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Abstract
Background: Eukaryotic genes with cyanobacterial ancestry in plastid-lacking protists have been
regarded as important evolutionary markers implicating the presence of plastids in the early
evolution of eukaryotes. Although recent genomic surveys demonstrated the presence of
cyanobacterial and algal ancestry genes in the genomes of plastid-lacking protists, comparative
analyses on the origin and distribution of those genes are still limited.

Results: We identified 12 gene families with cyanobacterial ancestry in the genomes of a
taxonomically wide range of plastid-lacking eukaryotes (Phytophthora [Chromalveolata], Naegleria
[Excavata], Dictyostelium [Amoebozoa], Saccharomyces and Monosiga [Opisthokonta]) using a novel
phylogenetic pipeline. The eukaryotic gene clades with cyanobacterial ancestry were mostly
composed of genes from bikonts (Archaeplastida, Chromalveolata, Rhizaria and Excavata). We
failed to find genes with cyanobacterial ancestry in Saccharomyces and Dictyostelium, except for a
photorespiratory enzyme conserved among fungi. Meanwhile, we found several Monosiga genes
with cyanobacterial ancestry, which were unrelated to other Opisthokonta genes.

Conclusion: Our data demonstrate that a considerable number of genes with cyanobacterial
ancestry have contributed to the genome composition of the plastid-lacking protists, especially
bikonts. The origins of those genes might be due to lateral gene transfer events, or an ancient
primary or secondary endosymbiosis before the diversification of bikonts. Our data also show that
all genes identified in this study constitute multi-gene families with punctate distribution among
eukaryotes, suggesting that the transferred genes could have survived through rounds of gene
family expansion and differential reduction.

Background
Cyanobacterial ancestors gave rise to plastids (chloro-
plasts) in the ancestor of a eukaryotic lineage. The birth of
the plastid had an impact on eukaryotic genome evolu-

tion, by way of endosymbiotic gene transfer (EGT), a par-
ticular form of lateral gene transfer (LGT) from
endosymbionts into the phylogenetically discontiguous
host genome [1]. Subsequently, an algal ancestor gave rise
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to secondary plastids in several punctate lineages of
eukaryotes. A number of these secondarily phototrophic
lineages lost their photosynthetic ability and further
diverged into secondarily heterotrophic, plastid-lacking
protists [2,3].

Although the position of the root of eukaryotes is still
uncertain, the presence of gene fusions and insertion/
deletion sequences in the marker genes have allowed us to
sort eukaryotes into at least three large groups;
Opisthokonta, Amoebozoa and bikonts (Archaeplastida,
Chromalveolata, Rhizaria and Excavata) [4-10] (Figure 1).
Most phototrophic eukaryotes harboring plastids derived
from primary endosymbiosis (primary plastids) are classi-
fied into the super-group Archaeplastida (i.e. glauco-

phytes, green plants and red algae) [10]. Although it is
widely accepted that primary plastids share a single origin
[[11-13], but see [14,15]] and the Archaeplastida are
monophyletic [[3,16], but see [17,18]], the evolutionary
history of the primary plastids is still debatable [19-21]. In
plastid-lacking protists, 'plastid imprints' can be exempli-
fied by genomic information, i.e. genes with affinity to
extant cyanobacterial or algal genes. These genes were sup-
posed to have originated from EGT events, and this
assumption should be affirmed by the resulting phyloge-
netic relationship between 'imprint' genes and the extant
relatives of the putative endosymbionts. The biggest chal-
lenge and the limitation of this 'imprint' searching process
is that the inevitable incompleteness of genome informa-
tion on lineages of interest and the ever-developing phyl-

A schematic representation of eukaryotic phylogenyFigure 1
A schematic representation of eukaryotic phylogeny. The current consensus phylogeny and rooting of eukaryotes 
based on previous studies [4,23,40]. Arrows and stars indicate plastid acquisition via endosymbiosis and alternative hypotheti-
cal time points which primary endosymbiosis occurred, respectively. The root of the eukaryotic tree on the unikonts/bikonts 
boundary is hypothesized, but still controversial [5,7-9,19]. Archaeplastida are represented as a monophyletic group, but see 
also [19].
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ogenetic methodologies make it difficult to distinguish
EGT and ancient LGT [22]. Thus, although available
eukaryotic genome data are increasingly accumulating,
gene and genome phylogenies should be carefully inter-
preted to infer evolutionary scenarios.

Chromalveolata is a large taxonomic group of eukaryotes,
encompassing secondary phototrophs and secondarily
heterotrophic protists [10], and the 'chromalveolate
hypothesis' argues that this group originated from a com-
mon ancestor harboring the chlorophyll c-containing sec-
ondary plastid derived from a red alga (Figure 1) [23].
Among the secondarily heterotrophic chromalveolates,
several lineages have retained remnant chloroplasts for
non-photosynthetic metabolic pathways, e.g. apicoplasts
in apicomplexan parasites [24]. Recent genomic surveys
revealed the presence of plastid-derived genes, and further
suggested the presence of cryptic secondary plastids in
non-photosynthetic alveolate protists [25,26]. Further-
more, re-examination of the whole genome sequences
suggested the existence of algal genes in ciliates, another
plastid-lacking alveolate lineage, which could support the
photosynthetic ancestry of ciliates [27]. Oomycetes are
plastid-lacking stramenopiles, or chromists, classified into
Chromalveolata [10]. Although whole genome sequence
analysis showed that a number of genes with affinity to
photosynthetic organisms (cyanobacteria and algae) are
encoded in the nuclear genome, most of these 'plastid
imprints' candidates were only suggested by similarity
search and phylogenetic analyses have not yet led to fully
recovering the expected tree topology [28]. Considering
the uncertain phylogenetic affinity of the 'best hit' in sim-
ilarity search [29], reassessment of the genome informa-
tion is important to determine whether the evolutionary
history of oomycetes is comparable to ciliates [27].

One candidate of 'plastid imprints' in oomycetes has been
confirmed by studies reporting the phylogeny of gnd
genes, which encode 6-phosphogluconate dehydroge-
nase, showing that some plastid-lacking protists have
plant-like, cyanobacterium-derived gnd genes [20,21,30].
These analyses suggested that the gnd genes with cyano-
bacterial ancestry were acquired early in eukaryotic evolu-
tion, either via ancient eukaryote-to-eukaryote LGT, or
primary EGT that occurred earlier than had ever been
thought [21]. Additionally, the phylogeny of gnd genes
demonstrated that cyanobacterial genes are also present in
several Excavata protists, e.g. the heterolobosean amoebo-
flagellate Naegleria gruberi. Naegleria gruberi is a non-para-
sitic heterotrophic species related to N. fowleri, which is
the causative agent of primary amoebic meningoencepha-
litis in mammals [31]. Although the phylogenetic rela-
tionship within Excavata is still unclear, Heterolobosea,
together with Jakobida, is likely to be a sister group of
Euglenozoa [18,32].

To address how many genes have cyanobacterial ancestry
in plastid-lacking protists, and whether cyanobacterial
ancestry is limited to this gnd gene or also found in other
genes, we conducted a phylogenomic analysis using
genome sequence data of a taxonomically wide range of
plastid-lacking eukaryotes. Here we present a gene mining
study with a novel pipeline automatically producing and
summarizing one-by-one phylogenetic trees, and show
phylogenetic analyses of resultant candidate genes with
cyanobacterial ancestry, using the whole genome
sequence data from a wide range of eukaryotic lineages.

Results
To address how many genes are derived from cyanobacte-
ria in non-photosynthetic protists, we conducted cyano-
bacterial gene mining using the genome sequence data of
a wide range of the plastid-lacking eukaryotes (Additional
file 1). Using the whole genome data, we conducted
BLAST searches against all 'Bacteria' and selected queries
showing the highest similarity to genes in the available
cyanobacteria genome sequences. We then drew the
neighbor-joining (NJ) trees for genes showing homology
to cyanobacterial counterparts. After the first tree con-
struction step, we selected the gene trees where cyanobac-
teria and eukaryotes formed a monophyletic group
excluding other prokaryotes. As a result, we obtained a
shorter list of candidates, which we termed 'genes with
cyanobacterial affinity'. Subsequently we re-analyzed the
eukaryotic genes with cyanobacterial affinity by visually
checking and re-drawing the Bayesian and maximum like-
lihood (ML) trees after manually trimming operational
taxonomic units (OTUs). In total, we identified 12 plas-
tid-lacking protist genes 'with cyanobacterial ancestry' in
the genomes of the wide range of eukaryotes: two plastid-
lacking bikonts (the oomycete P. ramorum and the heter-
olobosean N. gruberi) and three unikonts (the slime mold
D. discoideum, the budding yeast S. cerevisiae and the cho-
anoflagellate M. brevicollis) (Table 1). These were the
eukaryotic genes with cyanobacterial ancestry that shared
the same origin with Archaeplastida and other eukaryotes.
They were placed within a monophyletic subclade mostly
composed of photosynthetic organisms (cyanobacteria
and plants/algae) and showed an apparent cyanobacterial
ancestry as far as was determined by tree topology (Table
1; Figures 2, 3, 4 and 5; and Additional files 2, 3, 4, 5, 6,
7, 8 and 9). We found another type of gene with cyano-
bacterial ancestry, which were the protist genes forming
monophyletic groups mostly with genes from extant
cyanobacteria (prokaryote-type genes with cyanobacterial
ancestry). Among a number of candidate genes found
through the first screening, we have presented three typi-
cal trees that were resolved with significant support values
(Additional files 10, 11 and 12). We postulate that these
prokaryote-type genes are remnants of the bacterium-to-
eukaryote LGT, which occurred 'recently' in evolution.
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Uroporphyrin III methyltransferase gene phylogeny showing the presence of genes with cyanobacterial ancestry in oomycetesFigure 2
Uroporphyrin III methyltransferase gene phylogeny showing the presence of genes with cyanobacterial ances-
try in oomycetes. The MrBayes consensus tree with Bayesian posterior probabilities (BI) (70% or more) and maximum like-
lihood (ML) bootstrap support values (50% or more) is shown. Thick branches represent BI and ML values not lower than 100 
and 95, respectively. Different phylogenetic affiliations are represented as follows: green, green plants; magenta, red algae; blue-
green, glaucophytes; orange, Chromalveolata; dark blue, Excavata; yellow, Rhizaria; gray, unikonts; sky blue, cyanobacteria. 
Stars indicate plastid-lacking eukaryotes.
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Cobalamin-independent methionine synthase genes in oomycetes are monophyletic with algal and cyanobacterial homologsFigure 3
Cobalamin-independent methionine synthase genes in oomycetes are monophyletic with algal and cyanobac-
terial homologs. See legend for figure 2.
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Amino acid decarboxylase genes in Heterolobosea, within a subfamily with cyanobacterial ancestryFigure 4
Amino acid decarboxylase genes in Heterolobosea, within a subfamily with cyanobacterial ancestry. See legend 
for figure 2.
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Naegleria genes are a member of the multiple gene families of TIC55-like oxidoreductase genesFigure 5
Naegleria genes are a member of the multiple gene families of TIC55-like oxidoreductase genes. See legend for 
figure 2.
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Interestingly, while Phytophthora ycf21 homologs, proba-
bly transferred from a relative of the extant cyanobacterial
species via LGT, were placed within the cyanobacterial
gene clade, the ciliate Tetrahymena ycf21 homolog showed
affinity to Archaeplastida (Additional file 11). This gene
was neither found in the Paramecium genome nor in the
list of the recently identified algal genes in ciliates [27].

We found that Uroporphyrin III methyltransferase gene
homologs (Figure 2) consisted of two large subfamilies of
genes with cyanobacterial ancestry, and that oomycete
genes were included only in one of them. Given that both
subfamilies include green plants, red algae, chromalveo-
lates and cyanobacteria, it is likely that they diverged
within the ancestral cyanobacteria and transferred into
eukaryotic hosts via primary and secondary endosymbi-
oses. Both of the subfamilies were concurrently present in
the cyanobacterial and green algal genomes. In land
plants, red algae, diatoms, haptophytes and the plastid-
lacking oomycetes, one of the subfamilies might be lost
along with the loss of the plastid. The Thalassiosira
homolog formed a monophyletic group with green
plants, rather than red algae, suggesting that it was
acquired independently of the secondary plastid of the red
lineage. In this study, the bacteriovorous choanoflagellate
Monosiga brevicollis gene and the proteobacterial genes
(Gluconobacter, Alteromonas and Nitrosomonas) were
treated as 'apparently LGT-derived genes', incongruously
showing affinities to photosynthetic bikonts [33].

Genes encoding cobalamin-independent methionine syn-
thase in green and red algae, diatoms, and oomycetes
formed a monophyletic group with cyanobacterial
homologs, while the land plants and the red alga Cyanid-
ioschyzon homologs were placed in different clades unre-
lated to cyanobacteria (Figure 3). Close association
between diatom and oomycete genes suggested the deep

ancestry of the genes in the chromalveolate lineage. We
failed to find the homologs in the prasinophytes Ostreo-
coccus and Micromonas, suggesting that this gene family
was dispensable in some plant lineages.

One of the genes with cyanobacterial ancestry found in N.
gruberi is pyridoxal-dependent amino acid decarboxylase
gene (Figure 4). The tree indicated that green plants were
split into different eukaryotic clades. Naegleria and chro-
malveolate genes showed robust monophyly with green
plants, included in a cyanobacterial gene clade. The tree
showed that land plants possessed another subfamily,
associated with red algal and fungal genes, apparently of
non-cyanobacterial origin. We also identified genes with
cyanobacterial ancestry from Naegleria in an oxidoreduct-
ase gene family that included genes encoding Rieske iron-
sulfur cluster 55 kDa protein of chloroplast inner mem-
brane translocon (TIC55), chlorophyll a oxidase (CAO),
Lethal-leaf spot 1 (LLS1, which is synonymous with phe-
ophorbide a oxygenase (PAO)) and accelerated cell death
1 (ACD1) (Figure 5) [34,35]. All the members of this fam-
ily in land plants were hypothesized to be located at the
inner membrane of the chloroplast, and to be involved in
chlorophyll metabolism [34]. The phylogenetic tree of the
TIC55-like gene family showed intricate distribution of
cyanobacterial, green plant and chromalveolate genes.

In other trees of the genes identified in this study (Addi-
tional files 2, 3, 4, 5, 6, 7, 8 and 9), gene clades with
cyanobacterial ancestry were mostly composed of bikonts
genes, besides the choanoflagellate M. brevicollis genes
(see Discussion).

Discussion
We identified eight and seven genes with cyanobacterial
ancestry in the genome sequences of the oomycete P. ram-
orum and the heterolobosean N. gruberi, respectively

Table 1: Summary of eukaryote-type genes with cyanobacterial ancestry identified in this study

bikonts unikonts
Chromalveolata Excavata Amoebozoa Opisthokonta Opisthokonta

Gene family Pathway P. ramorum N. gruberi D. discoideum S. cerevisiae M. brevicollis

Uroporphyrin III methyltransferase porphyrin 51635 - - - XP_001742170
Cobalamin-independent methionine synthase methionine 72019 - - - -
Amino acid decarboxylase amino acid - 36109 - - -
TIC55-like oxidoreductase unknown - 52597 - - -
Folate/biopterin transporter folate 72218 - - - -
6-phosphogluconate dehydrogenase pentose phosphate 71783 30694 - - -
Cobalamin synthesis protein cobalamin 85610 38446 - - XP_001746731
Oligopeptidase unknown 54177 - - - -
YCF45 unknown 83996 2396 - - -
Glycerate kinase glyoxylate 94130 - - YGR205w -
Amino acid aminotransferase amino acid - 2119 - - XP_001749475
Glyoxalase I family protein-like unknown - 29304 - - XP_001750995

JGI gene ID (P. ramorum and N. gruberi), gene name (S. cerevisiae) and accession numbers (M. brevicollis) are listed.
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(Table 1). It was reported that the apicomplexan Crypt-
osporidium 'recently' lost their secondary plastid, and
retained two to seven putative plastid-derived genes in the
genome [36]. This number is comparable to our result of
the gene mining study using oomycete and heterolo-
bosean genomes. In addition, our system resolved the
hidden diversity of the gene family repertoire in eukaryo-
tic genomes by one-by-one gene phylogenies.

Secondary EGT scenario
Although the phylogenetic positions of Cryptophyceae
and Haptophyta are still debatable [e.g. [17,37-41]], the
chromalveolate hypothesis has been reinstated to support
the evolutionary scenario that the plastid-lacking protists
oomycetes and ciliates once might have had a plastid [27].
According to this hypothesis, the genes with cyanobacte-
rial ancestry found in the oomycete genomes were
acquired via secondary EGT in the common ancestor of
Chromalveolata, from the red algal ancestor of secondary
plastids. This explanation is also applicable under the
alternative hypothesis for chromalveolate plastids, which
proposes that a tertiary endosymbiont of the haptophyte/
cryptophyceae lineage is the origin of the stramenopile/
alveolate plastids [22]. The phylogenetic tree of the pho-
torespiratory glycerate kinase genes, suggesting the red
algal origin of the Phytophthora genes (Additional file 7),
is consistent with the chromalveolate hypothesis. How-
ever, several other gene trees in this study showed oomyc-
ete genes with green lineage affinity, not red algae (e.g.
Additional files 2, 3 &4). Recently, Frommolt et al. [42]
demonstrated that, out of 16 genes involved in carotenoid
biosynthesis from chromalveolate algae, one third (5/16)
of plastid-targeted, nuclear-encoded genes are most
closely related to green algal homologs. Reyes-Prieto,
Moustafa and Bhattacharya [27] identified 16 genes of
possible algal origin in the ciliates Tetrahymena ther-
mophila and Paramecium tetraurelia, and 7/16 of their trees
show a close relationship between green plants and Chro-
malveolata. Frommolt et al. [42] attributed the close rela-
tionships between green plants and chromalveolate genes
to the secondary endosymbiosis of an ancient green plant
(e.g. prasinophyte), based on the hypothesis on the
monophyly of the Archaeplastida [16,40]. This explana-
tion might be also applicable to the plant-like genes in cil-
iates [27].

While Heterolobosea and Euglenozoa are often united as
the morphologically defined taxon, Discicristata, within
Excavata [10], recent morphological and molecular phyl-
ogenetic analyses suggest that the heteroloboseans (e.g.
Naegleria) never possessed the secondary plastid of green
lineage and share the same origin with Euglenida [43].
Molecular phylogenetic analyses showed that Excavata is
separated from other secondary plastid-containing
eukaryotes (Chromalveolata and Rhizaria) [18,40]. There-

fore, it is unlikely that the genes with cyanobacterial
ancestry found in the heterolobosean nuclear genomes
originated from the plastid cognate with any known sec-
ondary plastids in extant photosynthetic eukaryotes. The
amino acid decarboxylase gene (Figure 4) and the gnd
gene (Additional file 3) [21] trees demonstrated the pres-
ence of genes with cyanobacterial ancestry in other heter-
olobosean species than N. gruberi, suggesting that the
ancestor of the genus Naegleria possessed this gene family.
Furthermore, although ML bootstrap support or Bayesian
posterior probability (BI) values were not always suffi-
cient, the Naegleria genes occupy relatively basal phyloge-
netic positions within the bikonts clade in all seven trees
(Figures 4 and 5; Additional files 3, 4, 6, 8, and 9). Thus it
is possible that the genes with cyanobacterial ancestry
were introduced en bloc in the ancestor of Heterolobosea,
via a batch gene transfer, in a concerted manner. One pos-
sible origin of such a concerted gene transfer is secondary
EGT from a photosynthetic eukaryote with a basal phylo-
genetic position within bikonts. However, as discussed
above, it is unlikely that Heterolobosea experienced sec-
ondary endosymbiosis and acquired genes common to
the extant secondary plastid-containing eukaryotes via
secondary EGT.

Ancient eukaryote-to-eukaryote LGT or primary EGT 
scenarios
Alternatively, we can argue for two other explanations: a
concerted eukaryote-to-eukaryote LGT scenario or a more
ancient primary EGT scenario. The Naegleria genes with
cyanobacterial ancestry shown in Table 1 are basally posi-
tioned within bikonts, but not intruding into any of gene
clades from extant photosynthetic eukaryotes (Figures 4
and 5; Additional files 3, 4, 6, 8, and 9). Thus, if we
assume that these genes were acquired via non-endosym-
biotic LGT, they may originate from unknown ancient
photosynthetic lineages basally positioned within
bikonts. Meanwhile, under the primary EGT scenario, in
which the primary endosymbiosis occurred in the com-
mon ancestor of bikonts (Figure 1) [[19-21], but see Ref.
[9] for further discussion on the root of eukaryotic tree of
life], ancient primary EGT occurred much earlier than the
conventional hypothesis, from the cyanobacterium-like
prokaryote to the common ancestor of bikonts. Primary
plastids were subsequently lost in many lineages of
bikonts, except for the Archaeplastida lineages, but some
genes originating from the cyanobacterial ancestor of the
primary plastids have been retained in the nuclear
genomes of the plastid-lacking lineages of bikonts (Fig-
ures 1 and 6). The loss of the plastid might have triggered
the loss of genes that specifically functioned within the
plastid. Only a portion of the plastid-derived genes, which
we can find now in the plastid-lacking protist genomes,
might have escaped from or survived through eliminative
pressure in a lineage-specific manner, by acquiring addi-
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tional functions with other components and/or in other
cellular compartments. This might account for the
observed punctate distribution of gene families among
the eukaryotes [44,45].

Recently, a hypothesis for the non-monophyly of Archae-
plastida was proposed based on the phylogenetic analyses
of slowly evolving nuclear-encoded genes [17,19]. This
non-monophyly hypothesis could be also considered
within the scope of the primary EGT scenario. It is notable
that a number of the trees in this study (Figure 2; Addi-
tional files 2, 3, 4, 6, and 8) showed intriguing topologies,
depicting the split of Archaeplastida and inclusion of
Chromalveolata and Excavata genes within it, as shown in
the previously reported multiple slowly-evolving gene
phylogeny [19] and gnd gene phylogeny [20,21]. These
results are consistent with the hypothesis for the non-
monophyly of Archaeplastida, and suggest that the
oomycete and heterolobosean genes with cyanobacterial
ancestry might reflect the host nuclear genome phylogeny.
On the other hand, the genes found in the marine cho-
anoflagellate M. brevicollis were positioned within the
bikonts clade, but not associated with the genes from
other Opisthokonta relatives (Metazoa and fungi), sug-
gesting that the tree topologies were probably not reflec-
tive of the host phylogeny [46] but eukaryote-to-
eukaryote LGT (Figure 2; Additional files 4, 8, and 9). No
gene with cyanobacterial ancestry was found in D. discoi-

deum (Amoebozoa), and only one gene in S. cerevisiae
(Opisthokonta). These results are also consistent with the
ancient primary EGT scenario.

A photorespiratory gene with cyanobacterial ancestry in 
fungi
Our analysis using the genome data of the budding yeast
S. cerevisiae identified one gene with cyanobacterial ances-
try, encoding the glycerate kinase for photorespiration
(Additional file 7). Given that photorespiration is essen-
tial for cyanobacteria and plants, it is likely that the glyc-
erate kinases in plants and cyanobacteria are
phylogenetically and physiologically related to photores-
piration [47,48]. A previous study on glycerate kinases
showed that, regardless of the complete absence of pho-
torespiratory metabolism in fungi, the gene product from
the budding yeast Saccharomyces showed similar enzy-
matic activity and substrate specificity compared with the
Arabidopsis gene, suggesting that the plant and fungal
genes catalyze the same reaction in different contexts of
the metabolic pathway [47]. Another example of plant-
type genes in fungi was reported in a phylogenetic study
of the genes encoding high-affinity nitrate transporter
NRT2, which suggested that fungi probably acquired the
NRT2 genes via LGT from one of the chromalveolate line-
ages [49]. Meanwhile, our data showed that the fungal
clade was located outside the clade of plants plus oomyc-
etes (Additional file 7), suggesting that fungal glycerate

An evolutionary history of the genes with cyanobacterial ancestryFigure 6
An evolutionary history of the genes with cyanobacterial ancestry. Thick continuous arrows represent gene flow via 
EGT. Thin broken arrows indicate gene expression or intracellular transport into organelles. Dashed line circles and boxes 
indicate that they have been lost in the evolutionary history. Note that the genes with cyanobacterial ancestry (white), which 
had been derived from the plastid genome via EGT, were retargeted into the plastid. After rounds of gene family duplication, 
some genes (magenta) gained additional functions in other cellular compartments (cytosol, mitochondrion, etc.). In some plas-
tid-lacking protists, a number of genes were retained in the nuclear genomes after the plastid loss events. Mt, mitochondrion.
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kinase genes with cyanobacterial ancestry likely origi-
nated from an LGT event from an ancestor of cyanobacte-
ria, or eukaryote-to-eukaryote LGT from an ancestor of
Archaeplastida (or bikonts). One likely explanation for
the presence of photorespiratory genes in oomycetes is
that the ancestor of Chromalveolata possessed this gene
family, but some photosynthetic descendants lost this
gene family or replaced it with other genes during the
course of lineage-dependent customization of photorespi-
ratory pathways [[50,51]; for discussion on carbon assim-
ilation in diatoms], while oomycetes retained the genes
without any replacement.

Gene family expansion and differential reduction
Another conclusion of this analysis is that rounds of gene
family expansion and selective reduction are important
factors in making eukaryotic genome phylogeny look like
a complicated mosaic (Figure 6). It is likely that the alter-
ation of gene family repertoire contributed to the restruc-
turing of the intracellular metabolome and a reduction of
the dispensable gene families. Our data showed that all
the genes identified in this study were members of multi-
ple gene families. Algae and plastid-lacking protists
retained only members of subfamilies (e.g. Figure 2 and
Additional file 8), suggesting that the punctate distribu-
tion might be a corollary of the common mechanism by
which genes with cyanobacterial ancestry were retained in
their genomes. The presence of genes from multiple sub-
families in one organism supports this idea (e.g. two Uro-
porphyrin III methyltransferase subfamilies in
prasinophytes and Volvox in Figure 2). Discontinuous loss
or gain of a metabolic pathway in a lineage might be
another factor in punctate distribution; e.g. the oxidative
pentose pathway, and the cyanobacterial gnd genes func-
tioning therein, were present in most bikonts but lost in
the ciliate Tetrahymena [21,52]. A recent study on pyri-
doxal-dependent amino acid aminotransferase reported
that, besides the ancestrally eukaryotic enzymes, land
plants possess a distinct subfamily of prokaryote-type
chloroplast-targeted enzymes [53]. Our data with richer
taxon sampling identified another prokaryote-type sub-
family with cyanobacterial ancestry (Additional file 8),
illustrating the hidden evolutionary diversity of protist
and algal metabolomes.

Future prospects
Our results showed that many genes with cyanobacterial
ancestry identified in this study were found only in com-
plete genome sequences, suggesting that these genes
might be difficult to discover by expressed sequence tag
(EST) library sequencing, probably due to the low-level
expression of these genes. Although the whole genome
data from excavate parasites (e.g. Trypanosoma, Giardia
and Trichomonas) are available, they seem to be unsuited
for the gene mining study because of the unusual nucle-

otide substitutions (see Methods). At the stage of starting
the present gene mining study, N. gruberi was the only
species with whole genome data released within the non-
parasitic excavates, and thereby the excavate genes with
cyanobacterial ancestry were mostly from N. gruberi. More
genome data from plastid-lacking protists from Excavata
and Rhizaria as well as Archaeplastida, especially red algae
and glaucophytes, are needed to unravel the evolutionary
history of plastids, and plastid-lacking protists.

Conclusion
The comparative analyses of the genome sequence data of
the plastid-lacking eukaryotes demonstrated the poten-
tially significant contributions of ancestral or extant
cyanobacteria to the eukaryotic genomes, which probably
occurred via LGT or ancient primary EGT events. Further-
more, the automated phylogenetic analyses revealed the
diversity and punctate distribution of gene families within
the genomes in the unicellular microbes. More genome
data of the plastid-lacking Excavata and Rhizaria will
make the evolutionary history clear and support our
hypotheses.

Methods
Data preparation
The genome sequence data of P. ramorum, N. gruberi and
M. brevicollis was produced by the US Department of
Energy Joint Genome Institute (JGI) [54]. D. discoideum
genome data (9 Nov 2007) at dictyBase [55] and S. cerevi-
siae genome data [56] were used for phylogenetic analysis.
Red algal data were retrieved from the Cyanidioschyzon
merolae [57], Galdieria sulphuraria [58] genome databases,
and other algal data were from Aureococcus anophageffer-
ens, Emiliania huxleyi, Micromonas pusilla, Micromonas sp.
RCC299, Ostreococcus tauri, Ostreococcus sp. RCC809,
Phaeodactylum tricornutum, Phytophthora sojae, Thalassiosira
pseudonana and Volvox carteri genome databases on JGI.
EST sequences of several protists were obtained from
TBestDB [59] and all other sequences were from the NCBI
GenBank refseq database [60]. We excluded amitochon-
drial and/or parasitic eukaryotes, which might cause long
branch attraction due to unusual nucleotide substitutions
[61,62]. Fragments of N. fowleri amino acid decarboxylase
gene [DDBJ: AB491948] were amplified from genomic
DNA using degenerated primers based on the conserved
amino acid motif YHHFGYP for the forward primer (TAY-
CAYCAYTTIGGITAYCC) and WQLACEG for the reverse
primer (CCYTCRCAIGCIARYTGCCA). PCR products were
directly sequenced using an ABI PRISM 3100 Genetic Ana-
lyzer (Applied Biosystems, Foster City, CA, USA) with a
BigDye Terminator Cycle Sequencing Ready Reaction kit
v. 3.1 (Applied Biosystems).
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Phylogenomic analysis
A genome-wide phylogenetic program was made with sev-
eral bench-made BioRuby scripts (Additional file 1), refer-
ring to the previously reported phylogenomic pipeline
used in the macronuclear genome analysis of Tetrahymena
thermophila [63]. For the first screening, query amino acid
sequences were automatically subjected to BLAST search-
ing using NCBI netblast [64] and EFetch utilities [65],
extracting the genes showing the highest E-value to a
cyanobacterial counterpart among 'Bacteria' by BLASTP.
For the second step, these genes were subjected to BLASTP
analysis against 'refseq-protein' to fetch homologous
sequences with E-values less than 0.001, up to 500 hits at
a maximum. Multiple alignments were then performed
using MUSCLE [66], which automatically removed
ambiguously aligned sites or sequences with too many
gaps. Bootstrapped neighbor-joining trees were produced
using QuickTree [67]. Trees were output in the PostScript
format using the newicktops program in the NJplot pack-
age [68] with sizes and colors of OTU names modified
according to the NCBI taxonomy database [69] to sim-
plify the subsequent visual checking process. Genomes of
several bacterial genera were intensively sequenced and
many homologous sequences from closely related species
and strains (e.g. Escherichia, Bacillus) appeared on the
trees. To diminish the sampling bias, the output files of
QuickTree were also used to parse tree topology and
detect a monophyletic clade exclusively composed of
OTUs from a single genus using Bio::Tree class methods in
BioRuby scripts. One representative OTU was automati-
cally selected in such single-genus clades, the other OTUs
were removed, and the trees were re-constructed for visual
checking. In addition to the automatic process, trees for
genes listed in the putative photosynthetic endosymbi-
ont-derived genes [28], but not detected in our analysis,
were manually re-constructed. Non-cyanobacterial
prokaryotic genes taxonomically unrelated to, but placed
within, the cyanobacterial clade were interpreted as
'apparently LGT-derived genes' with cyanobacterial ances-
try.

Candidate cyanobacteria-related genes were manually
selected, their homologs were collected from major
groups of the three domains of life, and then subjected to
multiple protein sequence alignments using MUSCLE.
Phylogenetic analyses were performed with a maximum
likelihood (ML) method using RAxML [70] and with a
Bayesian interference (BI) method using MrBayes [71].
ML and BI were based on the WAG substitution matrix
with options of four gamma-distributed rate categories
and estimate of invariable sites (plus empirical base fre-
quencies in ML). ML branch support was evaluated with
1000 bootstrap replicates, and BI posterior probability
values were calculated from the MCMC run data, which
summarized when the average standard deviation of split

frequencies reached less than 0.01. Except for cyanobacte-
rial genes of which no homologs were found in other
prokaryotes (e.g. Additional file 2), or of which mono-
phyly was confirmed by previous studies (e.g. Additional
file 3), threshold values to assess the monophyly of cyano-
bacterial gene clades were 50% on ML bootstrap or 0.9 on
BI posterior probability values.

Abbreviations
BI: Bayesian posterior probability; EGT: endosymbiotic
gene transfer; EST: expressed sequence tag; LGT: lateral
gene transfer; ML: maximum likelihood; NJ: neighbor-
joining; OUT: Operational Taxonomic Unit; TIC55:
Rieske iron-sulfur cluster 55 kDa protein of chloroplast
inner membrane translocon.
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