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Abstract

Background: In recent years there has been a trend of leaving the strict molecular clock in order
to infer dating of speciations and other evolutionary events. Explicit modeling of substitution rates
and divergence times makes formulation of informative prior distributions for branch lengths
possible. Models with birth-death priors on tree branching and auto-correlated or iid substitution
rates among lineages have been proposed, enabling simultaneous inference of substitution rates and
divergence times. This problem has, however, mainly been analysed in the Markov chain Monte
Carlo (MCMC) framework, an approach requiring computation times of hours or days when
applied to large phylogenies.

Results: We demonstrate that a hill-climbing maximum a posteriori (MAP) adaptation of the
MCMC scheme results in considerable gain in computational efficiency. We demonstrate also that
a novel dynamic programming (DP) algorithm for branch length factorization, useful both in the hill-
climbing and in the MCMC setting, further reduces computation time. For the problem of inferring
rates and times parameters on a fixed tree, we perform simulations, comparisons between hill-
climbing and MCMC on a plant rbcl gene dataset, and dating analysis on an animal mtDNA dataset,
showing that our methodology enables efficient, highly accurate analysis of very large trees.
Datasets requiring a computation time of several days with MCMC can with our MAP algorithm be
accurately analysed in less than a minute. From the results of our example analyses, we conclude
that our methodology generally avoids getting trapped early in local optima. For the cases where
this nevertheless can be a problem, for instance when we in addition to the parameters also infer
the tree topology, we show that the problem can be evaded by using a simulated-annealing like
(SAL) method in which we favour tree swaps early in the inference while biasing our focus towards
rate and time parameter changes later on.

Conclusion: Our contribution leaves the field open for fast and accurate dating analysis of
nucleotide sequence data. Modeling branch substitutions rates and divergence times separately
allows us to include birth-death priors on the times without the assumption of a molecular clock.
The methodology is easily adapted to take data from fossil records into account and it can be used
together with a broad range of rate and substitution models.
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Background

Since Felsenstein brought the maximum likelihood (ML)
framework to phylogenetic inference [1] the number of
supporters of likelihood based estimation has steadily
increased, and it is now widely considered the most accu-
rate approach. Although ML phylogenetic inference is
generally quicker than stochastic optimization inference
(MCMQ), the time complexity also of ML-algorithms has
been prohibitive for analysis of large phylogenies.
Recently, however, the field has seen considerable
advances in speed of the best methods, among which
PHYML [2] and RAXML [3] are notable, seemingly with-
out sacrificing much accuracy. With these methods phyl-
ogenies with tens or even hundreds of taxa [2] are readily
examined. After its introduction a decade ago [4-6], the
use of Bayesian methods in phylogenetic inference has
been a field of active research in which not only the phyl-
ogeny itself has been sought, but also additional issues
have been addressed, such as substitution rate hypotheses,
accuracy of ancestral state inference, and the rooting prob-
lem, see [7] for a review. In particular, a number of alter-
natives to the much debated molecular clock hypothesis
[8] have been suggested. Among these are models with
molecular clocks operating locally [9,10] and also a range
of models with rate variation over lineages; these include
auto-correlated models, i.e., the rate distribution for a par-
ticular branch depends on the rate value of the parent
branch [11-15], and uncorrelated models where rates are
drawn independently from a common underlying distri-
bution [16] (Sennblad et al.: Parental guidance vs. mutual
independence - evaluation of bayesian models of substi-
tution rate evolution, submitted).

A fundamental question for the accuracy of Bayesian phy-
logenetic inference is the selection of a prior distribution
on trees and branch lengths [17], and several types of such
have been suggested. An intuitively appealing choice is to
assume that the tree branching follows a birth-death proc-
ess which is indeed what is exploited by Yang and Rannala
[4,18]. In [18], the authors assumed a molecular clock
and used integration over branching times to calculate the
posterior distribution of tree topologies, a procedure they
reported infeasible for trees with more than five leaves. In
order to overcome this, they applied an MCMC method-
ology to the problem [4], but the time complexity of the
algorithm still severely limited the number of taxa that
could be analyzed.

One might think that a model containing a birth-death
prior on the tree branching would necessarily be consist-
ent with a molecular clock, since the birth-death process
generates ultrametric trees. The molecular clock can be
avoided, however, by modeling the substitution rates and
branching times separately. Biologically, the ability to sep-
arately infer rates and times is of importance, since the
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former can pinpoint periods of molecular function
changes and the latter enables dating of speciations and
other evolutionary events. Moreover, as was recognized by
Arvestad et al. [19,20], explicit time modeling facilitates
integration of separate time dependent evolutionary mod-
els into a unified framework.

In a paper on MCMC-estimation of phylogenies and
divergence times [16], the authors performed simulations
comparing uncorrelated and clock-like models, and con-
cluded that clock-like models only perform well on clock-
like data, while uncorrelated models always perform
acceptably. Furthermore, they investigated parameters
inferred from two viral and one marsupial dataset with
the result that no significant auto-correlation was
detected. One conclusion in the paper was, therefore, that
auto-correlated models are not generally suitable. This
contrasts with the results presented in a recent paper by
Lepage et al. [21]. They evaluate two auto-correlated mod-
els and concludes that they clearly outperform the uncor-
related models tested.

In the work presented here, we make use of a Bayesian
framework with informative priors on branch lengths. We
have investigated solutions to the parameter inference prob-
lem, i.e., inference of rates and times, as well as the phylog-
eny inference problem, where we also infer the tree
topology. These problems are analysed with a hill-climb-
ing maximum a posteriori (MAP) as well as an MCMC
methodology. We further introduce a dynamic program-
ming (DP) algorithm for optimal factorization of branch
lengths into rates and times, thereby considerably reduc-
ing the computation time needed for hill-climbing as well
as MCMC-algorithms. The nucleotide substitution is
modeled by a continuous-time Markov process and we
use a birth-death process to obtain an a priori distribution
of phylogenies' branching times. The substitution rates
are drawn iid from a I'-distribution [22]. We perform sim-
ulations to show that with our method fast simultaneous
inference of substitution rates and branching times for a
given tree topology is not only feasible on large trees but
also largely unaffected by local-optima problems. By com-
paring our results with MCMC-algorithms based on, in
one case, the same model (Sennblad et al.: Parental guid-
ance vs. mutual independence - evaluation of bayesian
models of substitution rate evolution, submitted), and in
another case, a similar model [23], we show that despite
its uncomplicated nature, the presented algorithm deliv-
ers parameter estimations with high accuracy. Finally, we
show that also the phylogeny inference problem is man-
ageable in acceptable time. By using a simulated anneal-
ing-inspired methodology, the simulated annealing like
(SAL)-method, where tree topologies are swapped often in
the beginning, but henceforth more rarely, we can avoid
getting stuck on a particular local optimum tree.
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Methods

General notation

Let s be the number of aligned sequences and 7 their com-
mon length with columns of indels omitted. The data will
be represented by an s x n matrix D = {d;;}. The topology
of the phylogenetic tree relating the sequences is denoted
by T. Assuming the nucleotide substitution rate to be con-
stant on any particular edge in the tree, we will denote the
length, the rate, and the time of the edge connecting node
v with its parent by I, r,, and t,, respectively, where |, =1,t,.
We will refer to the complete vectors of lengths, rates, and
times, for all edges as |, r, and t, respectively.

The discussion in this paper centers around P [r, t|D, T|,
the probability of the rates and the times given the
sequences and the tree topology, and P [r, t, T|D], the
probability of the rates, the times, and the tree topology
given the sequences. P [r, t|D, T] is defined by:

_ [P[DIr,t, Tlp|r]p[t|T]|drdt
B P[D] '

P|r,t|D,T] (1)

We will refer to the factor P [D|r, t, T as the data probability
and to factors p [r] and p [t|T] as rates prior and times prior,
respectively. The probability P [r, t|D, T| will be referred to
as the posterior. The value of the data probability depends
solely on the tree's branch lengths whereas the product of
the rates and the times prior probabilities, which can be
viewed as informative length priors, depends on how
these lengths are factorized into rates and times.

Three solutions to the parameter inference problem

The dimensionality of the integral in (1) is (2s - 2) + (s -
2) for a tree inferred from s sequences, making its numer-
ical evaluation feasible only for relatively small s [18]. Per-
forming the integration by means of MCMC is the natural
remedy, but this is a notoriously computationally inten-
sive methodology. In the following, we will therefore
study several aspects of the alternative problem of finding
the corresponding MAP solution:

argmax P[D | r, t, Tp[r]p[t | T], (2)

namely, the most likely complete set of rates and times
given the data and the model. We have implemented
three algorithms for finding MAP solutions. As a first alter-
native, the r x t-method, we explore the entire r x t-space
and seek the optimum in that space. As a second alterna-
tive, the I-method, we search the l-space and when a sup-
posed l-optimum is found, we factorize the lengths into
rates and times. Neglecting issues regarding non-global
optima, we expect the I-method to find a solution that is
optimal only with regard to the data probability, while the
r x t-method should eventually find the optimal solution
including the priors on rates and times (i.e. with the same
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optimal data probability but a better prior probability).
Unfortunately, the r x t-method is impractically slow. To
overcome the weaknesses of these two methods, we have
developed a DP algorithm, to be described below, which
finds the best possible factorization of any given length
vector 1 under the rates and times priors.

By applying our DP algorithm, we can optimize the factor-
ization of the lengths resulting from the l-space search.
Even so, we may very well end up in a situation where we
have found an optimal 1 but where there is another 1 with
nearly as good data probability but prior value so superior
that the posterior is better. That solution cannot be found
with the 1-method. By instead combining the DP and the
r x t-algorithms, it is possible to achieve a better result in
a reasonable time. We search the r x t-space as before, but
at each iteration, the search is interrupted with probability
p (we have found p = 0.001 to be suitable). If so, we fac-
torize the current 1 optimally, and make a desirable jump
in the search space that would otherwise have been
impossible. This method will be referred to as the com-
bined method.

A DP algorithm for branch length factorization

Given lengths for each edge in the tree, the objective of the
DP algorithm is to factorize the lengths into optimal rate
and time parameter estimates for the edges. To facilitate
this, a discretization of the time interval from the leaves to
the root is made. We scale this interval in order to give the
leaf times and the root times values zero and one, respec-
tively. All s - 2 non-root inner nodes are assigned interme-
diate values corresponding to the equidistant grid that is
the result of the discretization (see Figure 1). The number
of grid intervals is N (we have found N = 100 to be suita-
ble). For a given node u with children v and w, f,(t,),
denoting p [r]p [7,|T,] is calculated for each possible dis-
cretized divergence time 7, of 4, using all possible discre-
tized divergence times for v and w. For the node u, f,(7,) is
given by the maximum value over z,, 7, of:

pll, /e, lplly [ o] plty | T ) £ ] F(£,)F(E0)

rate priors

time prior

contribution

where t,= z,- 7,and t,, = 7, - 7,,. The values of the rate priors
are dependent on the gamma distribution and the quo-
tient between the lengths and the times for the edges lead-
ing to u. We use the prior densities for branching times
given a tree, derived in [24]. This yields values dependent
on the birth-death process, z,, and the number of leaves of
the subtree T, in which u is the root. We work from the
leaves up and, when we reach the root, the optimal
fr00:(1.0) =p [r]p [t| T] and the rate-time factorization of the
lengths that gave rise to the optimal value are retrieved.
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A dynamic programming algorithm for branch
length factorization. Values f, (7,) are calculated for all
possible choices of 7,. 7, is u's divergence time counted from
the leaves and it takes values corresponding to the equidis-
tant grid. f,(z,) is a product of rate priors for the edges lead-
ing to u, u's contribution to the time prior, and the
corresponding probabilities for u's children v and w: f(z,) and
f,(7,) respectively.

Rate model and hyperparameter values

In this study, we use a rate model described in (Sennblad
et al.: Parental guidance vs. mutual independence - eval-
uation of bayesian models of substitution rate evolution,
submitted). Briefly, this model averages the rate for each
branch as independent and identically distributed (iid)
stochastic variables drawn from an underlying I'-distribu-
tion. Apart from the edge rates themselves, the model has
two hyperparameters, namely the mean m and the variance
v of the I'-distribution, which are both assigned uniform
priors in the interval [0, 1000]. Variants of the iid model
with respect to the underlying distribution (e.g., 3, Log
Normal, Inverse Gaussian and Exponential distributions)
have been described [16]. A comparative study in (Sen-
nblad et al.: Parental guidance vs. mutual independence -
evaluation of bayesian models of substitution rate evolu-
tion, submitted) found no difference in performance
between these variants, while results in [21] suggested that
the T-distribution might be more flexible in describing
rate variation. An alternative approach suggested by Sand-
erson [12,13] and Thorne et al. [14], is to model rates as
evolving over the tree, such that there is an auto-correla-
tion between rates at adjacent nodes. In (Sennblad et al.:
Parental guidance vs. mutual independence - evaluation
of bayesian models of substitution rate evolution, submit-
ted), the differences in performance of the iid model and
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the evolving model were found to be negligible. In [16],
the authors argue that over short time scales inherited fac-
tors become small relative to stochastic factors, and that
over very long time scales the variation causes the auto-
correlation from lineage to lineage to break down.

In the recent paper by Lepage et al. [21], the authors per-
form benchmarking of relaxed clock models. They test
various choices of divergence time priors (birth-death,
Dirichlet, uniform) and variants of both auto-correlated
and uncorrelated rate models. This test favors the auto-
correlated rate model alternative while the optimal choice
of time prior is found to be more data dependent.

In this study, we have chosen the iid-I' model as an exam-
ple distribution; it is, however, straight-forward to adapt
our methodology to accommodate any of the models
described above, with a possible exception for the Dirich-
let time prior which we have not tested.

The birth-death process generating tree branching times
have hyperparameters for birth rate, 4, and death rate, g,
respectively. That is, the set of hyperparameters used in
the inference are 4, 1, m, and v. For the simulation analy-
ses, we generated sequences using A=1.0, u=1.0, m=0.5,
v=0.01. We then used these same values during inference.
We used the simple Jukes-Cantor [25] substitution model.
When analyzing biological data, we estimated values for
A, i, m, v during inference and the substitution parameters
were estimated with a maximum likelihood analysis using
PAUP [26] and the GTR+I" model [27].

Proposal distributions

The proposal scheme used was developed for the MCMC-
algorithm described in (Sennblad et al.: Parental guidance
vs. mutual independence - evaluation of bayesian models
of substitution rate evolution, submitted). Each parame-
ter (i.e. rates, times, and model hyperparameters) has
equal probability of being updated, and the new value s'
of the updated parameter s is LogNormal(s, o). The factor
o is a prespecified constant related to the parameter type
which was calibrated to optimize mixing and convergence
of the MCMC chain.

We present here results obtained with MCMC, as well as a
hill-climbing MAP adaptation of the MCMC-algorithm.
In the MAP case we only accept proposals increasing the
posterior, while in the MCMC case the standard Metropo-
lis-Hastings proposal-acceptance scheme is used.

We further tested a deterministic scheme where a search
was performed in all directions, i.e., we perturb each
parameter, store all results and then choose the perturba-
tion giving the optimal log-likelihood. In this case, the
results were qualitatively the same as with the randomized
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algorithm described above, although computation times
were longer.

The phylogeny inference problem and the SAL-method
When we extend our ambition to also do phylogeny infer-
ence, the most severe problem with the hill-climbing
approach is that the algorithm can get stuck on a particu-
lar non-global optimum tree. This problem can, at least to
some extent, be resolved by the SAL-method, i.e., a meth-
odology where tree topologies are swapped often in the
beginning, but henceforth more rarely. For simplicity, we
use a linear scheme where the probability of a tree swap is
originally k times higher than that of a parameter change
(we have found k = 1000 to be suitable). For each tree
swap attempt, we decrease k with one unit until & equals
unity. The types of tree rearrangements that we use are re-
rooting, nearest neighbor interchange (NNI) and subtree
pruning and regrafting (SPR), see [7].

The applicability of the DP-algorithm as well as the SAL-
method are independent of the way in which we exploit
the search space, i.e., they are useful in both the MAP and
the MCMC setting.

http://www.biomedcentral.com/1471-2148/8/77

Results

Parameter inference simulations

We first evaluated the three inference methods described
above on fixed trees with respect to their capacity to infer
parameters. We generated a tree with 100 leaves and gen-
erated nucleotide sequences of length 1000 by evolving
them on the tree. Figure 2 illustrates the performance of
the I-method, i.e., MAP over lengths, relative to the r x t-
method and the combined method, i.e., MAP over rates
and times without and with DP, respectively. We note that
finding r and t that optimize the prior probabilities
requires more than 200,000 iterations for the r x t-
method to converge although the data probability has
reached optimum after only 50,000 iterations approxi-
mately. The speedup achieved with the combined
method, as compared to the r x t-method, is considerable.
We note also that the combined algorithm obtains a solu-
tion with higher log-likelihood than does the otherwise
fast I-method. When the performances of these methods
are compared on a larger set of trees, the conclusions
stated above become even clearer. We generated 100 trees
with 10 leaves and 100 trees with 100 leaves, and gener-
ated nucleotide sequences of length 1000 on each tree.
For each of our three methods, we further made two sep-

-60750 -
combined method
-60800 <{ I-method
r<t-method
- —60850
3
£ combined method, priors excluded
£ — = r<t—-method, priors excluded
SI’ — — — l-method, priors excluded
— _60900
o e = e e e e e e = = = = — -
R - S - .. T oS - LTt oS- T
-60950 H
—61000 | | | | | | | | | J
0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000
# iterations

Figure 2

Three MAP inference methods — a comparison. The plot illustrates the fact that optimization over the full r x t param-
eter space (red curves) is much slower than both the equivalent optimization over | with subsequent DP-partition of I into r
and t (blue curves), and the method combining r x t search with occasional DP-optimization interruptions (green curves). The
solid curves show log-likelihoods including the priors p [r]p [t|T], whereas the dashed curves show the same results, but
excluding that factor. Approximate point of convergence, i.e., the first point when 1000 subsequent steps has not resulted in

any improvement, is marked with an asterisk.
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arate parameter estimations on each tree. The aim was to
compare the two results and from that evaluate the respec-
tive methods' reproducibility. The results in Table 1 show
the methods' performances with respect to optimality,
speed, and reproducibility of likelihood, rates, and times.
On average the combined method delivers the result with
best likelihood, the r x t-method is second, while it is
again clear that the r x t-method is by far the slowest. We
note in particular that the 1-methods' rate and time vari-
ance is almost negligible; but this is simply a consequence
of the fact that the I-method consistently finds very similar
l-optima, and that the optimal DP-partitioning of these 1-
optima results in very similar r and t. To summarize, the
combined method outperforms the others with respect to
quickly finding optimal values for branches' rates and
times.

Evaluation of parameter recovery

To get an indication of what accuracy we can expect for
solutions obtained with the hill-climbing approach, we
compared the inferred rates and times parameters with the
corresponding values used when simulating the sequence
data. We generated 10 trees with 10 leaves and 10 trees
with 100 leaves, then generated nucleotide sequences of
length 1000 on each tree. We recorded the true rates and
times for each edge, and we ran the combined method
and the r x t-method on each tree while recording the
rates and times thereby inferred. We repeated the proce-
dure using different values of v, the rate variance hyperpa-
rameter, when generating the sequence data. The rate
mean hyperparameter was kept constant at 0.5.

From Figure 3 can be seen that for 10-leaf trees and m =
0.5, v = 0.001, the inferred rates and times are on average
around 5% off the true value. For these m and v the quo-
tient between the highest and the lowest true rate in the
tree is approximately 1.25, showing that the data is fairly
clock-like. For m = 0.5, v = 0.1, on the other hand, the rate
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parameters are as much as 45% off and the time parame-
ters around 30% off. Here, though, the highest true rate is
more than 5 times greater than the lowest. The same pat-
tern is seen also for large 100-leaf trees, with the accuracy
being very high for fairly clock-like data and declining as
the data becomes less clock-like. Interestingly, we note
that for the 100-leaf trees, the combined method is much
more accurate than the r x t-method with respect to both
rates and times. With the combined method, the times, in
particular, and the rates, are very well estimated even for v
as large as 0.05.

Hill-climbing vs. MCMC - a parameter inference
performance comparison on a rbcL dataset

We also made a parameter inference comparison on a
dataset consisting of rbcL genes from eudicots, a group of
flowering plants. We used the tree presented in [28]. We
compared the rates and times inferred using the com-
bined method, i.e., hill-climbing MAP with the DP factor-
ization speedup, with the rates and times posterior
distributions obtained from an MCMC analysis using the
r x t-method (i.e. without DP). The MCMC-chain was run
100,000,000 iterations, and was sampled at regular inter-
vals (Sennblad et al.: Parental guidance vs. mutual inde-
pendence - evaluation of bayesian models of substitution
rate evolution, submitted). To evaluate the convergence of
the MCMC analysis, the Gelman and Rubin [29] conver-
gence tests, as implemented in the R package Coda [30],
was used. The MCMC-analysis required a computation
time of several days, while the MAP-optimum is reached
after some 10.000 steps, requiring less than a minute on
the same type of computer, the difference mainly being
due to MCMC requiring more iterations to accurately
describe the posterior distribution while MAP results in
point estimates. Figure 4 depicts the rates and times pos-
terior distributions inferred using MCMC, together with
the corresponding values from the MAP-analysis. We note
that for the 62 rate and time variables that we attempt to

Table I: Parameter inference simulations. Results from pairwise MAP runs on 100 generated tree topologies using the combined

method, the r X t-method, and the I-method.

Tree size Method! MAP value MAP diff? Rates diff3 Times diff Comp time®
average average worst average worst average worst relative

10 leaves combined -8046.54 0.48 3.39 0.58 1.46 0.26 0.72 |
rxt -8046.72 0.32 13.03 0.36 4.6l 0.17 1.73 2

| -8049.34 0.012 0.20 0.00068 0.0084 0.0015 0.05 |

100 leaves combined -65249.12 1.6l 8.60 4.72 10.64 1.24 3.39 2
rxt -65257.40 4.66 23.10 14.08 21.66 5.11 9.19 10

| -65258.41 0.16 1.54 0.034 0.071 0.060 0.41 |

IThe combined method and the r x t-method infer optimal substitution rates and divergence times. The I-method infer optimal branch lengths
which are subsequently partitioned into rates and times. The latter problem is much easier and the inferred rates and times less optimal.

2Difference in log-likelihood between two MAP runs on the same tree.

3Difference in substitution rate norm between two MAP runs on the same tree.
“4Difference in divergence time norm between two MAP runs on the same tree.

5Approximate computation time relative to the I-method.
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Degree of parameter recovery. Rates and times inferred using the combined method (green curves), and the r % t-method
(red curves) are compared with the corresponding true parameters that were used to generate the sequence data. Results for
| 0-leaf (upper figure), and 100-leaf trees (lower figure) are shown. We plot the deviation of the inferred parameter from the
true value against different rate variances v. Rates and times are shown as stars and circles, respectively.

infer, only one has a MAP estimate outside of the borders
marked out by the 25% and 75% quantiles from the
MCMC analysis, and that one is only slightly outside. This
is good performance, since it seems clear from the figure
that the MCMC analysis gives rather tight parameter infer-
ence, i.e., the quantile intervals are small.

Phylogeny inference simulations

Compared to the parameter inference problem discussed
in the previous three sections, the phylogeny inference
problem is significantly more difficult. Given a set of
sequences, the objective is to perform simultaneous infer-
ence of tree topology, rates, and times. In Figure 5 and
Table 2, we present a simulation study comparing hill-
climbing and MCMC, with the result, as expected, that
hill-climbing converges quickly but is less reliable than
MCMC. In both the hill-climbing and the MCMC case, a
run is considered successful when it first visits a state with
log-likelihood at least as good as the optimal log-likeli-
hood for the tree generating the data. For MCMC this is

despite the fact that if the posterior distribution is non-
uniform it cannot have been reached. That is, we underes-
timate the time required.

When doing phylogeny inference the local optima prob-
lem really becomes an issue. What often happens both in
the hill-climbing MAP and in the MCMC case, is that the
algorithm gets stuck on one particular sub-optimal tree,
and by optimizing rate and time parameters for that tree
we make a move to another tree unlikely. To circumvent
this problem, we use the SAL-method described in Meth-
ods; that is, we do tree swaps often early in the chain,
while focusing more on fine-tuned parameter changes
later. For small trees the effect of the SAL-method is
minor. Out of the 100 MAP estimations we carried out for
the 10-leaf trees with the SAL-method and the standard
method (i.e. perturbing each parameter equally often), we
finished successfully in 98 and 87 cases, respectively (see
Table 2). When using MCMC on 10-leaf trees, we finished
successfully in 99 cases with the SAL-method and in 100
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An rbcL hill-climbing vs. MCMC comparison. The speciation times inferred by using MCMC are shown by the tree
nodes (means) and the blue bars (25% and 75% quantiles), respectively. The positions of the tree nodes, and the 25% and 75%
bars, are relative to the position of the root, which has time value 1.0. Substitution rates are explicitly written out scaled by
100 on branches and are shown by yellow bars (mean, 25% and 75% quantiles). In both cases, corresponding MAP estimates

are indicated by red

stars.
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Phylogeny inference simulations. Phylogeny inference simulations performed on 30-leaf trees are shown. An inference is
considered successful at the first visit to the true tree, i.e., the tree generating the sequence data, or to a state with log-likeli-
hood value at least as good as the true tree. In the left figure, we plot percent successes as a function of number of iterations
for 100 runs on one tree with, respectively, MAP using the combined method, i.e., with DP (solid green line with stars indicat-
ing that at least one run has reached the success zone during the last 1000 steps), MAP using the r X t-method, i.e., without DP
(solid red line with circles) and MCMC with (dotted green line with stars) and without DP (dotted red line with circles). We
also plot results obtained with MAP and the combined method but without the SAL-method (solid green line with triangles). In
the right figure, the comparison is between the same MAP runs with (again solid green line with stars) and without DP (again
red solid line with circles) when a success is recorded as before, and the same methods (dashed green and red lines with stars
and circles respectively) where a success is recorded when optimum for the true tree is reached.

cases with the standard method. For 10-leaf trees, both the
standard method and the SAL-method require a similar
number of iterations to converge successfully, and we con-
clude that the difference in computation time between the
two methods for these small trees is minor.

For inference on larger trees (results from simulations
using 30-leaf trees are shown), it is clear that favoring of
early tree moves, as in the SAL-method, is necessary. Out
of 100 simulations that were performed with the standard
method, after 50,000 iterations only 25 MAP runs have
reached a likelihood similar to that of the true tree (i.e. the

tree generating the data). This should be compared with
the SAL-method which finishes successfully in 74% of the
cases. Also for MCMC, where we expect optimal values to
be eventually achieved in all cases, we note the same pat-
tern with the SAL-method having much shorter time to
success. We finally conclude that the effect of our DP-algo-
rithm is less pronounced when it comes to phylogeny
inference than is the case for parameter inference. A com-
parison between the combined method (i.e. with the DP
augmentation) and the r x t-method is shown in the right
part of Figure 5. We record the percentage of runs finding
first the true tree and second the optimal log-likelihood
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Table 2: Phylogeny inference simulations. 100 times MAP and MCMC phylogeny inference on 10- and 30-leaf trees, using the
combined, the r X t-method, the standard and the simulated annealing-like algorithms respectively.

Tree size # Iterations! Time? Success3
SAL Std SAL Std SAL Std
Combined 10 2000 1500 50s I15s 98 87
MAP 30 6000 29000 Il'm 20 m 74 25
10 4200 1700 90s 20s 99 100
MCMC 30 18000 32000 20 m 25m 80 60
rxt 10 1900 3300 45 s 25s 99 98
MAP 30 8000 >50000 14 m >30m 83 0
10 5000 4600 100 s 30s 96 100
MCMC 30 22000 >50000 20 m >30 m 54 0

'Median number of iterations for successful runs (i.e. runs finding a tree with likelihood at least as good as the true tree).

2Median computation time needed for successful runs.
3Percentage of runs being successful.

for that tree. The combined method finds the true tree in
74% and the r x t-method in 83% of the cases. The com-
bined method is slightly faster needing on average 6000
iterations while the r x t-method needs 8000 iterations.
Now, to find the optimum the combined method needs
8000 iterations, i.e., another 2000 iterations after the true
tree is found. This should be compared to the r x t-
method which needs 8000 iterations to find the optimum
after the true tree is found, in total 16000 iterations on
average.

Hill-climbing vs. MCMC - a phylogeny inference
performance comparison on a mtDNA dataset

To test the phylogeny inference method on biological
data, we used a mitochondrial DNA dataset originally pre-
sented in [23]. It consists of the complete cytochrome oxi-
dase 11 and cytochrome b genes, altogether around 1800
nucleotides, in 40 species. The authors utilize this and
other datasets together with calibration times obtained
from fossil records to infer divergence times among the
lemurs of Madagascar. The model they used is that of
Thorne et al. [14] which, again, is based on auto-corre-
lated rates. Our use of this data was twofold. Firstly, we
tested whether, and if so how often, we could find a tree
with similar or higher likelihood than the one used in
[23] (see Figure 6). Secondly, we used their tree in order
to obtain divergence times for comparison.

We partitioned the sequence set into four categories a, b,
¢, d as shown in Figure 6. We ran our tree inference on suc-
cessively larger proportions of the tree, i.e., subtrees a, a +
b,a+b + ¢, and the full a + b + ¢ + d tree. On each subtree,
we recorded optimal log-likelihood values for the tree as
given in the figure. We then ran 100 separate inferences
starting from a random tree to see whether the obtained
log-likelihood values differed much mutually and
whether we could reach the optimal value for the given
tree. Note that, in Table 3, the success percentage varies

over trees in an seemingly unexpected manner. We thus
record a higher percentage of successes for the dataset
including 31 sequences in trees a + b + ¢ than for the
smaller subset in trees a + b (22 sequences) and a (11
sequences). A plausible reason for this is that the tree used
to compare with (i.e. the one shown in Figure 6) is not
necessarily optimal and that the relative effect of this is
larger for the smaller subtrees. The distribution of results
inferred by our method seems however to be the expected
one with wider spread for bigger trees.

Hill-climbing vs. MCMC - a dating performance
comparison on a mtDNA dataset

We finally made a comparison between divergence times
resulting from our method and those reported in [23].
The results in Table 4 imply that our inference differs con-
siderably from the calibration times used by Yoder et al..
All times inferred by us on the Laurasiatheria clade (C4-
C7) are wildly underestimated as compared to the
reported calibrations, although the relative edge lengths
on the clade seem to agree. On the other hand, we overes-
timate the time point for the divergence between Pan/
Homo and Gorilla (C1). Our results agree with what has
been reported by Arnason et al. on several occasions, [31]
is a recent example, from studies on primate mtDNA data.
It is possible that the discrepancy between our results and
those presented by Yoder et al. stems from the fact that we
do not include the additional information that calibration
times give.

More to the point, out of the nine inferred time points
(N1-N9), we are inside the reported 95% credibility inter-
val on all occasions but one (the Eulemur divergence time
point N4 being the exception), and in most cases we are
close to the means reported by Yoder et al.. This is
obtained from an inference using a mere 40 seconds com-
putation time.
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Malagasy lemur phylogenetic tree. Phylogenetic tree
used for divergence time inference in [23]. The upper part of
the tree (categories a and b) contains the Malagasy lemurs,
which are the main objects of analysis in the article, while the
lower part (sections c and d), is for calibration purposes. We
report our inference on branching times shown with blue cir-
cles C1-CB8, these are calibration points in [23], and on
branching times shown with white circles NI-N9, these are
inferred also in [23].

Discussion
We have presented new methods for dating analysis and
phylogenetic tree estimation using nucleotide sequence

http://www.biomedcentral.com/1471-2148/8/77

data. We use a model with birth-death priors on tree
branching and iid substitution rates among lineages, orig-
inally developed in a Markov chain Monte Carlo (MCMC)
framework (Sennblad et al.: Parental guidance vs. mutual
independence - evaluation of bayesian models of substi-
tution rate evolution, submitted), enabling simultaneous
inference of substitution rates and divergence times. We
show that use of this model in a maximum a posteriori
(MAP) framework strongly improves the opportunities to
perform biologically relevant analyses on a large scale.

In addition to this, we have developed a DP algorithm
intended to meet the computationally challenging prob-
lem of optimally partitioning branch lengths into rates
and times. This contribution, which works as nicely in an
MCMC as in a MAP framework, limits the computation
time of our MAP-algorithm to nearly that of standard ML
phylogenetic inference, i.e., where one does not bother
about separating branch lengths into rates and times but
only infers the lengths.

The possibility to simultaneously estimate rates and times
in an efficient way is of great interest in comparative
genomics, as well as in both systematic and evolutionary
biology. Moreover, the current usage of uniform priors on
branch lengths has recently been shown to be problematic
[17]. Modeling branch substitution rates and divergence
times separately allows us to use a birth-death prior on the
times and still evade a molecular clock.

Until now, maximum a posteriori has not been used in this
context. It might be that the computational difficulties
linked with inference of an optimum in the huge rates and
times space, have hampered the development of MAP-
algorithms for this problem. Instead, the present trend in
the phylogenetic inference field of leaving the strict
molecular clock has mainly included MCMC-based meth-
ods. This is a class of methods benefiting both from a nat-
ural way of including biologically motivated prior beliefs
and a natural way of expressing uncertainties in the solu-
tions; but on the negative side must be counted the rela-
tive slowness of these methods. Compared to MCMC
methods, our hill-climbing algorithm has significant
computational advantages. First, by accepting only moves
increasing the total log-likelihood, our method generally
finds a local optimum quicker than does the MCMC vari-
ant. Second, since we only seek one particular value, i.e.,
the locally optimal point, we naturally know when to stop
the search and we can do without the sampling needed for
MCMC-methods to ensure acceptable mixing.

A significant drawback of our method is that it only deliv-
ers point estimates of the inferred variables. The standard
procedure when inferring tree topologies, nonparametric
bootstrapping, cannot easily be implemented in the con-
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Table 3: Phylogeny inference performed on a mtDNA dataset. 100 times MAP phylogeny inference on step by step larger proportions

of the tree shown in Figure 5.

Known'! Inferred? Success3
Tree tree best median worst %
a -8843.8 -8816.8 -8829.0 -8953.7 72
a+b -13381.9 -13345.0 -13369.6 -13472.5 65
atb+c -22054.2 -21977.7 -22025.0 -22339.3 73
a+tb+c+d -30327.7 -30235.7 -30315.5 -30658.7 58

IReference log-likelihood value obtained with the tree topology in Figure 5.

2| og-likelihood value obtained starting from a random tree topology.

3Percentage of runs finding a tree with likelihood at least as good as for the tree topology in Figure 5.

text presented here. It is probably possible to retrieve
uncertainty estimates for a specified time point of interest.
One could fix one interval below and one above the MAP
estimate and calculate the summed probability of posi-
tioning the node in question in that interval. It is, how-
ever, not clear how such an uncertainty estimate would
compare to the MCMC equivalent.

We have further shown that, for the hill-climbing algo-
rithm, the all-important local optima problem can be
addressed. For parameter inference on a fixed tree, where
this issue is not as problematic, we believe that a compar-
ison between results from multiple runs starting from dif-
ferent, randomly selected, positions, will most often be
sufficient. The problem gets more noticeable when infer-
ring (large) phylogenies. We have tested our method on
simulated datasets using trees with 30 leaves and biologi-
cal datasets using trees of similar size. We have noted that
there is a risk of optimizing parameters for one specific
tree topology so much that escaping from that tree is
made difficult. This was not unexpected, however, we
found that it can often be avoided by using the SAL-

method, a scheme where tree topologies are swapped rel-
atively more often in the beginning of the inference chain.

The gain of using our methodology, instead of standard
ML, for topology inference is twofold. First, if the
sequences at hand are of short or moderate length, the
influence of the rates and times prior will be considerable,
favoring a well-chosen prior distribution. Second, when
fossil data include known time values, our methodology
is the natural choice, since these data can easily be
included with our methodology, but not so in an ML
inference. If neither of these two apply, the natural proce-
dure is to use ML for topology inference, followed by our
methodology for inference of rates and times parameters.

We have noted that when inferring trees with very short
edges it would be advantageous for us to locally use a
dense grid for the edge times. Similarly when doing phyl-
ogeny inference it might be of interest to use the DP-algo-
rithm more often right after a tree swap in order to get the
factorization of lengths into rates and times correct before
investigating the new tree. These are possible directions
for further investigations. In the presented analyses on

Table 4: Dating analysis performed on a mtDNA dataset. Comparing our method's divergence times estimations with the calibration
points reported by Yoder et al. (C1-C8 upper section), and inference points (NI1-N9 lower section) estimates.

Cl C2 C3! C4 C5 Cé C7 C8

Yoder et al. — mean — 95% 10.92 34.0 85.9 53.0 34.8 56.0 58.1 40.0
interval (8.9,12.0) (32.1,37.5) (78.4,89.9) (50.1,57.5) (33.1,38.7) (51.4,59.8) (48.9,64.6) (38.1,41.9)

Our inference 20.73 385 - 31.6 18.8 30.6 40.5 37.5

NI N2 N3 N4 N5 N6 N7 N8 N9

Y — mean 12.04 24.2 31.8 8.4 35.9 46.7 67.1 72.9 61.8
Y —-95% (7.8,17.9) (16.8,33.4) (23.4,41.6) (5.3,13.4) (27.0,46.3) (36.9,57.5) (56.8,77.2) (64.0,82.0) (51.0,73.8)

Our 14.85 24.7 32.6 15.8 39.5 50.4 64.2 71.1 60.2

inference

IReference node for our estimation.

2MYA calibration for C|1 reported by Yoder et al.
3MYA estimation for CI by our method.

4MYA estimation for NI reported by Yoder et al.
SMYA estimation for N1 by our method.
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simulated data, we have worked with predefined hyperpa-
rameter values for the rate and time priors. Such values are
generally not known for biological data, for which we
instead estimate these values using maximum likelihood.
It is straight-forward to extend our method to include esti-
mation of the hyperparameters. We have noted that our
method's performance is data-sensitive in the sense that
highly non-clocklike data is not handled well and that var-
ying rate hyperparameters might have an influence on
results. We suspect from previous results [15,21,32] that
the influence of the time prior will show that the effect of
its hyperparameters on the MAP-estimates will be low.
Further studies on this aspect would, however, be interest-
ing. Another interesting aspect is the influence of the pri-
ors for long sequences. It is clear [32,33] (Sennblad et al.:
Parental guidance vs. mutual independence - evaluation
of bayesian models of substitution rate evolution, submit-
ted) that the width of the rates and times posterior inter-
vals will decrease for longer sequences but that this is only
true up to a point. Even for infinitely long sequences there
will be uncertainties in these estimations.

Conclusion

Our contribution leaves the field open for fast and accu-
rate dating analysis of nucleotide sequence data. Com-
pared to MCMC-methods, our methodology reduces
inference time for large phylogenies by orders of magni-
tude. Our novel DP-algorithm is an integral part of the
methodology and simulation-based comparisons
between our combined method and the r x t-method, i.e.,
hill-climbing with and without the DP-algorithm, show
that the DP-algorithm is most rewarding when difficult
problems are attacked. For inference on very large trees it
delivers both speed and accuracy. Also, the DP-algorithm
is superior when the sequence data at hand are non-clock-
like.

The method is easily adapted to take divergence time
information into account, e.g. from fossil data [34,35], by
restricting a speciation to a specific interval or using a
prior distribution on the interval. By including priors on
branching times we have introduced irreversibility into
our model which at least in principle could be used for
tree rooting. Since standard ML phylogenetic models are
reversible with respect to time, one has to resort to infor-
mation outside of the model, normally an outgroup
sequence, for positioning of the root. An investigation of
whether we can do better in this regard is an interesting
direction for future research.

Availability and requirements

Project name: PRIME - Probabilistic Integrated Models of
Evolution Project home page: http://prime.sbc.su.se
map_dp Operating systems: Linux, MacOSx Programming
language: C++ Licence: Source code not released yet. Bina-
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ries are available on the project home page. Restrictions
for non-academic use: None
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