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Abstract
Background: We previously found the first examples of splicing of archaeal pre-mRNAs for
homologs of the eukaryotic CBF5 protein (also known as dyskerin in humans) in Aeropyrum pernix,
Sulfolobus solfataricus, S. tokodaii, and S. acidocaldarirus, and also showed that crenarchaeal species in
orders Desulfurococcales and Sulfolobales, except for Hyperthermus butylicus, Pyrodictium occultum,
Pyrolobus fumarii, and Ignicoccus islandicus, contain the (putative) cbf5 intron. However, the exact
timing of the intron insertion was not determined and verification of the putative secondary loss
of the intron in some lineages was not performed.

Results: In the present study, we determined approximately two-thirds of the entire coding region
of crenarchaeal Cbf5 sequences from 43 species. A phylogenetic analysis of our data and
information from the available genome sequences suggested that the (putative) cbf5 intron existed
in the common ancestor of the orders Desulfurococcales and Sulfolobales and that probably at
least two independent lineages in the order Desulfurococcales lost the (putative) intron.

Conclusion: This finding is the first observation of a lineage-specific loss of a pre-mRNA intron in
Archaea. As the insertion or deletion of introns in protein-coding genes in Archaea has not yet
been seriously considered, our finding suggests the possible difficulty of accurately and completely
predicting protein-coding genes in Archaea.

Background
Introns in protein-coding genes and pre-mRNA splicing
are ubiquitous in Eukarya and, to a lesser extent, in Bacte-
ria. Until 2001, pre-mRNA splicing had not been reported

in Archaea. In 2002, we reported the first examples of
archaeal pre-mRNA splicing for homologs of the eukaryo-
tic CBF5 (centromere binding factor 5 in yeast, or dyskerin
in humans) protein in Aeropyrum pernix, Sulfolobus solfa-
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taricus, and S. tokodaii [[1], also in S. acidocaldarius, see [2]
in 2006]. We found that the cleavage of the pre-mRNA
depends on the recognition of a bulge-helix-bulge (BHB)-
like structure in the precursor [1,2] by the splicing endo-
nuclease EndA [3]. In Archaea, pre-tRNA and pre-rRNA
splicings also depend on the same system [[4,5]; reviewed
in [1]]. Although most species from the orders Desulfuro-
coccales and Sulfolobales have the (putative) cbf5 intron,
H. butylicus, P. occultum, P. fumarii, and I. islandicus in the
order Desulfurococcales do not contain the intron [1,2].
This observation suggested putative secondary loss of the
intron. However, phylogenetic analysis of the Cbf5 pro-
tein sequences did not resolve the relationships between
species from different orders of Crenarchaeota, likely due
to the short sequence (about 70 amino acid residues)
studied in the analysis [2].

In the present study, we determined a formerly undeter-
mined region of cbf5 sequences from the previously char-
acterized 27 species and new sequences from an
additional 16 species. We studied 43 species, which were
almost all the available species from type culture collec-
tions. We determined up to two-thirds of the coding
region, corresponding to about 220 amino acid residues,
and then examined the timing of the gain and the possible
loss of the intron in the archaeal protein-coding gene. We
found that the intron existed in the cbf5 gene in the com-
mon ancestor of the orders Desulfurococcales and Sul-
folobales, and then the intron was lost in some lineages in
the order Desulfurococcales.

Methods
Strains and DNA for PCR screening
Most crenarchaeal strains were grown according to the
conditions suggested by the Japan Collection of Microor-
ganisms (JCM) [2]. Some strains were purchased from the
German Collection of Microorganisms and Cell Cultures
(DSMZ). In most PCR reactions, the crude DNA was pre-
pared as described previously [2]. In the case of Thermo-
filum pendens, the obtained DNA was too dilute; thus, for
PCR with degenerate primers at the initial screening, the
DNA was pre-amplified by using the illustra GenomiPhi
DNA Amplification Kit (GE Healthcare Bioscience, Shin-
juku, Tokyo, Japan). The DNA of 'Caldococcus noboribetus'
was kindly provided by Dr. M. Aoshima (University of
Tokyo). The DNA from Aeropyrum pernix strains was pre-
pared as previously described [6]. See [Additional file 1],
Table 1 and 2 (for Aeropyrum pernix strains) for further
information about the strains.

PCR screening of archaeal cbf5 genes
The typical reaction mixture for PCR (25 μl) contained 1×
reaction buffer (Takara Bio, Ohtsu, Shiga, Japan), 0.2 mM
of each deoxynucleoside triphosphate, 0.5 μl of template,
and 2.5 units of ExTaq (Takara Bio). At the first screening

to obtain the gene fragment between Gly57 and Ile143
(Sulfolobus tokodaii numbering) with M13 sequencing
primer (P-486 and P-583) binding sites at both ends, we
used a set of degenerate primers based on conserved
regions among known crenarchaeal Cbf5 sequences (1
μM each of P-1607 and P-1608 (forward), and 2 μM P-
1516 (reverse)). For Ignicoccus pacificus, Staphylothermus
hellenicus, Pyrodictium brockii, 'Caldococcus noboribetus', and
Ignisphaera aggregans, 2 μM P-1608 was used as a forward
primer instead of the combination of P-1607 and P-1608
to improve the amplification efficiency. In the case of
Pyrobaculum arsenaticum, P. islandicum, and P. organo-
trophum, 2 μM P-1911, specifically designed for the Pyrob-
aculum species, was used as the forward primer. The PCR
products were purified and sequenced as described previ-
ously [2].

To obtain additional sequence information from the 3'
region of the gene in the species described above as well
as in the species that we previously studied [2], we
designed degenerate primers P-1609 and P-1610 with
M13 sequencing primer binding sites and performed
semi-nested PCR with two species-specific primers (for-
ward) and P-1609/P-1610 (reverse). The second PCR
products, or in some cases the first PCR products, if
observed, were purified and sequenced with specific PCR
primers or the universal reverse primer (as mentioned
above). If necessary, internal primers were designed and
used in primer walking.

In the case of Sulfolobus metallicus, the reverse primer
hybridized outside of the cbf5 gene in the 3' downstream
region, and the PCR product included up to the termina-
tion codon of the cbf5 gene as well as the partial sequence
of another coding region that partially overlapped cbf5.

In the initial screening of the Thermofilum species, the
above-mentioned combinations of primers did not work.
Thus, we used P-1835 (forward) and P-1838 (reverse).
Only the T. pendens pre-amplified DNA gave a product
with the expected size. Sequence information from the
product was used to design specific primers (P-1856 and
P-1857). A semi-nested PCR that used P-1856 (in the first
reaction, forward) and P-1857 (in the second reaction,
forward) and a degenerate primer (P-1610, reverse) gave
the products from non-amplified DNAs from both T. pen-
dens and 'Thermofilum librum'. Using the obtained
sequence information, we designed specific primers (P-
1860 and P-1862). To amplify the remaining portion of
the 5' region of 'T. librum' cbf5, semi-nested PCR that used
P-1608 (forward) and P-1862 (in the first reaction) and P-
1680 (in the second reaction) was performed.

Primer sequences as well as species-specific primers used
in the nested PCR and sequencing analysis are shown in
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Table 1: Strains and size of cbf5 intron.

order* family** species*** references**** intron (bp)

D D Acidilobus aceticus [2],a 29
D D Aeropyrum camini [2],a 37
D D Aeropyrum pernix [1,2,52] 38
D D Caldisphaera lagunensis [2],a 29
D D Desulfurococcus amylolyticus a 21
D D Desulfurococcus mobilis [2],a 16
D D Desulfurococcus mucosus a 16
D D Ignicoccus hospitalis [31] 0
D D Ignicoccus islandicus [2],a 0
D D Ignicoccus pacificus a 0
D D Ignisphaera aggregans a 39
D D Staphylothermus hellenicus a 36
D D Staphylothermus marinus [2],a 36
D D Stetteria hydrogenophila [2],a 33
D D Sulfophobococcus zilligii [2],a 32
D D Thermodiscus maritimus [2],a 44
D D Thermosphaera aggregans [2],a 19
D P Hyperthermus butylicus [2],a 0
D P Pyrodictium abyssi a 0
D P Pyrodictium brockii a 0
D P Pyrodictium occultum [2],a 0
D P Pyrolobus fumarii [2],a 0
D u 'Caldococcus noboribetus' a 29
S S Acidianus ambivalens a 20
S S Acidianus brierleyi a 19
S S Acidianus infernus [2],a 20
S S Metallosphaera hakonensis [2],a 19
S S Metallosphaera sedula [2],a 19
S S Stygiolobus azoricus [2],a 22
S S Sulfolobus acidocaldarius [2,48] 22
S S Sulfolobus acidocaldarius [2],a 22
S S Sulfolobus metallicus [2],a 22
S S Sulfolobus shibatae [2],a 23
S S Sulfolobus solfataricus [1,53] 22
S S Sulfolobus tokodaii [1,54] 31
S S Sulfurisphaera ohwakuensis [2],a 31
T Tf 'Thermofilum librum' a 0
T Tf Thermofilum pendens a 0
T Tp Caldivirga maquilingensis [2],a 0
T Tp Pyrobaculum aerophilum [55] 0
T Tp Pyrobaculum arsenaticum a 0
T Tp Pyrobaculum islandicum a 0
T Tp Pyrobaculum oguniense [2],a 0
T Tp Pyrobaculum organotrophum a 0
T Tp Pyrobaculum calidifontis unpublished 0
T Tp Thermocladium modestius [2],a 0
T Tp Thermoproteus neutrophilus [2],a 0
T Tp Thermoproteus tenax [2],a 0
T Tp Vulcanisaeta distributa [2],a 0
T Tp Vulcanisaeta souniana a 0
C C 'Cenarchaeum symbiosum' [2,56] 0
N N 'Nitrosopumilus maritimus' unpublished 0
K Ca. Korarchaeum cryptofilum [30] 0

*: D; Desulfurococcales, S; Sulfolobales, T; Thermoproteales, C; 'Cenarchaeales', N; 'Nitrosopumilales', K; 'Korarcheaota' (phylum)
**: D; Desulfurococcaceae, P; Pyrodictiaceae, u; unclassified, S; Sulfolobaceae, Tf; Thermofilaceae, Tp; Thermoproteaceae, C; Cenarchaeaceae, N; 
'Nitrosopumilaceae'
***: Ca., Candidatus
****: Only the references for the data used in the present study are shown. See the text in the detail. a; the present study.
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Table 3 and [Additional file 2], respectively. The deduced
protein sequences from the Thermofilum species are iden-
tical; thus, we used only one sequence designated as Ther-
mofilum in the phylogenetic analysis.

For strains of Aeropyrum pernix, PCR was performed with
P-517 and P-518 as described in [1]. The PCR product was
treated with SAP-IT (GE Healthcare Bioscience) and used
directly (without cloning) in a sequencing reaction with
one of the PCR primers to determine a 249-bp region.

Newly reported sequences were deposited in the DDBJ/
EMBL/GenBank database under the accession numbers
[DDBJ:AB245528] to [DDBJ:AB245554], [DDBJ:AB26
1609] to [DDBJ:AB261610], [DDBJ:AB304834] to [DDBJ:
AB304847], and [DDBJ:AB469400] to [DDBJ:AB469410].

During the preparation of this manuscript, genome
sequence data from Staphylothermus marinus [7] (release
date, Feburary 21, 2007), Hyperthermus butylicus [8]
(release date; January 22, 2007), Metallosphaera sedula
[Genbank:CP000682] (released date; June 30, 2008),
Thermofilum pendens [9] (release date; December 18,
2006), Caldivirga maquilingensis [Genbank: CP000852]
(release date: October 5, 2007), Pyrobaculum arsenaticum
[Genbank: CP000660] (release date; November 1, 2007),
Pyrobaculum islandicum [Genbank: CP000504] (release
date; November 1, 2007), and Thermoproteus neutrophilus
[Genbank: CP001014] (release data; March 27, 2008), of
which cbf5 we sequenced, became available. However, the
gene annotation was different from ours when the gene
had the putative intron (see below). Our sequence deter-
mination was independently performed before the release
date of the data from other groups; the data from the addi-
tional 16 species were deposited to the database on May
31, 2007. Note that, as for S. marinus and H. butylicus, we
released the partial cbf5 sequence data on June 28, 2006.
Thus, we used our data for the above-mentioned seven
species in the following analysis. To avoid the confusion,
we did not include information of the above-mentioned
seven species from other groups in Table 1.

Sequence and phylogenetic analysis
RNA secondary structure was predicted with the mfold
version 3.1 web server (Figure 1) [10,11]. The putative
exon-intron boundaries were assigned between the first
and second letters of the codon for the catalytic aspartic
residue of Cbf5 [1]. The predicted BHB motifs were also
considered for the prediction of the exon-intron borders
(Figure 1). The alignment of the cbf5 protein sequences

Table 2: Introns in cbf5 and in rRNA genes in Aeropyrum pernix 
strains

Strain cbf5 arnS#1* arnS#2* arnL#3* arnL#4*

K1 type 1 Ialpha Ibeta Igamma
OH1 type 2
OH2 type 2
OH3 type 1
TB1 type 1 Idelta Iepsilon Ibeta
TB2 type 1 Idelta Iepsilon Ibeta
TB3 type 1 Idelta Iepsilon Ibeta
TB4 type 2 Idelta Iepsilon Ibeta Izeta
TB5 type 1 Idelta Iepsilon Ibeta Izeta
TB6 type 1 Idelta Iepsilon Ibeta Izeta
TB7 type 1 Idelta Iepsilon Ibeta Izeta
TB8 type 1 Idelta Iepsilon Ibeta Igamma

*, positions and type of introns were designated as in [6].

Table 3: Oligonucleotides

name sequence (5' to 3')* target (peptide sequence)**

P-486 GAGCGGATAACAATTTCACACAGG pUC/M13 rv
P-517 CCTACCCCATGAGAGGCCGTTGGA A. pernix, fw
P-518 GGCCTATGGAGCTGCATCACGCA A. pernix, rv
P-583 GTTTTCCCAGTCACGACGTTGTA pUC/M13 fw
P-1516 gagcggataacaatttcacacaggaVKGGKGGYYTYTGRTADAT cbf5, rv (IYQ(K/R)PP(L/V))
P-1607 gttttcccagtcacgacgttgtaGGKCCKACKTCKCAYGARGT cbf5, fw (GPTSHEV)
P-1608 gttttcccagtcacgacgttgtaGGKCCKACKAGYCAYGARGT cbf5, fw (GPTSHEV)
P-1609 gagcggataacaatttcacacaggARYTCKCCYTTNAGNGT cbf5, rv (TLKGEL)
P-1610 gagcggataacaatttcacacaggARYTCKCCYTTYAANGT cbf5, rv (TLKGEL)
P-1835 gttttcccagtcacgacgttgtaGGKCCKACNAGYCAYGA cbf5 fw (GPTSHE)
P-1838 gagcggataacaatttcacacaggTKGGRTCNAGNGTNCC cbf5 rv (TTLDP(K/N/R))
P-1856 GGTTGTAGCGTGGCTTAGGAAGCT T. pendens, fw
P-1857 GCTCCTAGGGATAGAGAGAATAGC T. pendens, fw
P-1860 TCGAACCTCCCTCTTCACAGCAGA Thermofilum, rv
P-1862 CAGCTTCGCACCAGACATGGAGGA Thermofilum, rv
P-1911 gttttcccagtcacgacgttgtaGGKCCKAGYAGYCAYGA cbf5, fw (GPSSHE)

*; sequencing primer binding site is shown in lower case.
**; fw; forward, rv; reverse
K = G or T; R = G or A; Y = T or C; N = T, C, G or A; D = T, G, or A; V = C, G or A; S = C or G.
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(56 operational taxonomic units (OTUs)) was performed
with ClustalW [12] (Additional file 3). Well-aligned
regions were then selected (201 sites in total) with
Gblocks [13] with the following parameters: the mini-
mum number of sequences for a conserved position was
29, the minimum number of sequences for a flanking
position was 47, the maximum number of contiguous
nonconserved positions was 10, and the minimum length
of a block was 5. Tree reconstruction was performed with
the Treefinder version of June 2008 (for maximum likeli-
hood inference) [14] under the WAG+G model (WAG
model [15] with consideration of gamma-shaped rate var-
iation (4-parameter model) [16]) and MrBayes 3.12 (for
Bayesian inference) [17] under the WAG+I+G model
(WAG model with consideration of gamma-shaped rate
variation (4-parameter model) and a proportion of invar-
iable sites). For the Bayesian inference analysis (Figures 2
and Additional file 4), a Markov chain Monte Carlo anal-
ysis was run for 2,000,000 generations, and trees were
built in 100-generation intervals (burn-in = 5,000). Statis-
tical support for the maximum likelihood inference tree
was evaluated with a non-parametric bootstrap test with
1,000 re-sampling events. The AU (approximately unbi-
ased) [18], NP (non-scaled bootstrap probability) [19],
and KH (Kishio-Hasegawa) [20] tests were performed
with CONSEL [21]. For these tests, to reduce number of
trees to be considered, analyses were performed with the
grouping of the sequences to form a reduced number of
the dataset (36 OTUs, 202 sites) with Codeml in PAML
3.13 [22] under the WAG+G model (Additional file 5, see
below) (for the alignment, see Additional file 6). The tree
topologies tested were selected by the preliminary maxi-
mum likelihood analysis performed with TREE-PUZZLE
5.2 [23] (Figure 2). Same dataset was also used for Baye-
sian inference with MrBayes 3.12. In Figure 2, the
obtained tree with Bayesian inference was shown. The 16S
rRNA phylogenetic tree was reconstructed by using Treef-
inder version of June 2008 and MrBayes 3.12 under the
GTR+I+G model (GTR: general time reversible, 6-parame-
ter model). The 16S rRNA gene sequences (49 OTUs) were
aligned with Clustal X [24] under the default condition.
The well-aligned regions were selected (1,122 sites in
total) with Gblocks under the default condition for nucle-
otide sequences. The model was selected by using model-
test 3.7 [25] with PAUP4b10 [26] under Akaike's
Information Criterion. The alignment of the cbf5 intron
with the flanking sequences was performed with R-coffee
[27] using default parameters. Most calculations were per-
formed using a MacPro (Apple) with a 3.0-GHz 8-core (4
× 2) Xeon Intel processor and 8-GB memory.

Results and discussion
Our previous analysis of crenarchaeal cbf5 genes showed
that only orders Desulfurococcales and Sulfolobales have

Secondary structures of (putative) exon-intron boundaries of crenarchaeal cbf5 newly identified in this studyFigure 1
Secondary structures of (putative) exon-intron 
boundaries of crenarchaeal cbf5 newly identified in 
this study. The structures were predicted with mfold 
[10,11]. In the cases of Staphylothermus hellenicus and Igni-
sphaera aggregans, manually modified structures are also 
shown. The predicted exons and introns are shown in upper 
and lower cases, respectively.

Desulfurococcus amylolyticus

5’  CA-|   GGa     u
GGGG CCCU gcccc u
CCCC gggg cgggg u
3’  Aaa^   ---     a

Desulfurococcus mucosus

5’   A-|   AGa   a
GGGGU CCCU gcc \
CCCCA gggg cgg c
3’   ga^   ---   c

Staphylothermus hellenicus

5’  ----|  CUAGa      a      c
GGGG ACC accccu uccccu a
CCCC ugg ugggga ggggga a
3’  Aaau^  -----      -      u

Staphylothermus hellenicus (modified)

5’  ---|C   AGa      a      c
GGGG   A CCU accccu uccccu a
CCCC   u ugg ugggga ggggga a
3’  Aaa^    ---      -      u

’Caldococcus noboribetus’
5’
G    ---|   UGg         g
GGGA CCCU gcucaggcc u
CCCU gggg cggguccgg a
A    Aga^   ---         a
3’
Ignisphaera aggregans
5’
A- UA--|   AGa gau
GG CCCU gcccgaccguuu   u

  CC    gggg cgggcugguaag   a
AG UAga^   ---            uau
3’
Ignisphaera aggregans (modified)
5’
A-  U ---|   AGa gau
GG A   CCCU gcccgaccguuu   u

  CC U   gggg cgggcugguaag   a
AG Aga^   ---            uau
3’
Acidianus ambivalens
5’
C   --|    AGa ua
GGG ACCCU gccc  \
CCC ugggg cggg  a
C   Aa^    ---    aa
3’
Acidianus brierleyi
5’
A    ---|   AGa    u
GGGA CCCU gccu a
CCCU gggg cgga a
A    Auc^   ---    a
3’
Page 5 of 12
(page number not for citation purposes)



BMC Evolutionary Biology 2009, 9:198 http://www.biomedcentral.com/1471-2148/9/198
the (putative) intron in their cbf5 genes, although some
species in the order Desulfurococcales do not have the
intron. However, phylogenetic analysis with the previous
dataset did not strongly support the sister grouping of
orders Desulfurococcales and Sulfolobales without spe-
cies from other orders, and the phylogenetic positions of
the species in Desulfurococcales, which do not have the
intron, were unclear [2].

To improve the phylogenetic analysis of the cbf5 gene, we
extended the analyzed region of the genes from 27 species
to include an additional area in the 3' region (from about
70 to 220 amino acid residues), and we added new
sequences from an additional 16 crenarchaeal species. We
also added the recent information from the newly deter-
mined crenarchaeal and korarchaeal genomes. The spe-
cies and the intron size information are summarized in

[Additional file 1]. When the presence of the intron was
expected, the new putative exon-intron borders from
seven species among the additional 16 species were sub-
jected to a prediction of their secondary structures (Figure
1. For 18 species which have the (putative) intron among
the previously characterized 27 species, see reference [2]).
Except for the cases of 'Caldococcus noboribetus' and Acidi-
anus brierleyi, the predicted structures in the pre-mRNAs
have an unconventional BHB structure [28], which
should be recognized and cleaved by the hetero-oligo-
meric splicing endonuclease, as demonstrated previously
[2]. Recent X-ray crystallography has revealed that hetero-
oligomeric splicing endonuclease is a dimer of hetero-
dimers [29]. The predicted cleavage sites between the sec-
ond and the third residues in the bulges of the BHB motif
were consistent with the expected exon-intron borders,
suggesting that the predicted exon-intron borders were

Bayesian phylogenetic tree of representative Cbf5 protein sequencesFigure 2
Bayesian phylogenetic tree of representative Cbf5 protein sequences. Thirty-six species were selected for tree 
reconstruction and were divided into 11 categories. See sequence details in [Additional file 1], except for Methanocaldococcus 
jannaschii [Genbank:AAB98132], 'Nanoarchaeum equitans' [Genbank:AAR39298)], and Methanopyrus kandleri [Gen-
bank:AAM01350] as the outgroups. To analyze the monophyletic status of orders Desulfurococcales + Sulfolobales (analysis 1), 
categories 8 to 11 were treated as a single category. To analyze the interrelationship within Desulfurococcales (analysis 2), cat-
egories 1 to 5 were treated as a single category. Posterior probability (PP) for Bayesian Inference and bootstrap probability 
(BP; %) for the maximum likelihood method are shown at the nodes. Bold lines show lineages with the (putative) cbf5 intron.

H. butylicus

P. fumarii
P. abyssi

1.00/91

0.99/79
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convincing. In fact, partial cDNA sequences of spliced cbf5
mRNA from Desulfurococcus amylolyticus, Desulfurococcus
mucosus, Staphylothermus hellenicus, Acidianus brierleyi and
Ignisphaera aggregans were consistent with the predictions
(Watanabe, Y. and Itoh, T. unpublished results), although
the definite identification of the borders of the remaining
species requires a cDNA sequencing and cleavage study
using splicing endonuclease. Results from our present
study, together with the previous study [2], indicate that
among the order Desulfurococcales, Ignicoccus spp. and all
species from family Pyrodictiaceae do not have the cbf5
intron.

Using a new dataset, we reconstructed phylogenetic trees
of the cbf5 protein sequence by using maximum likeli-
hood (not shown) and Bayesian methods [Additional file
4]. These trees suggested the monophyly of the cbf5 pro-
tein sequences from orders Desulfurococcales and Sul-
folobales. We verified this monophyly with several
statistical tests (analysis 1, [Additional file 5]). To finish
the computation within a reasonable time (approximately
1 week) using the available computational environment
with a reduced number of trees to be considered, we first
reduced the number of sequences in the dataset and
reconstructed the phylogenetic tree (Figure 2). There was
no significant difference in the tree topology before and
after the reduction of the sequence (compare [Additional
file 4] and Figure 2). Then, we fixed the relationships
within each of the eight groups (Figure 2) and examined
the relationships between the groups (analysis 1, Addi-
tional file 5). The results of the tests supported the mono-
phyly of the sequences from orders Desulfurococcales and
Sulfolobales (AU; P = 0.938, NP; P = 0.799, KH; P =
0.907) and also suggested the inclusion of the sequence of
'Korarchaeum' into the crenarchaeal sequences. The result
is consistent with the phylogenetic association of rRNA
and protein sequences from 'Korarchaeum' and Crenar-
chaea [30].

The sequences from the species of family Pyrodictiaceae
and Ignicoccus spp. are grouped independently, and these
monophylies were strongly supported with high statistical
values in the trees (Figure 2, see also [Additional files 5
and 6]). Although among orders Desulfurococcales and
Sulfolobales, these groups are not likely to be the earliest
branching (Figure 2, see also [Additional file 4]), the
branching order among order Desulfurococcales, particu-
larly of Ignisphaera aggregans, was uncertain. Thus, we
examined whether the sequences of family Pyrodictiaceae
and/or Ignicoccus spp. branched earliest among the order
Desulfurococcales, except for Ignisphaera aggregans, by
using AU, NP, and KH tests of an alternative grouping set
(analysis 2, Figure 2, [Additional file 7]). The monophyly
of the Desulfurococcaceae (i.e., the earliest branching of

the Pyrodictiaceae sequence) was rejected by the AU test
(P = 0.029) and NP test (P = 0.001) (95% significance
level) but not by the KH test (P = 0.075). If Ignisphaera
aggregans was not considered, the monophyly of the Des-
ulfurococcaceae (excluding Ignisphaera aggregans and
Pyrodictiacean species) would be supported by only small
probabilities by the AU test and KH test (P = 0.062, and
0.071, respectively) and rejected by the NP test (P <
0.001). The monophyletic grouping of the Desulfurococ-
caceae (group d in Figure 2) with the intron and the Pyro-
dictiaceae was supported by the AU, NP, and KH tests (P
= 0.831, 0.697, and 0.829, respectively). These results sug-
gest that the sequences of the Pyrodictiaceae (as seen in
the Bayesian tree of Figure 2) are unlikely to be the earliest
branching. The monophyletic grouping of Desulfurococ-
caceae (c) with the intron and Ignicoccus spp. (as seen in
the tree of Figure 2) was also supported by the AU, NP,
and KH tests (P = 0.82, 0.605, and 0.78, respectively).
These results also suggest that the sequence of Ignicoccus
spp. is not likely to be the earliest branching as seen in the
Bayesian tree of Figure 2. The monophyly of Desulfuro-
coccaceae (b) + Desulfurococcaceae (c) (appeared in the
Bayesian tree of Figure 2) could not be rejected by the AU
and KH tests because of their medium probabilities (P =
0.155 and 0.187, respectively), but this monophyly was
rejected by the NP test (P = 0.02). The monophyly of Igni-
sphaera aggregans + Pyrodictiaceae also cannot be rejected
by the AU, NP, and KH tests because of their medium
probabilities (P = 0.313, 0.212, and 0.219, respectively).
The monophyly of Desulfurococcaceae (c and d) + Pyro-
dictiaceae was not rejected by the tests (AU; P = 0.287, NP;
P = 0.078, KH; P = 0.163). Finally, the monophyly of spe-
cies with the intron was not rejected by the tests (AU; P =
0.329, NP; P = 0.058, KH; P = 0.194). Therefore, the
sequence of both Ignicoccus spp. and the Pyrodictiaceae
was unlikely to be the earliest simultaneous branching, as
seen in the tree presented in Figure 2. These results suggest
that the sequences of these groups are not likely to be the
earliest branching, although the possibility was not com-
pletely excluded. As a reference, we constructed a phyloge-
netic tree of 16S rRNA of the corresponding species by
using the Bayesian method [Additional file 8]. The 16S
rRNA tree also supported the monophyletic groupings of
orders Desulfurococcales and Sulfolobales, Ignicoccus spp.
and Desulfurococcaceae (c), and Pyrodictiaceae and Des-
ulfurococcaceae (d), suggesting that there was no obvious
gene transfer of cbf5 from outside of orders Desulfurococ-
cales and Sulfolobales. About 6% of protein-coding genes
in Ignicoccus hospitalis are thought to be transferred from
its symbiont 'Nanoarchaea' [31]. However, in our analysis,
the monophyletic grouping of cbf5 genes in Ignicoccus spp.
with the nanoarchaeal sequence was not supported. Thus,
the cbf5 gene in Ignicoccus spp. is not likely due to gene
transfer of the intron-less nanoarchaeal cbf5 gene.
Page 7 of 12
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We also aligned the (putative) cbf5 introns with the flank-
ing sequences using the program R-coffee with the RNA
secondary structure prediction option (Figure 3). The
alignment showed some conservation in the intron region
beyond base-pairing with the exon regions to maintain
the motif required for cleavage by the splicing endonucle-
ase, suggesting a common origin for these introns. Note
that the internal region of the introns was highly variable
likely due to the independence of recognition by the splic-
ing endonuclease during the cleavage at the exon-intron
borders.

The origin of the archaeal cbf5 intron is still unclear. We
previously proposed that relaxed substrate specificity
[2,32-34] of the hetero-oligomeric splicing endonuclease
[3,35] led to the birth of the pre-mRNA intron, which fre-
quently contains the relaxed cleavage motif ([2] and this
study). In particular, the recognition of the relaxed cleav-
age motif within a non-tRNA context has been shown to
be characteristic of crenarchaeal hetero-tetrameric splicing
endonuclease [2,29,32,33]. Although the intron sizes in

cbf5 and rRNA are different from one another, as dis-
cussed below, archaeal rRNA introns are observed mainly
in crenarchaeal species, which are expected to have the
crenarchaeal hetero-tetrameric splicing endonuclease
[36]. In some cases, archaeal rRNA introns also have the
relaxed cleavage motifs [37]. The size of archaeal tRNA
introns (11 to 175 nucleotides) are more similar to those
in crenarchaeal cbf5, and accumulation of tRNA introns in
crenarchaeal species is observed [36]. The unconventional
cleavage motif at the exon-intron borders and the intron
location at the position rather than the usual position
"37/38" of tRNA intron are also observed more frequently
in crenarchaeal species [28,36]. The contribution of the
hetero-tetrameric splicing endonuclease is suggested for
the cleavage of the unconventional motif, and has been
demonstrated by the crenarchaeal hetero-tetrameric splic-
ing endonuclease (reviewed in [29]).

Numerous archaeal rRNA introns contain the open read-
ing frame for DNA endonuclease, which functions as a
homing endonuclease to make the intron as a mobile ele-

Alignment of cbf5 introns with their flanking sequencesFigure 3
Alignment of cbf5 introns with their flanking sequences. The data was shaded by using the Boxshade server [57]. Resi-
dues conserved among more than 50% of the sequences are shown on black background. Residues similar to the conserved 
residue, or conserved among purines (or pyrimidines), are shown on gray background. The intron region and the region corre-
sponding to the BHB motif (bulge as B, helix as H) are also shown.

A_aceticus GGGACCCTTG GGCTCAG-G-C---CGCG----T-----G---GCCTGGGCGGGGAA ATCCCAAAGTA
C_noboribetus GGGACCCTTG GGCTCAG-G-C---CGTA----A-----G---GCCTGGGCGGGGAG ATCCCAAGGTA
M_hakonensis GGGACCCTAG AGCCCTT---------------A------------TGGGCGGGGCA ATCCCAAGGTT
M_sedula GGGACCCTAG AGCCCTA---------------A------------TGGGCGGGGCA ATCCCAAGGTA
A_ambivalens GGGACCCTAG AGCCCTA--------------------------AAAGGGCGGGGTA ACCCCAAAGTA
A_infernus GGGACCCTAG AGCCCTA--------------------------AAAGGGCGGGGTA ACCCCAAAGTA
S_shibatae GGGACCCTAG AGCCCATT--------T---------------CACTGGGCGGGGTA ATCCAAAAGTT
S_solfataricus GGGACCCTAG AGCCCATT------------------------CATTGGGCGGGGTA ATCCTAAAGTT
A_brierleyi GGGACCCTAG AGCCTT---------------------------AAAAGGCGGGGCT ATCCCAAAGTA
S_metallicus GGGACCCTAG AGCTGCTG------------------------TAAATGGCGGGGTT ATCCCAAAGTT
S_ohwakuensis GGGACCCTAG AGCCTTGA-GGGT---TA----A-------ACCCTAAGGCGGGGGG ACCCTAAAGTA
S_tokodaii GGGACCCTAG AGCCTTGA-GGGT---TA----A-------ACCCTCAGGCGGGGAG ACCCTAAAGTA
A_camini GGGACCCTAG AGCCCCAGCCAGCCCTCT----G----GGGGCTGCGGGGCGGGGAT ATCCTAAGGTA
A_pernix GGGACCCTAG AGCCCCTGCCAGCCCCCA----G----GGGGCTGCGGGGCGGGGAT ATCCTAAAGTG
C_lagunensis GGAACCCTAG AGCCTGA-C-T---CTTA----A-----G---AGAGAGGCGGGGAT ATCCTAGAGTA
S_hydrogenophila GGGACCCTAG AGCCCCCA-GGCT-GCTA----G-------GGCCGGGGGCGGGGGG ATCCCCGGGTC
T_maritimus GGGACCCTAG AGTCCCT-CCCGGG-TAAGCTACTAGCTTCCCGGAGGGGCGGGGAT ACCCCAAGGTA
D_amylolyticus GGCACCCTGG AGCCCCTT-------------------------TAGGGGCGGGGAA ACCCCAAGGTG
S_zilligii GGAACCCTAG AGCCCCGTG-TC--CTTT----G-------AGACCGGGGCGGGGAA ACCCCAAAGTA
T_aggregans GGTACCCTAG AGCCCGT---------------G------------TCGGCGGGGAA ACCCCAAAGTG
D_mobilus GGTACCCTAG AGCCAC------------------------------CGGCGGGGAG ACCCCAAGGTG
D_mucosus GGTACCCTAG AGCCAC------------------------------CGGCGGGGAG ACCCCAAGGTG
I_aggregans GGTACCCTAG AGCCCGA-C-CGTT-----TGATTATATGAATGGTCGGGCGGGGAG ATCCGAAGGTA
S_azoricus GGGACCCTAG AGCACGT---------------TT---------AACGTGCGGGGAG ACCCCAAAGTA
S_acidocaldarius GGAACCCTAG AACCCGTA------------------------TAACGGGTGGGGAA ATCCCAAGGTT
S_hellenicus GGGACCCTAG AACCCCTA-TCCCC-TCA----A----TAGGGGGAGGGGTGGTTAA ACCCCAAAGTG
S_marinus GGGACCCTAG AACCCCTA-TACCC-TCA----A----TTGGGATAGGGGTGGTTAA ACCCCAAAGTG
                              <------------------intron--------------------> 
motif                  HHHHBB B                                       HHHHBB B 
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ment (reviewed in [38]). Apparently, the archaeal cbf5
intron is too short (from 16 to 44 bp, see [Additional file
1]) to encode such a nuclease. Nomura et al. found that A.
pernix isolates have variations in the number, sequence,
and positions of rRNA introns [6] (see also Table 2). In the
present study, we determined partial cbf5 sequences of
these A. pernix isolates. Together with the results of the
previous studies for type strain K1 [1], we found that at the
corresponding positions, all of the analyzed cbf5 genes
have a putative intron, classified as type 1 or type 2 (Figure
4, the distribution is mentioned in Table 2), which con-
tains only two base substitutions. There was no correla-
tion between the variation of cbf5 and rRNA introns
(Table 2). Although sequence variation of rRNA introns
between A. pernix isolates (one to two substitutions in I
beta or one substitution in I epsilon) were observed, this
was not correlated with the variation of the cbf5 intron.
However, a correlation between the cbf5 intron and radA
phylogeny shown by Nomura et al. [6] was observed (not
shown). Our results show that, as for the large-scale in-del
event, the cbf5 intron was more conserved than the rRNA
introns with the homing DNA endonuclease gene. How-
ever, Nomura et al. [6] also found that some of the rRNA
introns are deletion derivatives of the introns with an
open reading frame. For example, A. perinix introns I delta
and I zeta are deletion derivatives of I alpha and I gamma,
respectively [6]. The contemporary cbf5 introns may be
examples of such deletion derivatives. Proof of this possi-
bility requires further taxonomic sampling of cbf5 genes to
find the intron that includes the protein-coding sequence.

Peng et al. showed that during the generation of infection,
putative 12-bp introns were inserted into protein-coding

genes in an archaeal virus genome, although splicing was
not demonstrated and the mechanism of insertion of the
12-bp sequence is unknown [39]. Interestingly, the sizes
of the cbf5 introns from Staphylothermus hellenicus and S.
marinus are 36 bp (3 times 12); thus, mechanisms of inser-
tion of archaeal cbf5 introns and the putative introns in
the archaeal virus genome may be related. Furthermore,
the cbf5 introns of Stetteria hydrogenophila (33 bp) and
Ignisphaera aggregans (39 bp), as well as S. hellenicus and S.
marinus, do not change the reading frame. The putative
introns in the virus genome may not be spliced out and
the coding region with such insertions may produce func-
tional proteins. However, in the case of cbf5 introns, the
insertion disrupts the codon of the catalytic residue of the
protein [1,40], and thus these must be spliced out if the
organism needs the functional protein.

One possible explanation of the putative secondary loss of
the cbf5 intron in certain lineages is that the intron-con-
taining gene is replaced with a sequence without the
intron, possibly produced by reverse transcription of the
spliced mRNA [41], or the spliced mRNA itself. Although
reverse transcriptase activity has not been observed in cre-
narchaeal cells, the presence of a putative reverse tran-
scriptase gene in some archaeal genomes has been
suggested [42]. In fact, in the sequenced genomes of Igni-
coccus hospitalis and Hyperthermus butylicus (family Pyro-
dictiaceae) with the putative secondary loss of the cbf5
intron, candidate reverse transcriptase genes were identi-
fied [Additional files 9 and 10]. An alternative possibility
could be the requirement of higher activity of pseudouri-
dine synthase in a certain environment. Previously, we
proposed that the cbf5 intron functions as a negative reg-
ulator of the expression of pseudouridine synthase [1].
Archaeal Cbf5 catalyzes pseudouridine formation in
rRNA and tRNA together with other associated proteins
using a guide RNA [40,43] or without a guide RNA [44].
Incorporation of pseudouridine in RNA increases the
thermodynamic stability of RNA [45]. Furthermore, pseu-
douridylation of tRNA at position 55 by TruB in mes-
ophilic bacteria Escherichia coli supports the resistance to
higher temperature [46]. Archaeal Cbf5, a member of truB
family [47], also forms a pseudouridine in tRNA at posi-
tion 55 [44]. Thus, at extremely high temperatures, the
organisms might not prefer the down-regulation system
of the pseudouridine synthase and lose it.

Conclusion
The results of the present study suggest that cbf5 gained
the intron in the common ancestor of orders Desulfuro-
coccales and Sulfolobales, and that cbf5 lost the intron
independently in the ancestors of the family Pyrodic-
tiaceae and Ignicoccus spp. Since we found the first exam-
ples of cbf5 introns, sequences of three crenarchaeal
genomes with the cbf5 intron have been determined.

Two types of exon-intron boundaries of Aeropyrum pernix cbf5Figure 4
Two types of exon-intron boundaries of Aeropyrum 
pernix cbf5. The exons and introns are shown as in Figure 1. 
Residues substituted between each type are circled.

Aeropyrum pernix type 1

5'  ---|   AGa u  c c
GGGA CCCU gcccc gc agcccc \
UCCU gggg cgggg cg ucgggg a

Aua^   ---     -  -      g
3'

Aeropyrum pernix type 2

5'  ---|   AGa u  c cc
GGGA CCCU gcccc gc agccc  \
UCCU gggg cgggg cg ucggg  g
3'  Aua^   ---     -  -     cg
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However, the cbf5 intron in these genomes was misidenti-
fied (S. acidocaldarius; [48], see [2]) or ignored (Staphylo-
thermus marinus [7], Metallosphaera sedula,
[Genbank:CP000682]). Even for the first three examples
in A. pernix, S. solfataricus, and S. tokodaii, the gene predic-
tion of these examples was still confused with cases of
translational frame-shifting by other researchers [49].
Although there was no confirmation of archaeal pre-
mRNA splicing for genes other than cbf5, the presence of
the putative intron in other protein-coding genes was pre-
dicted [39,50]. To completely understand protein-coding
genes in archaeal genomes, tools for effective prediction
of introns in archaeal protein-coding genes must be devel-
oped with comparative or computational methods
[50,51]. Experimental confirmation of the predictions,
including the putative cbf5 introns predicted in our stud-
ies, is indispensable.
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