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Abstract
Background: Deacetylation of histones plays a fundamental role in gene silencing, and this is
mediated by a corepressor complex containing Sin3 as an essential scaffold protein. In this report
we examine the evolution of two proteins in this complex, the Sin3-associated proteins SAP30L
and SAP30, by using an archive of protein sequences from 62 species.

Results: Our analysis indicates that in tetrapods SAP30L is more similar than SAP30 to the
ancestral protein, and the two copies in this group originated by gene duplication which occurred
after the divergence of Actinopterygii and Sarcopterygii about 450 million years ago (Mya). The
phylogenetic analysis and biochemical experiments suggest that SAP30 has diverged functionally
from the ancestral SAP30L by accumulating mutations that have caused attenuation of one of the
original functions, association with the nuclear matrix. This function is mediated by a nuclear matrix
association sequence, which consists of a conserved motif in the C-terminus and the adjacent
nucleolar localization signal (NoLS).

Conclusion: These results add further insight into the evolution and function of proteins of the
SAP30 family, which share many characteristic with nuclear scaffolding proteins that are intimately
involved in regulation of gene expression. Furthermore, SAP30L seems essential to eukaryotic
biology, as it is found in animals, plants, fungi, as well as some taxa of unicellular eukaryotes.

Background
The Sin3 multiprotein complex plays a central role in gene
silencing by deacetylating histones, and deletion of the
mouse SIN3A gene results in lethality at a postimplanta-
tion stage of development [1]. SAP30 was initially found
in Saccharomyces cerevisiae and human cells as a protein
which co-immunopurified with the Sin3 corepressor
complex [2-4]. In cultured cells, SAP30 is not necessary for
repression activity by the Sin3 complex, but it participates

in N-CoR-mediated repression by specific transcription
factors [4]. Thus, it functions as a bridging and stabilizing
molecule between the Sin3 complex and corepressors
such as N-CoR [4] and CIR [5], and DNA-binding tran-
scription factors such as YY1 [6]. Mammals have one par-
alog of SAP30, named "SAP30-like" (SAP30L), which
shares 70% sequence identity with SAP30 [7]. SAP30L
also binds to the Sin3A complex and represses transcrip-
tion when tethered to different promoters [8]. In S. cerevi-
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siae, SAP30 has been shown to be involved in regulation
of transcription of the HMR, telomeric, and rDNA loci
[9,10], and SAP30-deficient yeast strains have defects in
ribosomal rRNA processing [11]. Consistent with a nucle-
olar function, we have previously identified nucleolar
localization signals (NoLSs) in human SAP30 and
SAP30L, and showed that they can direct Sin3A to the
nucleolus [8].

Recently, we identified by mass spectrometric studies a
C2CH-type zinc-binding module in the N-termini of
SAP30 and SAP30L [12]. An independent NMR-study also
confirmed the results that SAP30 proteins contain C2CH-
type large zinc fingers [13]. This structure is essential for
the stability and DNA-binding activity of both proteins.
Close to the zinc-binding module resides a polybasic
region originally identified as a nuclear localization signal
(NLS) in SAP30L [7]. We showed that this region, together
with the preceding hydrophobic region, mediates specific
interactions of SAP30/SAP30L with the monophosphoi-
nositides (PIPs) PdtIns3P, PtdIns4P and PtdIns5P.
Intriguingly, DNA- and PIP-binding occur in the same
region and compete with each other. Increasing the con-
centration of monophosphosphoinositides leads to the
release of DNA from SAP30/SAP30L, and reduced tran-
scriptional repression [12]. Furthermore, we showed that
SAP30 and SAP30L interact with core histones and nucle-
osomes and that this interaction is partly mediated by the
central acidic region [12].

Nucleotide sequences belonging to the SAP30 family have
been found in many eukaryotic species, but most of these
putative homologs remain unrecognized and uncharac-
terized in databases, including those of the NCBI. Here we
present a phylogenetic analysis of proteins of the SAP30
family. Our analyses indicate that SAP30L is the ancestral
protein of this family and it is found in animals, plants,
fungi and some protists. A single duplication event of an
ancient SAP30L-bearing chromosome segment gave rise
to the SAP30 gene. The most conserved region in SAP30
proteins is in the C-terminus, and we show by biochemi-
cal experiments that this region is responsible for associa-
tion with the nuclear matrix. Phylogenetic analysis reveals
that SAP30 has accumulated mutations in its C-terminus,
and this has reduced its association with the nuclear
matrix. This study suggests that proteins of the SAP30
family play a role in Sin3-mediated repression through
multiple interactions with the nuclear matrix, nuclear pro-
teins and DNA.

Results and discussion
SAP30 and SAP30L genes in the human, mouse, chicken 
and zebrafish genomes
The human SAP30 and SAP30L genes are located in chro-
mosome bands 4q34.1 and 5q33.2, respectively (Figure

1). Careful analyses reveal that similar genes flank the
SAP30 and SAP30L genes in their respective chromo-
somes and, in fact, these two chromosomes are known to
share duplicated segments [14]. The GALNT 10 and
GALNT7 genes are located upstream of the SAP30L and
SAP30 genes, respectively. On the downstream side, the
SAP30L gene is followed by HAND1, and the SAP30 gene
by HAND2. It is noteworthy that the degree of sequence
identity between the proteins encoded by these flanking
genes is similar to that between SAP30 and SAP30L, when
aligned by Clustal V. Since the occurrence of a chromo-
somal duplication event seemed likely, we analyzed other
organisms for the presence of this GALNT-SAP-HAND
block in order to estimate the time of the duplication
event. The mouse and chicken genomes were found to
have a similar, conserved GALNT-SAP-HAND organiza-
tion. The zebrafish has a predicted GALNT gene upstream
of the SAP30L gene, and this most likely represents the
ancestral chromosome segment because the zebrafish has
only one member of the SAP30 family in its genome (see
below). In the human genome, the size of the duplicated
segment, vectoring the SAP30 family genes between chro-
mosomes 4 and 5, is approximately 400 kb. Comparative
analysis of human chromosome 5 [15] has pinpointed
this particular 400 kb region as the interchromosomally
duplicated segment. Furthermore, our analysis confirms
that this region in chromosome 5 is in fact the donor tem-
plate for the duplication which gave rise to the SAP30
family ~450 Mya, after the Actinopterygii-Sarcopterygii
separation [16]. Human chromosome 5 and linkage
group 21 (LG21) in the zebrafish have been shown to
share most of the conserved syntenies, indicating that
these are orthologous chromosomes [17]. Although the
genes in these chromosomes were syntenic in the last
common ancestor of the zebrafish and human, massive
intrachromosomal rearrangements have apparently
occurred in the fish and/or mammalian lineages since
their divergence. Such rearrangements are known to occur
in the SAP30L-harboring human chromosome 5q region
[18], which is frequently deleted in myeloid malignancies
such as the 5q- syndrome. The synteny between the
zebrafish LG21 and human chromosome 5 has been dis-
rupted by intrachromosomal translocations and inver-
sions of chromosome segments. The fact that the GALNT-
SAP microsynteny has been preserved between fish and
human chromosomes, and between human chromo-
somes 4 and 5, indicates that these genes may have some
kind of cooperative function. Perhaps they are under com-
mon regulation or even give rise to chimeric transcripts,
which are in fact predicted in the USCS database [19].

Identification of members of the SAP30 family and 
conserved regions in the protein
A database of sequences judged to be members of the
SAP30 protein family was compiled (Table 1). Altogether,
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62 members of the SAP30 family were identified by Psi-
Blast searches with the human SAP30L sequence on a
non-redundant protein sequence database. SAP30 family
sequences were found in a variety of species from Anima-
lia, Plantae and Fungi, as well as in several green algae but
not in any chloroplastless protist. In addition, one SAP30
family member in the ambiguous Mycetozoan group was
found. In the yeasts, our searches identified SAP30 family
members in only two subphyla within the phylum Asco-
mycota: Saccharomycotina and Pezizomycotina. The
third subphylum, Taphrinomycotina seems to have lost
SAP30 family proteins during evolution, as we could not
find any recognizable sequences from this subphylum,
when Schizosaccharomyces pombe, as a representative spe-
cies whose whole genome has been sequenced, was ana-
lyzed (from the NCBI database or the S. pombe gene
database from Sanger Institute). The composition of the
Sin3 corepressor complex in S. pombe seems to be distinct
from that in other eukaryotes as its genome is reported to
also lack SAP18 and SDS3 [20], other core members of the
complex. According to a comprehensive analysis of yeast
evolution [21], Taphrinomycotina is the earliest diverging
clade within the phylum Ascomycota, and this divergence
is estimated to have occurred ~1140 ± 80 Mya [22]. How-
ever, SAP30L was also found in plants and the green algae
Chlamydomonas reinhardtii (see alignment in additional
file 1). Molecular clock analyses indicate that plants sepa-
rated from the lineage leading to the mycetozoans and
fungi about 1580 ± 90 Mya [22] and thus, this is also the
estimated age of the SAP30 family.

Multiple Clustal W alignment of sequences of the SAP30
family identified a highly conserved region in the C-termi-
nus (Figure 2), which consists mainly of aliphatic (I, L, V),
aromatic (F, Y, W, H) and charged (H, K, R, D, E) residues.
Moreover, when the alignment is examined according to
the physiochemical properties of the amino acids, this
region shows 100% conservation in the nine C-terminal
residues. The consensus sequence of this conserved C-ter-
minal motif is [hydrophobic]-x(2)-[hydrophobic]-
[hydrophobic]-x(4)-[hydrophobic] -x-[amphoteric]-x(2)-
[hydrophobic]-[aliphatic]-x(2)-[hydrophobic]-[hydro-
phobic].

The Clustal W alignment of SAP30/SAP30L sequences
shown in Figure 2 also revealed that the nucleolar locali-
zation signal (NoLS) [8], which consists of basic amino
acids is quite conserved among the species studied.
Although there is no striking co-aligning NoLS in yeast
and plants sequences, they contain polybasic region pre-
ceding C-terminal motif. As a conclusion, the C-terminal
domain, NoLS motif and the Sin3-interacting domain
(SID) represent the most ancient region in proteins of the
SAP30 family, and this domain evidently appeared early
in the evolution of this family. Despite the apparent lack

Chromosomal localizations of the SAP30 family genes in the Homo sapiens, Mus musculus, Gallus gallus and Danio rerio genomesFigure 1
Chromosomal localizations of the SAP30 family 
genes in the Homo sapiens, Mus musculus, Gallus gallus 
and Danio rerio genomes. The chromosome number and 
the approximate length (in Mb) are indicated below each 
chromosome. The lengths of the syntenies are presented in 
kb. The degree of similarity in the derived amino acid 
sequence in the Clustal V alignment is indicated as a percent-
age of identical residues for the human genes.
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Table 1: SAP30 family proteins used for amino acid sequence alignment.

Number Name Identifier Organism Taxonomy Description

1 Hs30 gi|4506783 Homo sapiens Eu., mt., vt., mam. SAP30

2 Mam30 gi|109076181 Macaca mulatta Eu., mt., vt., mam. PREDICTED: similar to SAP30 isoform 2

3 Pt30 gi|114596884 Pan troglodytes Eu., mt., vt., mam. PREDICTED: SAP30 isoform 2

4 Bt30 gi|119896054 Bos taurus Eu., mt., vt., mam. PREDICTED: similar to SAP30

5 Mm30 gi|12408290 Mus musculus Eu., mt., vt., mam. SAP30

6 Cf30 gi|73993665 Canis familiaris Eu., mt., vt., mam. PREDICTED: similar to SAP30

7 Oa30 gi|149412039 Ornithorhynchus anatinus Eu., mt., vt., mam. PREDICTED: SAP30

8 Md30 gi|126331237 Monodelphis domestica Eu., mt., vt., mam. PREDICTED: similar to SAP30

9 Gg30 gi|118090131 Gallus gallus Eu., mt., vt., av. PREDICTED: similar to SAP30

10 Xt30 gi|62860074 Xenopus tropicalis Eu., mt., vt., amp. SAP30

11 Xl30 gi|148227208 Xenopus laevis Eu., mt., vt., amp. MGC99111 protein

12 Hs30L gi|74734226 Homo sapiens Eu., mt., vt., mam. SAP30L, NS4ATP2, FLJ11526

13 Mam30L gi|109079479 Macaca mulatta Eu., mt., vt., mam. Predicted: similar to SAP30L

14 Bt30L gi|119923830 Bos taurus Eu., mt., vt., mam. Predicted: hypotethical protein

15 Mm30L gi|124487193 Mus musculus Eu., mt., vt., mam. SAP30L

16 Rn30L gi|109490760 Rattus norvegicus Eu., mt., vt., mam. PREDICTED: similar to SAP30L

17 Gg30L gi|118097434 Gallus gallus Eu., mt., vt., av. Predicted: hypotethical protein

18 Xt30L gi|62858467 Xenopus tropicalis Eu., mt., vt., amp. hypothetical protein LOC549895

19 Xl30L gi|160358663 Xenopus laevis Eu., mt., vt., amp. SAP30L-A

20 Dr30L gi|47550711 Danio rerio Eu., mt., vt., acti. SAP30L

21 Tn30L gi|47221378 Tetraodon nigroviridis Eu., mt., vt., acti. unnamed protein product

22 Aa30L gi|157112936 Aedes aegypti Eu., mt., art., ins. SAP30

23 Ag30L gi|118794370 Anopheles gambiae str. PEST Eu., mt., art., ins. AGAP001654-PA

24 Am30L gi|66509501 Apis mellifera Eu., mt., art., ins. PREDICTED: similar to CG4756-PA

25 Dp30L gi|125983642 Drosophila pseudoobscura Eu., mt., art., ins. GA18408-PA SAP30

26 Dm30L gi|18859859 Drosophila melanogaster Eu., mt., art., ins. CG4756-PA SAP30

27 Tc30L gi|91080611 Tribolium castaneum Eu., mt., art., ins. PREDICTED: similar to CG4756-PA

28 Sp30L gi|115610671 Strongylocentrotus purpuratus Eu., mt., ech PREDICTED: similar to Sap30-like
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29 Nv30L gi|156369622 Nematostella vectensis Eu., mt., cnid. predicted protein

30 Dd30L gi|66810369 Dictyostelium discoideum AX4 Eu., myc. hypothetical protein 
DDBDRAFT_0185724

31 Vv30L gi|157335386 Vitis vinifera Eu., virid., strept. unnamed protein product

32 Vp30L gi|85070180 Vitis pseudoreticulata Eu., virid., strept. unknown

33 At30L gi|18394724 Arabidopsis thaliana Eu., virid., strept. unknown protein

34 At30L-B gi|145327243 Arabidopsis thaliana Eu., virid., strept. unknown protein

35 Osj30L gi|78708341 Oryza sativa (japonica cultivar-group) Eu., virid., strept. expressed protein

36 Osj30L-B gi|115457076 Oryza sativa (japonica cultivar-group) Eu., virid., strept. Os04g0166600

37 Cr30L gi|159464042 Chlamydomonas reinhardtii Eu., virid., chlor. hypothetical protein 
CHLREDRAFT_190150

38 Ol30L gi|145350235 Ostreococcus lucimarinus CCE9901 Eu., virid., chlor. predicted protein

39 Ot30L gi|116059598 Ostreococcus tauri Eu., virid., chlor. unnamed protein product

40 Yl30L gi|50556448 Yarrowia lipolytica Eu., Fungi, sacch. hypothetical protein

41 Asg30L gi|45190881 Ashbya gossypii ATCC 10895 Eu., Fungi, sacch. AER278Wp

42 Kl30L gi|50308899 Kluyveromyces lactis Eu., Fungi, sacch. unnamed protein product

43 Cg30L gi|50288935 Candida glabrata Eu., Fungi, sacch. unnamed protein product

44 Vap30L gi|156845457 Vanderwaltozyma polyspora DSM 70294 Eu., Fungi, sacch. hypothetical protein Kpol_541p4

45 Ps30L gi|126136507 Pichia stipitis CBS 6054 Eu., Fungi, sacch. predicted protein

46 Sc30L gi|6323919 Saccharomyces cerevisiae Eu., Fungi, sacch. SAP30

47 Dh30L gi|50425161 Debaryomyces hansenii CBS767 Eu., Fungi, sacch. hypothetical protein DEHA0F20284g

48 Pg30L gi|146421845 Pichia guilliermondii ATCC 6260 Eu., Fungi, sacch. hypothetical protein PGUG_00243

49 Ca30L gi|68489492 Candida albicans SC5314 Eu., Fungi, sacch. putative SAP30

50 Le30L gi|149237879 Lodderomyces elongisporus NRRL YB-
4239

Eu., Fungi, sacch. conserved hypothetical protein

51 Bf30L gi|154298394 Botryotinia fuckeliana B05.10 Eu., Fungi, pez. hypothetical protein BC1G_11652

52 Ci30L gi|119178679 Coccidioides immitis RS Eu., Fungi, pez. hypothetical protein CIMG_08147

53 Chg30L gi|116196544 Chaetomium globosum CBS 148.51 Eu., Fungi, pez. hypothetical protein CHGG_04870

54 Ac30L gi|121715712 Aspergillus clavatus NRRL 1 Eu., Fungi, pez. conserved hypothetical protein

55 Af30L gi|71001656 Aspergillus fumigatus Af293 Eu., Fungi, pez. conserved hypothetical protein

56 An30L gi|145232103 Aspergillus niger Eu., Fungi, pez. hypothetical protein An02g03790

Table 1: SAP30 family proteins used for amino acid sequence alignment. (Continued)
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57 Scc30L gi|156045101 Sclerotinia sclerotiorum 1980 Eu., Fungi, pez. hypothetical protein SS1G_09739

58 Nf30L gi|119481227 Neosartorya fischeri NRRL 181 Eu., Fungi, pez. conserved hypothetical protein

59 Nc30L gi|85105620 Neurospora crassa OR74A Eu., Fungi, pez. hypothetical protein

60 Ao30L gi|83769778 Aspergillus oryzae Eu., Fungi, pez. unnamed protein product

61 Asn30L gi|67540052 Aspergillus nidulans FGSC A4 Eu., Fungi, pez. hypothetical protein AN6196.2

62 Pn30L gi|160703739 Phaeosphaeria nodorum SN15 Eu., Fungi, pez. hypothetical protein SNOG_12725

Note that the S. cerevisiae SAP30 is judged to be SAP30L (see data presented below) and named as such (Sc30L) for coherence. acti. = 
Actinopterygii, amp. = Amphibia, art. = Arthropoda, eu. = Eukaryota, ins. = Insecta, invt = Invertebrata, mam. = Mammalia, mt = Metazoa, vt = 
Vertebrata, av. = Aves, ech. = Echinodermata, cnid. = Cnidaria, myc. = Mycetozoa, virid. = Viridiplantae, chlor. = Chlorophyta, strept. = 
Streptophyta, sacch. = Saccharomycotina, pez. = Pezizomycotina.

Table 1: SAP30 family proteins used for amino acid sequence alignment. (Continued)
of a co-aligning NoLS in yeasts, the reported functions of
SAP30 in rDNA transcription [9,10] and ribosome bio-
genesis [11] suggest that SAP30 is targeted to the nucleo-
lus, and fulfills these functions in yeasts as well.

Conserved domain structure in proteins of the SAP30 
family within animals
The alignment of animal SAP30 and SAP30L sequences
revealed several conserved regions in these proteins (Fig-
ure 2 and Additional file 2). One of these is the N-termi-
nal zinc-dependent module, in which all four zinc-
coordinating residues (CCCH) [12] are strictly conserved.
The distances between these zinc-coordinating residues
are highly conserved as C-×(8)-C-×(35)-C-×(2)-H, sug-
gesting that they are critical for proper folding of the zinc-
binding module. The amino acids at the DNA-binding
interface in the loop region are also well conserved, and
show mainly conservative substitutions consisting of
polar and basic residues. The DNA/PIP-binding domain
[12], which constitutes the NLS motif [7] and comprises
the polybasic region adjacent to the zinc-binding module,
is also well conserved, as are the NoLS motif, SID domain
and the acidic central region that contributes to histone
and nucleosome binding [7,8,12]. The high degree of con-
servation indicates that all these modules are probably
important for the function of the SAP30 family proteins.

Phylogenetic analysis and timing of the SAP30L gene 
duplication
Phylogenetic trees were generated from the Clustal W
alignment (Figure 2) of the SAP30 protein sequences pre-
sented in Table 1 using the distance, parsimony and like-
lihood methods. Statistical confidence was measured by
Jackknife analysis with 1000 "delete-half jackknife" data
sets except in the likelihood method, in which case only
100 data sets were measured due to constraints imposed
by computation time. All three methods gave trees with
congruent topologies, the main discrepancies being the
varying positions of the single representatives from the

Echinodermata, Cnidaria and Mycetozoa. A reliable posi-
tioning of these sequences would probably require more
data from these taxa, and prefererably from the intermedi-
ate taxa as well, but the content of the current databases
does not allow this. The extensive sequence divergence
observed within the yeasts (Additional file 3) may also
explain the non-monophyly of the Ascomycota in the
both the parsimony and the likelihood trees. In the dis-
tance tree (Figure 3), as well as in the parsimony and like-
lihood trees (Additional files 4 and 5), SAP30 proteins
clearly fall into one group (with Jackknife percentage val-
ues of 93.4%, 99.8% and 88% for the distance, parsimony
and likelihood methods, respectively). This strongly sup-
ports a single origin for the SAP30 protein family. The
presence of SAP30L and the absence of SAP30 in the fish
(Danio rerio and Tetraodon nigroviridis) genomes suggests
that the SAP30 gene originated from the ancestral SAP30L
gene by duplication of a chromosome segment after the
divergence of fishes (Actinopterygii, ray-finned fishes) but
before the divergence of amphibians which belong to the
Sarcopterygii (lobe-finned fishes). In fact, according to an
analysis by Friedman et al. 77.7% of the interchromo-
somal duplication events that can be seen in the human
genome have occurred prior to the amniote-amphibian
separation [14]. Careful inspection of the animal SAP30/
SAP30L sequences (Additional file 2) reveals that many
amino acid substitutions are characteristic for either
SAP30 or SAP30L (apomorphic), and therefore carry phy-
logenetic information about the duplication of the
SAP30L gene.

Functional divergence of the paralogous SAP30 and 
SAP30L genes
It is noteworthy that the tetrapodan SAP30 orthologs
from frogs to humans (Sarcopterygii) are much more dis-
persed in the distance tree than are the SAP30L orthologs
in the corresponding species (Figure 4). This is also evi-
dent in the alignment of animal SAP30/SAP30L
sequences (Additional file 2). The sarcopterygian SAP30
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Amino acid sequence alignment of the members of the SAP30 familyFigure 2
Amino acid sequence alignment of the members of the SAP30 family. Naming of the sequences is presented in Table 
1. The residues in the alignment are shaded light grey, grey, or black to indicate shared identity at 40%, 70% and 100%, respec-
tively. The arrows indicate the zinc coordinating residues. PIP = Phosphatidyl Inositol Phosphate, NLS = Nuclear localization 
signal, Acidic region = a central region contributing to histone/nucleosome binding, NoLS = Nucleolar localization signal, SID = 
Sin3 interacting domain.
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A phylogenetic tree of the SAP30 protein familyFigure 3
A phylogenetic tree of the SAP30 protein family. The tree was derived by a neighbor-joining distance analysis (the par-
simony and likelihood trees are presented in Additional files 4 and 5). The statistical reliability of the inferred tree topology was 
assessed by the jackknife test, and the values are shown at each node as a percentage calculated from 1000 data sets.
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A phylogenetic tree of the SAP30 family in which branch lengths are proportional to the extent of sequence divergenceFigure 4
A phylogenetic tree of the SAP30 family in which branch lengths are proportional to the extent of sequence 
divergence. The black arrow points to the tip of the animal branch, which is shown magnified in the lower left corner. The 
dispersed, monophyletic tetrapodan/sarcopterygian SAP30 group is shaded.
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proteins contain more amino acid substitutions, and
many more deletions and insertions, than the SAP30L
proteins. In fact, the divergence and amino acid identity
values for SAP30 protein sequences between Homo sapiens
and Xenopus tropicalis are 27.2% and 74.2%, respectively,
whereas the corresponding values for SAP30L are 9.5%
and 89%. It seems that since their divergence by segmen-
tal duplication from a common ancestor, the evolutionary
rate in SAP30 proteins has been much higher than in
SAP30L proteins. This is what is thought to occur more
generally in duplicated genes, where the new copy will
evolve unencumbered by the selective constraints
imposed on its progenitor [23]. Furthermore, the evolu-
tionary rate of amino acid substitution may increase and
functional divergence may take place at the early stage of
evolution after separation [24]. This is followed by the late

stage, in which purifying selection plays a major role in
maintaining related, but distinct functions. This has
allowed SAP30 to gain more length, mainly by microsat-
ellite expansion near its N-terminus. It is not known if this
has produced "gene innovation" (i.e. addition of a new
functional domain) to SAP30, because the function of this
N-terminal extension is currently unknown.

Since the cluster-specific residues between SAP30 and
SAP30L in the sarcopterygian clusters were prominent in
the alignment, we tested whether these residues are func-
tionally relevant. Functional significance is highly corre-
lated with evolutionary conservation [25]. If a particular
amino acid site is variable in both clusters, it is unlikely to
have any major functional role in either paralog. Con-
versely, conservation of an amino acid in one cluster and

Functional divergence between SAP30 and SAP30LFigure 5
Functional divergence between SAP30 and SAP30L. a) A neighbor-joining tree of the tetrapodan/sarcopterygian SAP30 
and SAP30L, and the arthropodan SAP30L, showing the jackknife values at the nodes. The monophyletic tetrapodan/sarcop-
terygian SAP30 cluster is shaded. The curved arrows indicate comparisons for type-I (θI) and type-II (θII) functional divergence, 
and statistically significant p-values are indicated. b) Posterior probability plot of amino acid positions indicative of type-I or 
type-II functional divergence. The conserved domains are depicted in the white boxes between the plots. Zn = zinc dependent 
module, PIP = monophosphoinositide binding motif, N = nucleolar lozalization signal, P = protein-protein interaction domain.
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lack of conservation in a sister cluster is assumed to con-
tribute to functional differences between the paralogs.
This site-specific shift in the evolutionary rate between
clusters is known as type-I functional divergence [26]. In
type-II functional divergence, a particular site is conserved
in both clusters but the physicochemical property of the
amino acid is different between the clusters [27]. To test if
the cluster-specific residues in SAP30 and SAP30L are
indicative of type-I divergence, we estimated the coeffi-
cient of functional divergence (θ), which measures the dif-
ference in the evolutionary rate at amino acid sites
between gene clusters. Rejection of the null hypothesis (θ
= 0) is strong evidence for altered functional constraints
after gene duplication (or speciation) [28]. We found sig-
nificant evidence for type-I divergence in the comparison
between sarcopterygian SAP30 and SAP30L clusters (θI =
0.46 ± 0.18, p < 0.01 Figure 5a), but not in the control
comparison between sarcopterygian and arthropodan
SAP30L clusters (θI = 0.25 ± 0.19, p > 0.19), which reflects
the situation before the gene duplication. Similarly, sig-
nificant type-II functional divergence was detected only
between SAP30 and SAP30L clusters (θII = 0.12 ± 0.05, p <
0.05), whereas it was undetectable before the gene dupli-
cation (θII = 0.07 ± 0.08, p > 0.37). To put these findings
into perspective, the human SAP30 and SAP30L share
70% amino acid identity, whereas the human SAP30L and
the Drosophila melanogaster SAP30L share only 50% iden-
tity. This latter comparison clearly shows that it is mostly
the neutral amino acid sites with no functional role that
are variable, whereas after the gene duplication (i.e. the
emergence of SAP30), functional divergence has taken
place.

To conclude, after the sarcopterygian radiation around
450 Mya, the duplicated SAP30 has diverged functionally
from the ancestral SAP30L. In contrast, evolutionary con-
straints have kept SAP30L functionally unchanged for
~1000 My, since the separation of arthropods and sarcop-
terygians [29]. In spite of considerable divergence in
sequence, only functionally insignificant changes consti-
tute the sequence differences in SAP30L between these
two clades. This presumably reflects the fact that purifying
selection has acted to conserve SAP30L.

The site-specific profile for the amino acid residues
deemed responsible for type-I and type-II functional
divergence (Figure 5b) show that most of the functional
divergence is found in the C-terminal region and between
the experimentally identified domains. However, previ-
ous experiments have shown that: i) the repression capac-
ity of SAP30 is only half of that of SAP30L, ii) SAP30L is
able to self-oligomerize in vivo whereas SAP30 is not, and
iii) SAP30L is more concentrated in the nucleolus than
SAP30 in transfection experiments [8]. These biochemical
data, together with the molecular evolutionary analysis

described here, suggest that the original functions are exe-
cuted by SAP30L, but in SAP30 these functions are aban-
doned or suppressed.

The functional divergence between SAP30 and SAP30L is 
due to differences in their association with the nuclear 
matrix
Although the C-terminal region is the most conserved part
in proteins of the SAP30 family, considerable type-I and
type-II functional divergence has occurred in this region
after the separation of the SAP30L and SAP30 genes (Fig-
ure 5b). Our previous subcellular fractionation experi-
ments showed that nuclear retention of SAP30L is
achieved by interaction with DNA through the N-terminal
domain [12]. We also demonstrated that the C-terminus
has a role in nuclear retention, because C-terminally trun-
cated mutants of SAP30L leaked to the cytoplasm in trans-
fection studies [8,12]. We therefore asked whether the C-
terminal region constitutes a nuclear matrix association
sequence. When myc-tagged constructs of wild type (wt)
SAP30 and SAP30L were transfected into HeLa cells and
the nuclear matrix was isolated, we noticed that staining
of the perinucleolar ring was resistant to Triton-X and
DNAse I treatments, indicating that the proteins remained
attached to the nuclear matrix in the perinucleolar ring
region (Figure 6a). SAP30L1-120 was completely soluble,
while the 1–140 and 1–160 versions showed some attach-
ment to the nuclear matrix (Figure 6a). Intriguingly,
SAP30L seemed to be bound more tightly than SAP30,
suggesting that SAP30 has accumulated mutations that
hinder its association with the nuclear matrix. In order to
gain more quantitative data, we performed subcellular
fractionation experiments and found that SAP30 was con-
siderably more soluble than SAP30L, which accumulated
in the nuclear matrix/chromatin fractions. The 1–120
mutant of SAP30L showed markedly reduced accumula-
tion in the nuclear matrix/chromatin fraction, and the 1–
140 and 1–160 mutants were also more soluble than wt
SAP30L (Figure 6b), indicating that an intact C-terminus
is necessary for the association with the nuclear matrix
(see Figure 6e for a schematic representation of the
domains identified in SAP30L). Since the nuclear matrix
participates in gene transcription [30] and repression
[31], the impaired association of the 1–140 version of
SAP30L with the nuclear matrix could explain its previ-
ously observed, reduced repression activity [8].

We recently showed that the N-terminal zinc-dependent
module and the following hydrophobic region together
with polybasic region/NLS are needed for DNA binding in
vitro and chromatin association in vivo [12]. As shown in
Figure 6c (left panel), solubilization of chromatin with
micrococcal nuclease does not detach wt SAP30 or wt
SAP30L from the nuclear matrix. Their attachment is
dependent on an intact C-terminus, which thus consti-
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A nuclear matrix association sequence consists of the nucleolar localization signal and the conserved C-terminusFigure 6
A nuclear matrix association sequence consists of the nucleolar localization signal and the conserved C-termi-
nus. a) Hela cells were transfected with the indicated, myc-tagged constructs and the nuclear matrix was prepared. NM, 
nuclear matrix preparation; WC, whole cell. Subsequently the cells were stained with an antibody against the myc tag, mounted 
in DAPI and photographed on a confocal microscope. b) HEK293T cells were transfected with the indicated constructs, frac-
tionated into subcellular fractions, and immunoblotted with the antibodies as indicated. S2, S3 and P3 correspond to the cyto-
plasmic soluble, nuclear soluble and nuclear insoluble (chromatin and nuclear matrix) fractions, respectively. The data from 
three independent experiments are illustrated as histograms in which the bars represent the range of band intensities meas-
ured with a densitometer. c) HEK293T cells were transfected with myc-tagged SAP30 and SAP30L proteins, and nucleosomes 
were isolated. In the left upper panel, a Coomassie-stained gel shows release of histones, and an agarose gel (left lower panel) 
shows the accompanying release of nucleosomal DNA from the nucleus after treatment with micrococcal nuclease. The pro-
teins from each step of nucleosome isolation were analysed on the immunoblot shown in the right panel. The data from the 
three independent experiments are illustrated in the histograms, as in (b). d) A Kyte-Doolittle Hydrophilicity plot of the 
nuclear matrix association sequences from proteins of the SAP30 and AML [43] families. e) A schematic representation of the 
domains identified in SAP30L. NLS, nuclear localization signal; NoLS, nucleolar localization signal; Protein bd, the protein-bind-
ing domain and nuclear matrix association sequence identified in this study. The numbers indicate amino acid positions. The 
color gradients depict more strongly interacting regions in darker colors. The zinc finger is necessary for proper presentation 
of these regions to DNA or phosphoinositides.
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tutes a nuclear matrix association sequence (Figure 6c,
right panel). The association of SAP30 with the nuclear
matrix seems to be weaker than that of SAP30L. Alterna-
tively, SAP30 may possess a less effective NLS or NoLS
and/or a more effective nuclear export signal (NES). Inter-
estingly, Sin3A has also been reported to associate with
the nuclear matrix [32], and we used it as a control nuclear
matrix protein. Taken together, these findings show that
proteins of the SAP30 family are able to interact with co-
repressors (e.g. Sin3, N-CoR), associate with the nuclear
matrix, and bind DNA, and therefore possess many char-
acteristics typical of nuclear scaffolding proteins [33]. A
well studied example of nuclear scaffolding proteins is
provided by members of the RUNX family of transcription
factors, which are tissue-specific regulatory proteins
involved in the control of hematopoiesis (Runx1/AML1),
osteogenesis (Runx2/AML3), and differentiation of neural
and gastrointestinal cells (Runx3/AML2) [34]. Their N-ter-
minal parts bind specific DNA sequences, whereas the C-
terminal domains interact with coregulatory factors and
associate with the nuclear matrix [34], a domain organiza-
tion similar to that in proteins of the SAP30 family. In
addition, the subcellular localization of proteins of the
two families also bears similarities, as Runx proteins are
focally localized within the nucleus and some of them are
actually found in the nucleolus [35]. Interestingly, the
nuclear matrix association sequence in both protein fam-
ilies is comprised of a stretch of hydrophobic residues
flanked by hydrophilic residues (Figure 6d).

It is now widely accepted that in higher organisms such as
mammals, a particular function is often assigned to a gene
family rather than to a single gene. Many gene families are
thought to have originated by gene duplication at an evo-
lutionary stage when most vertebrates were still aquatic
[36]. The members of a gene family perform the same or
similar function, but in slightly different and overlapping
ways. In the case of the SAP30 family, these subtle differ-
ences may be exploited during ontogeny, given the crucial
role reserved for the Sin3A complex in embryogenesis [1].

Conclusion
In this report, we have described the molecular evolution
of the SAP30 protein family and its genesis from a single
chromosome segment duplication event. Our analyses
indicate that the ancestral SAP30L protein is conserved in
animals, plants, fungi and some chloroplast-containing
protists. We have identified many new members of the
SAP30 family from different species and a conserved C-
terminal domain which is responsible for association with
the nuclear matrix. The phylogenetic and biochemical
analyses have uncovered functional divergence between
SAP30 and SAP30L in the domain that associates with the
nuclear matrix. These data will facilitate further studies on
the functional role of proteins of the SAP30 family in the

Sin3-HDAC corepressor complex, and possibly other
complexes as well.

Methods
Protein sequence searches, gene locus data retrieval and 
multiple sequence alignments
Protein Psi-Blast [37] searches with the full length human
SAP30L sequence were performed at the NCBI Web site
http://www.ncbi.nlm.nih.gov/BLAST/ on the non-redun-
dant protein sequence database available on December 3,
2007. After six rounds of iteration, SAP30 and SAP30L
orthologs below an E-value of 0.005 (except for Phae-
osphaeria nodorum, for which the E-value was 0.011) were
selected from metazoa, plants and fungi, and all redun-
dant sequences were excluded. SAP30 and SAP30L pro-
teins are encoded in four exons, and variable usage of
these exons is reported to yield multiple splicing variants
[38]. It is also predicted that the longer SAP30 and
SAP30L cDNAs are composed of additional spliced-in,
upstream exons. These predicted additional exons (Rattus
norvegicus SAP30L, gi|109490760) were excluded from
our analyses, all of which were done on protein sequences
that contained the four complete exons, for the sake of
clarity. All sequences were collected in FASTA format for
further analysis as shown in Table 1. The identification
and naming of the protein sequences as either SAP30 or
SAP30L is based on the phylogenetic analyses shown in
Figures 3 and 4. The SAP30 and SAP30L sequences were
aligned using the MegAlign 5.06© program (DNASTAR
Inc) with Clustal V [39] or W [40] at default settings. The
alignments were then shaded using the multiple sequence
alignment editor GENEDOC http://www.nrbsc.org/gfx/
genedoc/index.html. Gene locus data were retrieved from
the NCBI Map viewer http://www.ncbi.nlm.nih.gov/
mapview/.

Phylogenetic analysis and detection of functional 
divergence
PHYLIP version 3.67 [41] was used for the phylogenetic
analyses. Distance, parsimony and likelihood analyses
were performed using the protein alignment as input.
Jackknife values were obtained using SEQBOOT and cre-
ating 1000 or 100 "delete-half jackknife" data sets. The
distance analysis was performed by using PROTDIST and
subsequently NEIGHBOR with standard parameters, and
the parsimony analysis was performed using PROTPARS
with standard parameters. The Likelihood analysis was
performed by using PROML with standard parameters. In
all cases, the "M" option for the analysis of multiple data
sets created with SEQBOOT was invoked.

We used DIVERGE version 2.0 [42] for detecting type-I
[26] and type-II [27] functional divergence. Clustal W
alignments of the arthropodan and sarcopterygian clades
for SAP30L and the sarcopterygian clade for SAP30 were
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created, and a distance analysis with 100 "delete-half jack-
knife" data set tests was performed using PHYLIP as
described above. It should be noted that we used tetrapod
sequences as representatives of the sarcopterygian clade
due to the lack of sequence data from the Dipnoi (lung-
fish) and Coelacanthimorpha infra- and subclasses. The
alignment and the neighborjoining tree were used as
input for the functional divergence analyses. P-values
were derived from the θ and standard error values using
the Z-score.

Cell culture and transfections
Human embryonic kidney epithelial cells (HEK293T)
were cultured in DMEM (Gibco) containing 5% fetal
bovine serum, 1 mM sodium pyruvate, 50 μg/ml uridine,
penicillin and streptomycin. HeLa cells were cultured in
RPMI1640 (Gibco) supplemented with 10% fetal bovine
serum, L-glutamine, penicillin and streptomycin. DNA
was transfected using FuGENE 6 (for HEK293T cells) or
FuGENE HD (for HeLa cells) reagents (Roche) according
to the manufacturer's protocol.

Preparation and staining of the nuclear matrix
Nuclear matrix preparations were done as described [43].
Subsequently the cells were fixed and stained as described
previously [8].

Preparation of the chromatin-enriched fraction and 
nucleosomes
Isolation of chromatin and the nuclear matrix, and sub-
cellular fractionation were performed as described previ-
ously [44]. Nucleosomes were prepared as described in
[45].
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