are presented in Table 5. It was pos-
sible to note three distinct patterns of significant Fst val-
ues, according to population geographic distribution.
Populations PSA-A,PSA-I and PSA-L presented significant
Fst values when compared to populations PSA-C, PSA-G,
PSA-S and PSA-T, and all of them presented significant Fst
values when compared to population PSA-V. Mantel's test
results found significant correlation between Fst values
and geographic distance (p = 0.028) corroborating the
hypothesis of isolation by distance suggested by intron +
HEG network.

The minimum spanning tree generated for intron without
HEG (Figure 3B) and cox2-3 region sequences (Figure 3C)
exhibit a star-like topology. For intron without HEG, the
most frequent central haplotype occurred in 9 out of 11
collection sites (39 of the 44 individuals; 89%). For cox2-
3 region sequences, the majority of the individuals (7 of
the 8 populations accounting for 30 out of 40 individuals
analyzed; 75%) possess the most frequent central haplo-
type. According to both networks topologies, a recent
population expansion was detected for these markers.

Self splicing assays

Introns and exons flanking regions of one individual from
populations PSA-V (616 bp), PSA-G (792 bp), PSA-T (909
bp) and PSA-L (1055 bp) were cloned for in vitro tran-
scription. Pre-RNA of the four individuals were incubated
at 45°C for 45 min to verify the self-splicing reaction. The
self-splicing reaction was observed, however just a part of
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the introns was spliced, while the other part remained
attached to exons (as pre-RNA, additional file 2).

To confirm whether the exons were ligated, a RT-PCR reac-
tion was performed with primers 1400F and 18S3' using
the RNA previously incubated in the conditions described
above. The bands were excised from the gel and re-ampli-
fied with primers 1400F and 18S3' which anchors in the
exons. The results of the re-amplification are shown in
additional file 3. Amplicons were sequenced and the
smaller bands were the joined 5' and 3' exons, presenting
the reconstructed insertion site.

Discussion

Characterization of introns size polymorphisms at
different PSA populations

Group I introns are well documented in the literature
occurring in the red algal genera Bangia and Porphyra
(Order Bangiales) [5,13-15]. Some of these group I
introns present ORFs of different sizes inserted in their P1
and P2 paired elements [3-5]. Size variation in these ORFs
represents different stages of the HEG cycle (full length,
degenerated or absent). Goddard and Burt [38] postulated
that the HE coded by an intron recognizes the intron
insertion site in an intronless population, invade it by lat-
eral transfer and then it is vertically transmitted to the off-
spring. After being fixed with high frequencies in a
population, the HEG degenerates to a non-functional
state, and then the intron and the HEG tend to be lost. In
this way, the intron recognition site is reestablished
becoming available to be invaded again by an active HEG-
containing intron from the same species or from a closely
related species, thus restarting the homing cycle.

In a previous work, Oliveira and Ragan [2] characterized
three size polymorphisms for group I introns from three
PSA individuals. In this work, two more sizes were charac-
terized, in a total of five different sizes distributed in 11
PSA populations along the Brazilian coast. According to
the cycle proposed by Goddard and Burt [38], HEGs can
be found in three different character states: functional
(full length), nonfunctional (degenerated) and absent
(both HEG and intron). In PSA populations analyzed in
this work, we could only detect the nonfunctional state
represented by HEG degeneration, indicating that full
length HEG containing intron was once fixed for these
populations. The different states of the intron + HEG are
not always found within natural populations, probably as
a result of insufficient sampling [1].

Muiller et al. [5] evaluated if the cycle proposed by God-
dard and Burt [38], applied to group I introns present in
the order Bangiales. Presence of introns containing degen-
erated HEGs, presence of introns without HEG and
absence of introns, all these states scattered along individ-
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uals from different species, indicated that Goddard & Burt
[38] model is supported by intron + HEG distribution in

the order Bangiales.

Of the 44 introns sequences, only six presented the intact
His-Cys box motif. Although these ORFs did not present
frameshifts mutation, they terminated prematurely rela-
tively to the amino acid sequence for the homing endonu-
clease I-Ppol from the slime mould Physarum polycephalum
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Table 5: Population Pairwise Fst.
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Population PSA-A PSA-C PSA-G PSA-I PSA-L PSA-S PSA-T PSA-V
PSA-A + + - - + + +
PSA-C 1.0000 - + + - - +
PSA-G 1.0000 0.0000 + + - - +
PSA-I 0.0000 1.0000 1.0000 - + + +
PSA-L 0.0000 1.0000 1.0000 0.0000 + + +
PSA-S 0.9000 0.000 0.000 0.9000 0.9000 - +
PSA-T 0.6996 0.1205 0.1205 0.6996 0.6996 -0.004 +
PSA-V 1.0000 1.0000 1.0000 1.0000 1.0000 0.9000 0.7537

Pairwise Fst values of intron size polymorphisms of Porphyra spiralis var. amplifolia populations (PSA, lower left). Significant values are represented by
the plus sign, and no significant values are represented by the minus sign (upper right).

[39], likewise Porphyra fucicola and P. umbilicalis HEG
sequences [5]. As these sequences were not tested for
endonuclease activity, they will be considered as HEG
pseudogenes, as suggested by Miiller et al. [5].

Cox2-3 and rbclL-S regions analyses

Cox2-3 and rbcL-S regions were sequenced in addition to
the SSU rDNA introns, to infer genealogical relationships
of PSA populations. Divergence among cox2-3 haplotypes
of the 40 PSA individuals sequenced ranged from 0.2% to
0.7%. These values are in accordance to the divergence
found among cox2-3 haplotypes from Grateloupia doryph-
ora (0.3% to 0.6%) from North Atlantic and North Pacific
[19]. However, they differ significantly when compared to
the divergence among cox2-3 region from Batrachosper-
mum helminthosum individuals from North America, 0.3%
to 6.5% [22] and from Acanthophora spicifera individuals
from the Hawaiian Islands, where a single haplotype was
observed [40].

RbcL-S region has been employed in Rhodophyta as a
marker at the inter-specific, intra-specific and intra-popu-
lation levels [21,23,41-43], with levels of divergence of:
13% t018% for Gracilaria species [41] and 12.5% to
13.4% for individuals of the Gymnogongrus complex [42].
However, a unique haplotype from all the sampled range
(ca. 800 km) was determined for the rbcL-S sequences
from 25 PSA individuals.

Population structure and genetic relationships of PSA
populations

Genetic relationships of the 17 haplotypes (introns +
HEG) obtained from PSA populations were accessed
through network analyses. The network exhibit three
main clusters suggesting a pattern of isolation by distance
for the populations analyzed. The same grouping pattern
was obtained for Fst analysis. Mantel's test corroborated
the hypothesis indicated by the two previous analyses.
Therefore, isolation by distance appears to be the basic
process accounting for structure in PSA populations, man-
ifested in a cline of HEG degeneration. Populations sam-

pled at the southernmost end of the distribution present
the entire His-Cys box motif, while the population sam-
pled at the northernmost end of the distribution, consid-
ering the start codon proposed by Haugen et al. [4], has
only eight amino acids of the HE. Distributed between
these two extremes, are the intermediate-sized alleles.

The neutrality tests results for the intron without HEG
indicated a fast population growth from an ancestor pop-
ulation with small effective number. At the same time,
cox2-3 region results were marginally significant for the
neutrality tests and rbcL-S region results showed no nucle-
otide variability. The low variability in these markers, also
observed in the networks, is consistent with a demo-
graphic event of expansion from a population with low
effective number affecting all loci. These results are not
compatible to the HEG length polymorphism. The intron
+ HEG marker showed remarkable variation in length in
the same individuals that presented few variations for the
other markers. Therefore, in the same window of time,
much more variation was accumulated in HEG than in
sequence variation in the other three markers, which are
probably under different selection constraints. Consider-
ing the recent population expansion for PSA along the
Brazilian coast, degeneration of HEG was a very fast proc-
ess. First, if we assume that a functional HEG have a cost
to the host cell, then natural selection will increase the fre-
quency of nonfunctional elements; and second, if we
assume that the HEG was already fixed for PSA popula-
tions (there is no availability of insertion site), then the
frequency of nonfunctional elements will increase due to
low selection to keep a functional HEG [38].

Based on these assumptions, two different scenarios can
be proposed to explain intron +HEG evolution in PSA
populations: In the first scenario, the horizontal transfer
of intron + HEG occurred in an ancestral individual, prior
to the colonization of PSA populations in the Brazilian
coast. Therefore, it is reasonable to believe that the same
bottleneck event that was detected by the three markers
(intron without HEG, cox2-3 and rbcL-S regions) probably
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had as a consequence the fixation in the population of the
full length HEG (functional). If the largest introns are con-
sidered as the ancestral state, then the oldest populations
are located in the southernmost end of the distribution,
and as long as individuals migrate to the north, their
HEGs tend to degenerate. This scenario is consistent with
the proposed hypothesis for intron insertion and evolu-
tion in the order Bangiales based on phylogenetics analy-
sis of SSU rDNA and respective group I introns - Intron
horizontal transfer to an ancestor of the order Bangiales,
followed by vertical inheritance and evolution within the
order as proposed by Muller et al [5].

In the second scenario, the ancestral PSA individual lack
intron + HEG. It is possible to suggest that the horizontal
transfer of intron + HEG in PSA SSU rDNA occurred after
the event of demographic expansion. In this case, the
intron with the most degenerated HEG - with more dele-
tions accumulated - is present in the oldest population.
This state was found in the northernmost population, sug-
gesting a horizontal transfer event to have occurred in an
individual from the PSA-V population. After the horizon-
tal transfer event, the functional HEG invaded the other
PSA populations by gene flow, being the largest HEG
present in the more recently invaded populations, at the
southernmost end of distribution. Within the context of
intron evolution in the order Bangiales, this scenario is
possible assuming the hypothesis that more than one
intron insertion events has occurred during the divergence
of the order [5].

This is the first report addressing intron evolution focus-
ing on only one species. Understanding the mechanisms
beyond intron + HEG evolution has been a challenge,
despite all the knowledge obtained for these elements.

Self splicing assays

As self-splicing catalytic properties of group I introns are
highly dependent on intron three-dimensional structure
[44], we verified whether the occurrence of insertions in
P1 paired element alters intron catalytic activities, check-
ing if introns sizes variants self-splice in vitro. One way to
check for intron excision is the confirmation of exons liga-
tion [45].

The four intron size variants analyzed in this work self-
spliced in vitro. Therefore, the occurrence of different size
polymorphisms in intron P1 paired element do not
refrain intron self-splicing mechanism, although there is a
hypothesis that the presence of HEG may diminish self-
splicing efficiency [1]. The loops are strategic localities for
HEG insertion. HEG have been considered invasive
mobile elements that remain neutral to the host when
inserted into introns, becoming invisible to negative selec-
tion [6]. If group I introns lose their self-splicing capabil-
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ity due to the presence of a HEG, they both would
probably be eliminated from the gene they were inserted,
since there is a strong selection against non-functional
rDNA genes.

Conclusion

Commercial exploitation, mariculture and introduction
of invasive species have been a major problem in the
assignment of Porphyra geographic origins. Phenotypic
plasticity along with a simple morphology is also an
obstacle in Porphyra identification. Furthermore, scientific
researches are more focused on taxonomy and phylogeny
of the group than in population surveys. Population struc-
ture of Porphyra spiralis var. amplifolia could be assigned by
HEG degeneration, although not by cox2-3 and rbcL-S
regions. Therefore, intron size polymorphism is a suitable
population marker for this species, and it can be rapidly
detected using PCR assay.

The intron size polymorphism found in the PSA popula-
tions, corroborate the HEG cycle proposed by Goddard &
Burt [38], indicating that the degenerated HEGs are remi-
niscent of the presence of a full-length and functional
HEG, once fixed for PSA populations. The cline of HEG
degeneration detected for PSA populations along the
Southern Brazilian coast, determined the pattern of isola-
tion by distance. Analyses with the other markers indi-
cated a demographic event of expansion for PSA, from a
population with low effective number. The maintenance
of the HEG apparently does not refrain the ability of the
intron to self-splice even when the different degrees of
degeneration of these elements are present.
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Additional material

Additional file 1

Alignment of the haplotypes (H1 to H17, Table 3) of Porphyra spi-
ralis var. amplifolia intron sequences. Exons nucleotides are repre-
sented in lowercase letters, and intron and homing endonuclease gene
nucleotides are represented in uppercase letters. Homing endonuclease
open reading frame (ORF) start (484) and stop (28) positions are shad-
owed in gray. The orientation of the ORF is indicated by a horizontal
arrow. Conserved nucleotides that forms the u*G pair are in positions 6
and 496, respectively. Line above sequences indicates Hys-Cys Box motif.
Dashes in the alignment represent gaps.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2148-8-308-S1.pdf]

Additional file 2

In vitro self-splicing reaction visualized in 0.7% agarose gel. Lane 1,
RNA ladder (Invitrogen); lane 2, Porphyra spiralis var. amplifolia
(PSA)-V3; lane 3,PSA-G4; lane 4, PSA-T10; lane 5, PSA-L8. Expected
sizes for each step of intron self-splicing are given in the right side of the
figure. The largest bands are the product of intron cyclization [47].
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2148-8-308-S2.jpeg|

Additional file 3

Amplification of the cDNA confirming the ligation of the exons. Lane
1, 100 bp DNA ladder (Promega); lanes 2 and 3,Porphyra spiralis var.
amplifolia (PSA)-V3; lanes 4 and 5,PSA-G4; lanes 6 and 7, PSA-T10;
lanes 8 and 9, PSA-LS.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2148-8-308-S3.jpeg]

Acknowledgements

Funds for this project were supported by FAPESP and CNPq (Brazil). We
thank Mutue T. Fujii, Nair S. Yokoya and Silvia P. Guimarées (Instituto de
Boténica, Projeto Flora Ficoldgica do Estado de Sdo Paulo) for help during

specimen collections; Peik Haugen for helping with suggestions for the man-

uscript; for the helpful comments of the reviewers and Silvia R. Blanco and

Rosario Petti for technical assistance.

References

2.

Haugen P, Simon DM, Bhattacharya D: The natural history of
group l introns. Trends Genet 2005, 21(2):111-119.

Oliveira MC, Ragan MA: Variant forms of a group | intron in
nuclear small-subunit rRNA genes of the marine red alga
Porphyra spiralis var. amplifolia. Mol Biol Evol 1994, 11:195-207.
Vader A, Naess J, Haugli K, Haugli F, Johansen S: Nucleolar introns
from Physarum flavicomum contain insertion elements that
may explain how mobile group-I introns gained their open
reading frames. Nucleic Acids Res 1994, 22:4553-4559.

Haugen P, Huss VAR, Nielsen H, Johansen S: Complex group-I
introns in nuclear SSU rDNA of red and green algae: evi-
dence of homing-endonuclease pseudogenes in the Bangi-
ophyceae. Curr Genet 1999, 36:345-353.

Miiller KM, Cannone J), Gutell RR, Sheath RG: A Structural and
Phylogenetic Analysis of the Group ICI Introns in the Order
Bangiales (Rhodophyta). Mol Biol Evol 2001, 18:1654-1667.
Belfort M, Roberts R]: Homing endonucleases: keeping the
house in order. Nucleic Acids Res 1997, 25:3379-3388.

20.

21.

22.

23.

24,

25.

26.

27.

http://www.biomedcentral.com/1471-2148/8/308

Belfort M, Perlman PS: Mechanisms of intron mobility. | Biol
Chem 1995, 270(51):30237-30240.

Chevalier BS, Stoddard L: Homing endonucleases: structural
and functional insight into the catalysts of intron/intein
mobility. Nucleic Acids Res 2001, 29:3757-3774.

Zhao L, Bonocora RP, Shub DA, Stoddard BL: The restriction fold
turns to the dark side: a bacterial homing endonuclease with
a PD-(D/E)-XK motif. EMBO | 2007, 26:2432-2442.

Johansen S, Embley TM, Willassen NP: A family of nuclear homing
endonucleases. Nucleic Acids Res 1993, 21(18):4405.

Ragan MA, Bird CJ, Rice EL, Singh RK: The nuclear 18S ribosomal
RNA gene of the red alga Hildenbrandia rubra contains a
group | intron. Nucleic Acids Res 1993, 21(16):3898.

Sherwood AR, Sheath RG: Biogeography and systematics of
Hildenbrandia (Rhodophyta, Hildenbrandiales) in North
America: inferences from morphometrics and rbcL and 18S
rRNA gene sequence analyses. Eur | Phycol 1999, 34:523-532.
Milstein D, Oliveira MC: Molecular phylogeny of Bangiales
(Rhodophyta) based on small subunit rDNA sequencing:
Emphasis on Brazilian Porphyra species. Phycologia 2005,
44(2):212-221.

Oliveira MC, Kurniawan J, Bird CJ, Rice EL, Murphy CA, Singh RK,
Gutell RR, Ragan MA: A preliminary investigation of the order
Bangiales (Bangiophycidae, Rhdophyta) based on sequences
of the nuclear small-subunit ribossomal RNA genes. Phycol
Res 1995, 43:71-79.

Broom JE, Nelson WA, Yarish C, Jones WA, Aguilar Rosas R, Aguilar
Rosas LE: A reassessment of the taxonomic status of Porphyra
suborbiculata, Porphyra carolinensis and Porphyra lilliputiana
(Bangiales, Rhodophyta) based on molecular and morpho-
logical data. Eur J Phycol 2002, 37:227-235.

Kunimoto M, Kito H, Kaminishi Y, Mizukami Y, Murase N: Molecular
divergence of the SSU rRNA gene and internal transcribed
spacer | in Porphyra yezoensis (Rhodophyta). | Appl Phycol 1999,
11:211-216.

Kunimoto M, Kito H, Mizukami Y, Murase N, Levine |: Molecular
features of a defined genetic marker for the determination
of the Porphyra tenera lineage. | Appl Phycol 2003, 15:337-343.
Vis ML, Sheath RG: A molecular and morphological investiga-
tion of the relationship between Batrachospermum sperma-
toinvolucrum and B. gelatinosum (Batrachospermales,
Rhodophyta). Eur | Phycol 1998, 33:231-239.

Marston M, Bohnsack MV: Genetic variability and potential
sources of Grateloupia doryphora (Halymeniaceae, Rhodo-
phyta), an invasive species in Rhode Island waters (USA). |
Phycol 2002, 38:649-658.

Zuccarello GC, West JA: Hybridization studies in Bostrychia. 2:
Correlation of crossing data and plastid DNA sequence data
within B. radicans and B. moritziana (Rhodophyta, Cerami-
ales). Phycologia 1997, 36:293-304.

Zuccarello GC, West JA: Phylogeography of the Bostrychia cal-
liptera-B. pinnata complex (Rhodomelacea, Rhodophyta)
and divergence rates based on nuclear, mitochondrial and
plastid DNA markers. Phycologia 2002, 41(1):49-60.

Chiasson WB, Machesky NJ, Vis ML: Phylogeography of a fresh-
water red algae Batrachospermum helminthosum in North
America. Phycologia 2003, 42(6):654-660.

Cohen S, Faugeron S, Martinez EA, Correa JA, Viard F, Destombe C,
Valero M: Molecular identification of two sibling species under
the name Gracilaria chilensis (Rhodophyta, Gracilariales). |
Phycol 2004, 40:742-747.

Oliveira EC, Coll J: The genus Porphyra C. Ag. (Rhodophyta-
Bangiales) in the American South Atlantic. I. Brazilian spe-
cies. Bot Mar 1975, 18:191-197.

Hibbett DS: Phylogenetic evidence for horizontal transmis-
sion of group | introns in the nuclear ribosomal DNA of
mushroom-forming fungi. Mol Biol Evol 1996, 13:903-917.
Baldwin BG, Sanderson M, Porter JM, Wojciechowski MF, Campbell
CS, Donoghue MJ: The ITS region of nuclear ribosomal DNA:
a valuable source of evidence on angiosperm phylogeny. Ann
Missouri Bot Gard 1995, 82:247-277.

Hall TA: BioEdit: A user-friendly biological sequence align-
ment editor and analysis program for Windows 95/98/NT.
Nucleic Acids Symp Ser 1999, 41:95-98.

Page 11 of 12

(page number not for citation purposes)


http://www.biomedcentral.com/content/supplementary/1471-2148-8-308-S1.pdf
http://www.biomedcentral.com/content/supplementary/1471-2148-8-308-S2.jpeg
http://www.biomedcentral.com/content/supplementary/1471-2148-8-308-S3.jpeg
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15661357
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15661357
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8170361
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7984404
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7984404
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7984404
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10654088
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10654088
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10654088
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11504846
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11504846
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11504846
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9254693
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9254693
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8530436
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11557808
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11557808
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11557808
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17410205
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17410205
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17410205
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8415009
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8415009
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8367310
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8367310
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8367310
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8751999
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8751999
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8751999

BMC Evolutionary Biology 2008, 8:308 http://www.biomedcentral.com/1471-2148/8/308

28. Rozas |, Sanchez-Delbarrio JC, Messeguer X, Rozas R: DNAsp,
DNA polymorphism analyses using the coalescent and other
methods. Bioinformatics 2003, 19:2496-2497.

29. Tajima F: Statistical method for testing the neutral mutation
hypothesis by DNA polymorphism. Genetics 1989,
123(3):585-595.

30. Fu YX: Statistical tests of neutrality of mutations against pop-
ulation growth, hitchhiking and background selection. Genet-
ics 1997, 147:915-925.

31. Fluxus-engineering.com [http://www fluxus-engineering.com]

32. Excoffier L, Laval G, Schneider S: Arlequin (version 3.0): an inte-
grated software package for population genetics data analy-
sis. Evolutionary Bioinformatics Online 2005, 1:47-50.

33. Johansen S, Haugen P: A new nomenclature of group | introns
in ribosomal DNA. RNA 2001, 7:935-936.

34. Sogin ML, Edman JC: A self-splicing intron in the small subunit
rRNA gene of Pneumocystis carinii. Nucleic Acids Res 1989,
17:5349-59.

35. Sambrook ], Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory
Manual Cold Spring Harbour Laboratories press; 1989.

36. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local
alignment search tool. | Mol Biol 215:403-410.

37. Posada D, Crandall KA: Intraspecific gene genealogies: trees
grafting into networks. Trends Ecol Evol 2001, 16(1):37-45.

38. Goddard MR, Burt A: Recurrent invasion and extinction of a
selfish gene. Proc Natl Acad Sci USA 1999, 96:13880-13885.

39. Flick KE, Jurica MS, Monnat R|, Stoddard BL: DNA binding and
cleavage by the nuclear intron-encoded homing endonucle-
ase I-Ppo I. Nature 1998, 394:96-101.

40. O'Doherty DC, Sherwood AR: Genetic populations structure of
the Hawaiian alien invasive seaweed Acanthophora spicifera
(Rhodophyta) as revealed by DNA sequencing and ISSR
analyses. Pac Science 2007, 61(2):223-233.

41. Destombe C, Douglas SE: Rubisco spacer sequence divergence
in the rhodophyte alga: a technique for discrimination of
closely related species. Curr Genet 1991, 19:395-8.

42. Maggs CA, Douglas SE, Fenety ], Bird CJ: A molecular and mor-
phological analysis of the Gymnogongrus devoniensis (Rhodo-
phyta) complex in the North Atlantic. | Phycol 1992,
28:214-232.

43. Zuccarello GC, Burger G, West JA, King R: A mitochondrial
marker for red algal intraspecific relationships. Mol Ecol 1999,
8:1443-1447.

44. Golden BL, Gooding AR, Podell ER, Cech TR: A preorganized
active site in the crystal structure of the Tetrahymena
ribozyme. Science 1998, 282:259-264.

45. Cech TR: Self-splicing of group | introns. Annu Rev Biochem 1990,
59:543-568.

46. Freshwater DW, Fredericq S, Butler BS, Hommersand MH, Chase
MW: A gene phylogeny of the red algae (Rhodophyta) based
on plastid rbc L. Proc Natl Acad Sci USA 1994, 91:7281-7285.

47. Zaug AJ, Grabowski PJ, Cech TR: Autocatalytic cyclization of an
excised intervening sequence RNA is a cleavage-ligation
reaction. Nature 1983, 301:578-83.

Publish with Bio Med Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and published immediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here: O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 12 of 12

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14668244
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14668244
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14668244
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2513255
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2513255
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9335623
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9335623
http://www.fluxus-engineering.com
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11453066
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11453066
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2788266
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2231712
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2231712
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11146143
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11146143
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10570167
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10570167
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9665136
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1680570
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1680570
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1680570
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10564449
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10564449
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9841391
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9841391
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2197983
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8041781
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6186917
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6186917
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6186917
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Methods
	DNA extraction, PCR amplification and sequencing
	Analyses of population structure
	Cloning and in vitro transcription
	Intron in vitro self-splicing assays

	Results
	Characterization of introns size polymorphisms at different PSA populations
	Cox2-3 and rbcL-S analyses
	Genetic relationships and population structure of PSA  populations
	Self splicing assays

	Discussion
	Characterization of introns size polymorphisms at different PSA populations
	Cox2-3 and rbcL-S regions analyses
	Population structure and genetic relationships of PSA  populations
	Self splicing assays

	Conclusion
	Authors' contributions
	Additional material
	Acknowledgements
	References

