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Abstract

Background: The mitochondria of contemporary organisms contain fewer genes than the
ancestral bacteria are predicted to have contained. Because most of the mitochondrial proteins are
encoded in the nucleus, the genes would have been transferred from the mitochondrion to the
nucleus at some stage of evolution and they must have acquired cis-regulatory elements compatible
with eukaryotic gene expression. However, most of such processes remain unknown.

Results: The ribosomal protein L6 gene (rpl6) has been lost in presently-known angiosperm
mitochondrial genomes. We found that each of the two rice rpl6 genes (OsRplé6-1 and OsRplé-2) has
an intron in an identical position within the 5'-untranslated region (UTR), which suggests a
duplication of the rplé gene after its transfer to the nucleus. Each of the predicted RPL6 proteins
lacks an N-terminal extension as a mitochondrial targeting signal. Transient assays using green
fluorescent protein indicated that their mature N-terminal coding regions contain the
mitochondrial targeting information. Reverse transcription-PCR analysis showed that OsRpl6-2
expresses considerably fewer transcripts than OsRplé-1. This might be the result of differences in
promoter regions because the 5'-noncoding regions of the two rplé genes differ at a point close to
the center of the intron. There are several sequences homologous to the region around the 5'-
UTR of OsRpl6-1 in the rice genome. These sequences have characteristics similar to those of the
transposable elements (TE) belonging to the PIF/Harbinger superfamily.

Conclusion: The above evidences suggest a novel mechanism in which the 5-UTR of the
transferred mitochondrial gene was acquired via a TE. Since the 5'-UTRs and introns within the 5'-
UTRs often contain transcriptional and posttranscriptional cis-elements, the transferred rice
mitochondrial rpl6 gene may have acquired its cis-element from a TE.
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Background

Mitochondria are thought to be descendants of endosym-
biotic bacteria that entered into the host cell [1]. The mito-
chondria of contemporary organisms contain
considerably fewer genes than the ancestral bacteria are
predicted to have contained. Thousand or more mito-
chondrial proteins are predicted to be encoded in the
nucleus [2,3]. Such the nucleus-encoded genes are tran-
scribed from eukaryotic promoters, followed by transla-
tion into proteins by cytosolic ribosomes. In many cases,
the proteins are synthesized as precursors having N-termi-
nal extensions (presequences), which act as mitochon-
drial targeting signals. Most of these genes would have
been transferred from the mitochondrion to the nucleus
at some stage of evolution although some genes may have
been recruited from other sources [4]. The transferred
mitochondrial genes must have acquired cis-regulatory
elements compatible with eukaryotic gene expression
(e.g., promoters, enhancers, poly (A) signals and
sequences for mitochondrial targeting signals) because
mitochondrial gene expression is mainly prokaryotic.
However, most of the processes for the gene activation
remain unknown.

Mitochondrial gene content is highly variable depending
on the taxa studied. The mammalian mitochondrial
genome is conserved and constant all over the groups,
whereas within Tracheophyta (higher plants), the
genomes exhibit differential gene losses, indicating that
gene transfer to the nucleus is an ongoing process during
the evolution of Magnoliophyta (angiosperms) [5]. Typi-
cal such cases are the ribosomal protein genes, showing
more frequent gene-loss than other types of mitochon-
drial gene in many angiosperm species. For example, a
sequence homologous to the ribosomal protein L6 gene
(pl6) is absent from all known angiosperm mitochon-
drial genomes [6-8], whereas the corresponding sequence
is encoded in the mitochondrial genomes of lower plants
[9]. The sequences of the nucleus-encoded rpl6 gene have
recently been identified in the complete Arabidopsis
nuclear genome [6,8] and the draft rice nuclear genome
[8]. However, detailed analysis has not yet been per-
formed. We previously reported the loss or dysfunction of
several ribosomal protein genes in the complete rice mito-
chondrial genome [10]. We have also isolated several
genes that had been transferred from the mitochondrion
to the nucleus in rice [11-14]. Previous studies, including
ours, have revealed frequencies of gene transfer events, the
origins of sequence elements, and a few possible mecha-
nisms involved [5]. For examples, the rps10 gene has
undergone numerous independent gene transfer events
during recent angiosperm evolution [15]. Presequences
for rice rps11-1, Arabidopsis sdh3 and carrot rps10 genes
seem to have been copied from those for the atp2, hsp70
and hsp22 genes, respectively [11,15,16]. Common use of
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a presequence in different proteins via alternative splicing
has also been found in maize and rice [12,17]. Chromo-
somal recombinations would have been involved in the
gain of a promoter for rice rpl27 gene [18]. Genes are
sometimes divided into pieces or functionally replaced: a
coding region of rpl2 gene has been divided into 5'- and
3'-parts in dicots, either or both of which have been trans-
ferred to the nucleus in some species [19]; mitochondrial
rps13 and rps8 genes have been replaced by duplicated
copies of chloroplast (rps13) and cytosolic counterparts
(rps15A), respectively [6]. However, despite these exam-
ples, it is mostly unclear how the sequence elements com-
patible with eukaryotic expression were successfully
moved and then joined with the transferred mitochon-
drial genes.

In this study, we identified and characterized the rice pl6
gene. The release of the complete nuclear sequence of rice
[20] and its fine genome annotation [21] enabled us to
survey the genes and their genomic environment in detail.
Based on this information, two copies of rice rpl6 gene
(OsRpl6-1 and OsRpl6-2) were identified in the rice
genome. Sequence comparison of the two rpl6 genes
strongly suggests a duplication of the rpl6 gene via
genomic DNA rather than two separate gene transfer
events. Although the sequences of the two rpl6 copies are
homologous within the coding regions and have similar
mitochondrial targeting properties, OsRpl6-1 was
expressed to a greater extent than OsRpl6-2. A region
around the 5'-untranslated region (UTR) of OsRpl6-1 is
conserved in several other rice sequences. Interestingly,
this conserved region has characteristics similar to those
of class II transposable elements (TEs). It is well estab-
lished that numerous TEs are present in eukaryotic
nuclear genomes and that some of them affect genomic
rearrangement and gene expression via translocation [22].
The TE within OsRpl6-1 would have been involved in the
acquisition of the 5'-UTR, which may be responsible for
the difference in the amount of transcripts produced by
the two 1pl6 genes. The significance of TEs for the activa-
tion of transferred mitochondrial sequence and the evolu-
tion of such processes are discussed.

Results

Identification of two copies of the mitochondrial rplé gene
in the rice genome

A BLAST search of the complete rice nuclear sequence [20]
identified two rpl6 sequences, OsRpl6-1 and OsRpl6-2 (Fig.
1A). OsRpl6-1 is a newly described rice rpl6 gene, whereas
the sequence of OsRpl6-2 corresponds to that of a previ-
ously reported one [8]. The OsRpl6-1 and OsRpl6-2 genes
are assigned to chromosomes (Chrs) 3 and 8 as loci
0s03g0725000 and Os08g0484301, respectively, in the
Rice Annotation Project Database (RAP-DB) Build 4 [21].
Each of the OsRpl6-1 and OsRpl6-2 genes is transcribed
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Exon 2

100 bp

Schematic representation of the rice mitochondrial rplé genes, OsRpl6-1 and OsRpl6-2. (A) The exon-intron struc-
tures of OsRpl6-1 and OsRplé-2. Exons and introns are represented by boxes and thick lines, respectively. In the exons, the
RPL6-protein coding regions are colored with red, whereas the 5'- and 3'-untranslated regions (UTRs) are colored with white.
The 5'-nontranscribed spacer upstream of the OsRpl6-1 exon | is indicated by a thin line. The GT and AG dinucleotides at the
border of the intron are indicated by small arrows. The direction of each OsRplé-1 and OsRpl6-2 transcript is indicated by a
thick pink arrow joined with a thin pink broken line. A homologous region in the two rplé genes is shaded. The locations of
primers P1-P8 are indicated by small arrowheads. The position of the Dral site in OsRpl6-2 is indicated by a bent arrow. The
location of transposable elements (TEs) is enclosed with a blue dotted outline, and the structures are shown below. (B) Struc-
ture of TEs in OsRplé-1. Blue and pale blue coloring, respectively, represent well-conserved and poorly-conserved regions
among various rice sequences (Figs. 4 and 5). Potential terminal inverted repeat (TIR) and target site duplication (TSD) are indi-
cated by yellow and green triangles, respectively (not to scale). An insertion of the Mutator-like element within the 5'-nontran-

scibed spacer region is indicated by an open triangle.

because cDNA sequence corresponding to each gene is
found in the database [representative GenBank accession
nos. AK119694 and CI260120 for OsRpl6-1 and OsRpl6-2,
respectively] (Fig. 1A, thick pink arrow joined with thin
pink broken line). Each gene has an intron in an identical
position within the 5'-UTR (Fig. 1A), as is the case for Ara-
bidopsis rpl6 [8]. The coding regions of the two rice rpl6
genes, each of which is predicted to encode a protein con-
sisting of 103 amino acids, have 92% nucleotide sequence
identity. Because the 3'-terminal regions of the intron
showed 65% identity in the two rice rpl6 (Fig. 1A, shaded
region), they were probably generated by a duplication
event via genomic DNA after gene transfer to the nucleus,
rather than by two separate transfer events.

Mitochondrial targeting of OsRplé gene products

In contrast to the mitochondrial RPL6 proteins of lower
plants [9], the predicted proteins of the two rice rpl6 genes
did not contain N-terminal extensions for presequences.

Although the Arabidopsis rpl6 gene [8] and all the other
Spermatophyta (seed plants) rpl6 cDNAs in the database
also lack any coding capacity for presequences (data not
shown), localization of the RPL6 protein has not been
studied. We examined the subcellular localization of RPL6
using green fluorescent protein (GFP). A construct, in
which the N-terminal coding region of OsRpl6-1 was fused
to synthetic GFP ¢cDNA [23], exhibited fluorescence in
particles of about 1 um in diameter (Fig. 2A, left panel).
These particles coincided with the fluorescence of a mito-
chondrial-specific dye, MitoTracker Red (Fig. 2A, center
and right panels), indicating that the protein was
imported into the mitochondria. A construct containing
the N-terminal coding region of OsRpl6-2 gave similar
results (Fig. 2B). In contrast, a construct containing the C-
terminal coding region of OsRpl6-1 did not localize pro-
teins to the mitochondria (Fig. 2C). These results indicate
that the mature N-terminal coding regions of rice RPL6
proteins are important for mitochondrial localization.
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Figure 2

Subcellular localization of GFP fusion proteins in tobacco BY-2 cells. Constructs were fused to GFP cDNA at the fol-
lowing positions: (A) the N-terminal coding region of OsRpl6-1 was fused to 5'-upstream position of GFP, (B) the N-terminal
coding region of OsRpl6-2 was fused to 5'-upstream position of GFP, and (C) the C-terminal coding region of OsRpl6-1 was
fused to 3'-downstream position of GFP. Representative images are shown. Left: GFP fluorescence. Center: fluorescence of a
mitochondrial-specific dye, MitoTracker Red. Right: merging of both signals. Scale bar = 20 pm. In the right panel of Figure 2A,
some of the GFP fluorescence within a small cell behind the central cell did not co-localize with mitochondria. The GFP fluo-
rescence from the behind cell would have been overexposed, probably because its GFP expression had been much more
enhanced than that in the central cell.

Differential expression of rice rplé genes pl6 gene, OsRpl6-1 and OsRpl6-2 cDNAs were amplified
We examined the transcription of the OsRpl6-1 and  usingacommon primer pair, P7/P8 (Fig. 1A; Table 1), fol-
OsRpl6-2 genes using reverse transcription-PCR (RT-PCR).  lowed by restriction digestion to distinguish between their
Because of difficulty in designing primers specific foreach ~ products (see Methods). The RT-PCR analysis showed that
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amplification of OsRpl6-2 cDNA was much lower than
that of OsRpl6-1 cDNA (Fig. 3A, lanes L, S and R). This
indicates that the two rpl6 genes differ in the amount of
transcripts produced.

The 5'-UTR of OsRpl6-1 is homologous to various rice
sequences

In contrast to the similar coding sequences of the two rpl6
copies, their 5'-noncoding regions differ near the center of
the intron (Fig. 1A). A database search was conducted to
determine the origin of these 5'-sequences. There are sev-
eral sequences homologous the region around the 5'-UTR
of OsRpl6-1 (Figs. 1B and 4, blue color) in the rice
genome. These sequences are distributed on all rice chro-
mosomes (Fig. 4A, designated Chr xx according to their
chromosomal positions). Additional homologous
sequences may be revealed when divergent and frag-
mented sequences are taken into account. The homology
starts upstream from the 5'-end of OsRpl6-1 ¢cDNA (Fig.
4A, bent arrow) and extends into the 5'-part of the intron.
The Chrs 4a, 5c and 12a lack about 110, 180 and 60 bp of
sequences from the beginning of the conserved region,
respectively, probably because of subsequent deletion
events. The GT dinucleotide at the 5'-border of the OsRpl6-
1 intron is also conserved in all the Chr sequences (Fig. 4,
empty box with pink outline), except for Chr 4a. Eleven of

A 1 2 D L S R
300 =
200~
100 =
(bp)

27 cycles

B D L S R

1500 =

1000=

(bp)
27 cycles

Figure 3
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these sequences (Chrs 2a, 2b, 3b, 4b, 5¢, 7a, 8b, 9a, 9¢, 10
and 12a) are transcribed and spliced at this site because
their corresponding cDNAs are present in the database
[GenBank accession nos. AK102901, CI553335,
Cl643779, C1241123, CI239335 and AK067455, respec-
tively] (Fig. 4, asterisks in sequence names). In addition,
we detected another conserved DNA segment down-
sttream of the above-mentioned homologies in 18
sequences (OsRpl6-1, and Chrs 1a, 1b, 2a, 2b, 2¢, 4a, 5b,
5¢, 6a, 7a, 8b, 9a, 9b, 9¢, 10, 11a and 12a) (Fig. 5). In
OsRpl6-1, this downstream conserved segment is located
near the center of the intron, upstream of the sequence
homologous in the two rpl6 genes (Fig. 1A, shaded
region).

Conserved regions have characteristics of a transposable
element (TE)

The upstream (Fig. 4) and downstream (Fig. 5) conserved
segments are presently annotated in the database as mem-
bers of two separate nonautonomous TEs, MERMITE18F
and ECSR [24], respectively, but they have not been char-
acterized in detail. Sequence alignment and analysis of the
two conserved segments revealed the following. (1) The
segments have a common terminal inverted repeat (TIR)
composed of a 15-bp consensus sequence, GGCCTTGT-

2 D L S R

<—(0OsRpl6-1
OsRpl6-2

30 cycles

D L S R

30 cycles

Semi-quantitative RT-PCR analysis of the rice rplé6 genes. (A) Comparison of the relative amounts of OsRplé-1 and
OsRpl6-2 cDNAs after 27 (left panel) or 30 cycles of PCR (right panel). Bands derived from each gene are indicated by arrows.
Lanes | and 2: negative and positive controls for Dral digestion using cloned OsRpl6-1 and OsRplé-2 plasmid DNAs as templates,
respectively. Note that the OsRplé-2 gene has a Dral site in its coding region (Fig. | A), resulting in two bands after digestion,
whereas the OsRplé6-1 gene does not. Lane D: Dral digestion of OsRplé-1 and OsRplé-2 DNA products, which were amplified
using rice genomic DNA as a template instead of first-strand cDNAs. Lanes L, S and R: from left to right, relative amounts of
OsRpl6-1 and OsRpl6-2 cDNAs in mature leaf, leaf sheath and root. (B) Amplification of rice Actin genes as an internal control.

Molecular size standards are shown on the left.
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Figure 4

Alignment of sequences homologous to the region around the 5'-UTR of OsRplé-1 in the rice genome. See Fig-
ure | for a schematic representation of OsRpl6-1 above the sequence alignment. Sequence names are shown on the left, which
are designated according to their chromosome (Chr) numbers except for OsRplé-1. When more than one sequence exists on
the same chromosome, they are distinguished as a, b or ¢, relative to their nucleotide positions in the database. The first nucle-
otide positions in the alignment are indicated within parentheses, and correspond to those of the Rice Annotation Project
Database Build 4 [21]. Nucleotides conserved in >60% of sequences are highlighted. Gaps were introduced to maximize the
sequence identity. The presence of the corresponding cDNA in the given direction is indicated by asterisks at the sequence
names. Sequences corresponding to the cDNAs are capitalized in the alignment. The first nucleotide of the OsRpl6-1 cDNA
clone [accession no. AK119694] is indicated by a bent arrow. The GT dinucleotides at the 5'-border of the intron are shown
within an empty box with a pink outline. Putative terminal inverted repeats (TIRs) and target site duplications (TSDs) are indi-
cated by thick yellow arrows and small green arrows, respectively, according to the colors in Figure |B.
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TCGGITG (Figs. 4 and 5, thick yellow arrows). (2) A
potential 3-bp direct repeat occurs just outside of the TIR
(Figs. 4 and 5, small green arrows). Although not all direct
repeats were perfectly conserved between the ends of the
sequences, they could represent target-site duplications
(TSDs), which are generally caused by TE insertions. (3) A
database search using the sequences flanking the con-
served segments detected two putative related-to-empty-
sites (RESites). The RESites are sequences that are homol-
ogous to TE-bearing sequences but lack the TE insertion,
which indicates the past movement of TEs and their TSD
sequences [25]. In one instance, the sequence flanking
Chr 2b was nearly identical to that of its RESite (Fig. S1A
in Additional file 1). In the second instance, high homol-
ogy was evident between Chr 9c and its RESite, although
a few indels were observed (Fig. S1B in Additional file 1).
These results strongly suggest that the two conserved seg-
ments were moved as a single TE because the insertion of
two such segments in such close proximity and in the
same direction by two separate events is highly unlikely.

Classification of TEs associated with the 5'-UTR of
OsRpl6-1 as a member of the PIF/Harbinger superfamily
Among the putative TEs re-characterized in this study,
proteins predicted from the internal regions of Chrs 2¢, 5¢
and 9b had 78%-88% similarity to a transposase from Os-
PIF1 (data not shown). The Os-PIF1 is a rice homologue

OsRpl6-1 cDNA
GT

*0sRp|6-1 actcatttcttattattgcagtgcaggaaggaaggagtaggagttttttgggtotagattcagtatggcaaagtagogggatttggaatcccaacatgetacttigtgteaaal
a acatatttcttcatcttgcagtgcaggaaggaaggagtaggagttttttggegtetatattcaatatggcaaagtagecaggatttggaatcccatcatgetactttgtegtgaaa
agtgoaattcttgcactgagacatcagacgtggttatgttagotgaattgatgcatgtgtgaaattgatgcatgtegccaaa)
actgettttagetaaatagtgetaaccaaatetactaatagtagtaatacaagtecagatcataaagagagetageaatacectoctatattecctegccaatagetectatag,

Chr 1
Chr 6a
Chr 4a
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of maize P instability factor alpha (PIFa), an active class II
DNA transposon [26]. The PIF family has recently been
associated with the nonautonomous miniature inverted
transposable element (MITE), Tourist [27]. In fact, the
consensus TIR sequence of the putative TEs observed in
our study (GGCCTTGTTCGGITG) (Figs. 4 and 5) was
similar to that of Tourist-like MITEs in maize, barley and
Sorghum [27,28] and OsPIF families [29]. These results
indicate that the conserved sequence segments associated
with the 5'-UTR of OsRpl6-1 are a single TE belonging to
the PIF/Harbinger superfamily. Of these TEs, Chr 2c seems
to encode an entire transposase, whereas Chr 5¢ and 9b
may be pseudogenes because of lacking the complete cod-
ing region for transposase. The others, including one
within OsRpl6-1, are probably nonautonomous elements
because they did not contain ORFs nor did their predicted
proteins have significant homologies to any characterized
proteins in the given direction (data not shown).

Discussion
Based on the results of this study, we propose a model for
the gene transfer and subsequent events of rice rpl6 (Fig. 6).

I. Gene transfer of rplé from the mitochondrion to the
nucleus

It has been proposed that a mitochondrially encoded rpl6
gene had been transferred to the nucleus prior to the

*Chr 2a
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*Chr 8b

tettttccctatgetaaaacaatgttttttttactgecatecctatggatttgateteggegagaa
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Figure 5
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tgttttocctgtgetaaaacaatgttttttttactgogtoctatggatttgatctgggagaatgcatattgtttcattgottgottgggaacetacagetgctgctttatatt;

T tegcatattgttte:
(-—=—--——-GGATTTGATCTGAGAGAATGCATATTGTTTCATTGCTTGettggaaacgtacaacagetgetttatttt
actgctttcaggtaaacagtggtaactaaatgtactaatagtactaatactagt--agatcataaagtgagetageaatatgetgetatattegetgecaatagecagtatat,

attgettgettgggaacatacagetgetegctttatatt,

(11654136)
(13167926)
(12467037)

(2519672)
(14579829)
(23829056)

4498

a )
a gtgccﬂttaa (10254926)
4440863)

4

S G

gEMEEVEET (s tla allaat caaagga
P CIL At oRa g tigggtatggeg  (17485231)
g Hagcgggacaaget (24613480)
Hlacfgaccgtactg  (13000896)
Flagfagaacggtca (35719274)

g (7378854)
(5912218)
(3202801)
(5259173)

thotHetoaagt tea
affaaaccctcaa

: ancgaacaaggcct-g aEagttttattg

Alignment of sequences homologous to the central part of the OsRplé-1 intron in the rice genome. Only
sequences containing the last part of the conserved sequence segment are shown. The last nucleotide positions in the align-
ment are indicated within parentheses. Other captions are similar to those in Figure 4.
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emergence of angiosperms [7,8]. We assume that the
transfer already occurred in the common ancestor of seed
plants (Fig. 6, step 1) because the rpl6 gene is absent from
the mitochondrial genome of a gymnosperm, Cycas tai-
tungensis [30]. In addition, rpl6 cDNAs are found from
gymnosperms Cryptomeria japonica, Cycas rumphii, Pinus
pinaster, Pseudotsuga menziesii and Zamia vazquezii in the
database [their representative accession nos. are
BY896644, (CB(092074, BX248809, CN638760 and
FD772805, respectively|, although the presence of rpl6
cDNAs does not readily indicate the nuclear localization
of genes. This situation differs from the evolution of other
ribosomal protein genes, which underwent recent gene
transfer events during the course of angiosperm evolution
(e.g., 7ps10 gene) [15].

2. Gain of a mitochondrial targeting sequence and an
intron

Since neither of the proteins predicted from the two rice
mpl6 genes contained an apparent N-terminal extension
for a presequence, the targeting signal seems to have been
derived from sequence alterations within the mature N-
terminal coding region (Fig. 6, step 2), as with the case of
rice ps10 [31]. The presence of an embedded targeting sig-
nal here was indicated by the results of GFP assays (Fig. 2).
During the GFP analysis, small aggregations were occa-
sionally observed (data not shown). We speculate that the
efficiency of mitochondrial targeting varies according to
cellular or physiological conditions. Incomplete or slow
protein targeting has been observed in the sweet potato
ATPase 8-subunit with an atypical mitochondrial target-
ing signal [32]. At any rate, the acquisition of the targeting
signal would have occurred prior to the duplication event
because both rice RPL6 proteins have similar mitochon-
drial targeting abilities. This step may predate the com-
mon ancestor of seed plants because seed plants RPL6
proteins seem to lack a presequence as described. The 3'-
part of an intron would also have been acquired during
this step, based on the fact that both of the OsRpl6-1 and
OsRpl6-2 sequences share a similarity in the 3'-terminal
region of the intron (Fig. 1, shaded region).

3. Duplication of the nuclear rplé gene

The rpl6 gene would have been duplicated via genomic
DNA, resulting in two 1pl6 copies (OsRpl6-1 and OsRpl6-
2) on different chromosomes (Fig. 6, step 3). Although we
did not conduct Southern blot analysis to determine their
copy numbers, the presence of the two rpl6 copies in the
rice nucleus is probable because of the accuracy of rice
genome sequence data [20] and similarity to numerous
pl6 cDNA sequences in the database (data not shown).
The duplication event seems to have occurred after the
split of the genus Oryza from the other monocots, fol-
lowed by the occurrence of japonica and indica subspecies,
because cDNA sequences corresponding to OsRpl6-1 and
OsRpl6-2 are also present in the indica cultivar [their rep-
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Figure 6

A proposed model for the gene transfer and activa-
tion of rice rplé. The numbers in the figure correspond to
those of the subtitles in the Discussion. The mitochondrial
rplé6-derived coding region is colored with orange. The cod-
ing regions of nucleus-encoded rplé copies with mitochon-
drial targeting ability are colored with red. The 3'-part of the
intron is indicated by a thick black line. Other elements are
indicated as in Figure |. The predicted evolutionary timing of
each event is indicated on the right.

resentative GenBank accession nos. are CX108080 and
CT862828, respectively] but not in other monocots (data
not shown). This assumption is supported by a maximum
likelihood (ML) tree based on the 59 nonredundant rpl6
cDNAs from 24 angiosperm genera (data not shown).
This ML tree also suggests relatively recent duplications in
Glycine, Hordeum, Ipomoea, Petunia and Triticum. There-
fore, it is likely that multiple duplication events occurred
during angiosperm evolution.

4. Acquisition of the 5'-UTR of OsRplé-1 via a TE

Despite their coding similarity, transcripts of OsRpl6-2
were much less abundant than those of OsRpl6-1 (Fig. 3).
The difference in the quantity of transcripts produced by
the rpl6 genes might be caused by differences in promoter
regions because their 5'-noncoding regions differ from a
point near the center of the intron (Fig. 1A). The most
striking findings of this study were that numerous
sequences homologous to the region around the 5'-UTR
of OsRpl6-1 were detected in the rice genome and that
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they presumably belong to a TE family. One can raise a
question why numerous putative introns linked to the TEs
are spread in the rice genome. One speculation could be
that a TE was selected as part of the intron of a cellular
gene because it contained a functional element such as a
promoter or an enhancer, followed by amplification in
the rice genome via transpositions. Alternatively, a TE
might have selfishly been spread in the rice genome after
capture of the 5'-part of intron from an unknown gene
source. The evolutionary relationships of these TEs are
unclear because the presence of a number of indels in the
sequence alignment (Figs. 4 and 5) precludes fine phylo-
genetic analysis. These TEs might have been transposed at
a relatively early evolutionary stage because most of their
RESites are missing. This assumption does not contradict
the notion of ancient transfer of the rpl6 gene to the
nucleus [7,8]. However, the TE within OsRpl6-1 should
have been integrated after the duplication event of the rice
pl6 gene (Fig. 6, step 4) because the OsRpl6-2 and Arabi-
dopsis rpl6 genes lack such a sequence. The origin and
mode of acquisition of the OsRpl6-2 5'-UTR is unknown.
There is a Mutator-like element (MULE) within the 5'-non-
transcribed spacer region of OsRpl6-1 (Figs. 1B and 4,
open triangle). This element seems to have been acquired
posteriorly. Such nested TE insertions are characteristic of
many kinds of TEs. We infer that this MULE has a minor
effect on the expression of OsRpl6-1 because it is not con-
served among the contemporary transcribed TEs (Fig. 4,
asterisks in sequence names). Alternatively, the MULE
might act as an enhancer.

The 5'-UTR and intron within the 5'-UTR are generally
thought to contain cis-elements that regulate expression at
transcriptional and posttranscriptional levels: the former
involves promoter and enhancer activities and the latter
confers translational efficiency and mRNA stability
[33,34]. The evolutionary origins of noncoding regions
(e.g., 5'- and 3'-UTRs, promoters and introns) are mostly
unknown, as are those of nucleus-encoded mitochondrial
genes. Recently, topoisomerase I-mediated homologous
recombination has been proposed as a mechanism by
which the 5'-UTR was acquired in rice rpl27 [18]. In the
present report, we describe a novel mechanism for the
acquisition of a 5'-UTR via a TE. TEs sometimes transpose
in the vicinity of host genes, generating new coding
regions and changing gene expression [35]. Among the
TEs, MITEs may be sources of cis-acting regulatory ele-
ments because of their specific properties. First, MITEs are
much more prevalent than other types of TEs in plant
genomes. Second, they preferentially insert into genic
regions. Finally, MITEs might contain cis-acting elements.
Although most of such putative elements have not been
demonstrated experimentally, a MITE family that had pro-
vided a poly (A) signal has been reported [36]. In addi-
tion, it is noteworthy that insertions of a member of the
MITE family, mPing, may have caused the up- and down-
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regulation of adjacent genes in rice [37]. We have not
determined which cis-acting element causes differences in
the amount of transcripts between the two rice rpl6 genes
(Fig. 3A). However, many reports have already established
that the 5'-UTR and intron within the 5'-UTR have pro-
moter and enhancer activity. As an alternative hypothesis,
it is also possible to assume that the rice rpl6 gene gained
basal transcriptional machinery prior to the gene duplica-
tion event (Fig. 6, step 2) because both of the rice rpl6 cop-
ies are transcribed. In this case, the TE within OsRpl6-1
might act as an enhancer.

Despite some functional ambiguity, judging from the
lines of evidence presented here, our results constitute a
plausible explanation for the origin and acquisition of the
5'-noncoding region. The generality of the acquisition of
a 5'-UTR via a TE is unclear because of the paucity of
genomic information on rpl6 genes in other monocots
and because many TEs are often poorly conserved except
for TIRs and TSDs. In fact, we examined the structure of
the TEs that retain the entire TIR and are transcribed (Chrs
2a, 2b, 73, 8b, 9a, 9c and 10), but failed to find any anal-
ogous case of OsRpl6-1. Their transcripts ended within a
region between the TIR (data not shown) and no associa-
tion with any other proximal genes was predicted. There-
fore, to our knowledge, the OsRpl6-1 is presently the only
example. Additional genomic data on other plant species
and further systematic searches may reveal analogous
cases of other transferred mitochondrial genes.

Conclusion

We have demonstrated the evolutionary origin and acqui-
sition mechanism of the 5'-UTR of a transferred mito-
chondrial gene. We conclude that the 5'-UTR of the
transferred 7pl6 gene was acquired via a TE. Since the 5'-
UTR and intron within the 5'-UTR generally contain tran-
scriptional and posttranscriptional cis-elements, TEs may
have constituted sources of cis-elements for the trans-
ferred mitochondrial genes.

Methods

Database search and nucleotide sequence analyses
Sequences homologous to the rice rpl6 gene were sought
using the BLAST algorism in the National Center for Bio-
technology Information http://www.ncbi.nlm.nih.gov/
and the RAP-DB Build 4 http://rapdb.dna.affrc.go.jp/[21]
databases and a rice rpl6 cDNA [GenBank accession no.
AU184578] as the initial query. No sequence filtering was
set. The intron position of each rpl6 gene was determined
by comparison between the cDNA sequence [accession
nos.: AK119694 and CI260120] and the corresponding
genomic sequence [locus tags: 0s03g0725000 and
0s08g0484301]. RESites were detected using flanking
sequences immediately outside of the putative TEs as que-
ries in BLAST searches, as described previously [25].
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Table I: Primers used in this study.

Primer Sequence

Pl 5-CCTCTTCTCTTGTTGecATGGAG-3'

P2 5'-CAGTACAGCAAATTAccaTGGGTTTG-3'

P3 5-TTTCCCTGTCTTATTGCcATGGAA-3'

P4 5'-CCAGTACAGCATATTAccaTGGGTTTA-3'

P5 5'-CTGCTTCAAACtgtACaTAATTTGC-3'

Pé 5'-GAAAGTAAAATgcGGccGCTCATCC-3'

P7 S5-TTGTTTCTGAAACTTGGTTACAG-3'

P8 5-TTACTTCTTTTGCTTCTTCCCTGGCTT-3'

P9 5'-AATGG(A/C)AC(CI/T)G(A/G)(A/IT) ATGGTCAAG-3'

P10 5-TTAGAAGCA(C/T)TTC(A/C)TGTG(C/G)AC-3'

Underline: restriction sites for BsrGl, Ncol and Notl.

Lowercase letters: deviations from the original OsRpl6-1 sequence to
enable introduction of restriction sites.

The locations of primers P|-P8 are shown in Figure |A.

Primers P9 and P10 were designed from rice Actin sequences [39] as
described previously [40] with slight modifications.

Construction and visualization of GFP fusion proteins
Portions of OsRpl6-1 and OsRpl6-2 coding regions were
amplified by PCR using primer pairs P1/P2, P3/P4 and
P5/P6 (Fig. 1; Table 1). These primer pairs contained
regions encoding amino acid positions 1-52 of OsRpl6-1,
1-52 of OsRpl6-2 and 54-103 of OsRpl6-1, respectively.
Each amplified fragment was fused in-frame to 5'-
upstream or 3'-downstream of S65TsGFP ¢cDNA (kindly
provided by Dr. Y. Niwa; [23]) as described previously
[31]. The transient expression of GFP fusion proteins in
tobacco BY-2 cells was visualized as described previously
[38] after staining with a mitochondria-specific dye,
MitoTracker Red (Invitrogen, Carlsbad, CA, USA).

RT-PCR analysis

Total RNA was isolated from mature leaves, leaf sheaths
and roots of three-month-old rice plants (Oryza sativa
subsp. japonica cv. Nipponbare) using an RNeasy Plant
Mini Kit (Qiagen, Valencia, CA, USA). One microgram of
total RNA was treated with RNase-free DNase I (Roche
Diagnostics, Basel, Switzerland). First-strand cDNAs were
synthesized using oligo (dT),s primers and the Advantage
RT-for-PCR Kit (Takara Bio, Otsu, Japan). It was difficult
to design primers specific for each OsRpl6 gene because of
a GC-rich sequence in the 5'-region and an interspersed
repeat sequence in the 3'-UTR (data not shown). There-
fore, OsRpl6-1 and OsRpl6-2 cDNAs were amplified using
a common primer pair, P7/P8 (Fig. 1; Table 1). After 27
and 30 cycles of PCR reaction, the products of each gene
were digested with Dral to distinguish between them (see
legend for Fig. 3). Rice Actin genes [39] were used as an
internal control.
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Figure S1. Comparison of sequences with putative transposable ele-
ments (TEs) and the homologous sequences of related-to-empty-sites
(RESites). (A) Chr 2b and its RESite. (B) Chr 9c and its RESite. The top
line and the other lines show transposable elements (TEs) and RESites,
respectively. The positions of the first and last nucleotides in the alignment
are denoted within parentheses, which correspond to those of the Rice
Annotation Project Database Build 4 [21]. Gaps were introduced to max-
imize the sequence identity. Insertions of TEs in Chrs 2b and 9c are indi-
cated by blue boxes, in which yellow triangles on the right and left borders
represent terminal inverted repeats (TIRs). The sizes of insertions are
shown above the blue boxes. The predicted target site duplications (TSDs)
are colored with green, as in Figures 1, 4 and 5.
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