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Abstract

Background: We have previously combined statistical alignment and phylogenetic footprinting to
detect conserved functional elements without assuming a fixed alignment. Considering a
probability-weighted distribution of alignments removes sensitivity to alignment errors, properly
accommodates regions of alignment uncertainty, and increases the accuracy of functional element
prediction. Our method utilized standard dynamic programming hidden markov model algorithms
to analyze up to four sequences.

Results: We present a novel approach, implemented in the software package BigFoot, for
performing phylogenetic footprinting on greater numbers of sequences. We have developed a
Markov chain Monte Carlo (MCMC) approach which samples both sequence alignments and
locations of slowly evolving regions. We implement our method as an extension of the existing
StatAlign software package and test it on well-annotated regions controlling the expression of the
even-skipped gene in Drosophila and the a-globin gene in vertebrates. The results exhibit how
adding additional sequences to the analysis has the potential to improve the accuracy of functional
predictions, and demonstrate how BigFoot outperforms existing alignment-based phylogenetic
footprinting techniques.

Conclusion: BigFoot extends a combined alignment and phylogenetic footprinting approach to
analyze larger amounts of sequence data using MCMC. Our approach is robust to alignment error
and uncertainty and can be applied to a variety of biological datasets. The source code and
documentation are publicly available for download from http://www.stats.ox.ac.uk/~satija/BigFoot/

Background ments in a wide variety of taxa [1-5]. While searching for
The identification of conserved DNA sequences by com-  these "phylogenetic footprints" [6] is a powerful tech-
parative genome sequence analysis has been widely used  nique, traditional methods often make predictions from a
to annotate both protein-coding and gene regulatory ele-  single DNA sequence alignment. By ignoring the possibil-
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ity of alignment uncertainty, these predictions are highly
sensitive to both alignment errors and regions where alter-
nate alignments may describe the true evolutionary his-
tory. A dependence on a single alignment may be
particularly harmful when searching for regulatory motifs,
such as transcription factor binding sites (TFBS), which
are difficult to align reliably due to their short lengths (6-
15 nucleotides) and tolerance of degenerate nucleotides
[7]. Recent studies have noted that single-alignment phy-
logenetic footprinting approaches often produce inaccu-
rate or inconsistent results depending on the alignment
method used, and have called for new techniques capable
of controlling for alignment error and uncertainty [1,8-
11].

"Statistical alignment" [12] methods provide a framework
for performing comparative genomic analyses while con-
sidering a probability-weighted distribution of align-
ments. Probabilistic models of evolutionary events
(insertions, deletions, and substitutions) are used to cal-
culate the likelihoods of different evolutionary histories
and a probability-weighted distribution of sequence
alignments. These models vary in complexity, ranging
from the treatment of insertion and deletion events
(indels) as single-nucleotide events [13] to the modeling
of complex length distributions for indels [9,14,15], but
all allow for evolutionary inference without assuming a
single alignment. Incorporating alignment uncertainty
information using statistical alignment can improve not
only the accuracy of sequence alignment, but also the esti-
mation of the parameters specifying the length and fre-
quency of evolutionary events as well as the estimation of
phylogenetic relationships between species [9,16-19].

Statistical alignment models can be modified to simulta-
neously align sequences and detect functional elements.
By doubling the number of states in a hidden markov
model (HMM) aligner in order to model both quickly
evolving (neutral) and slowly evolving (functional) ele-
ments, we recently introduced SAPF (a statistical aligner
and phylogenetic footprinter), a software package which
analyzes a probability-weighted distribution of align-
ments in order to identify sequence elements that are
evolving at a reduced rate [20]. Results on both simulated
datasets and Drosophila cis-regulatory modules demon-
strate how removing the traditional dependence on a sin-
gle alignment increases the accuracy of functional element
predictions. The improvement was most prominent when
there was alignment ambiguity in functional regions due
to binding sites that were not highly conserved. While
SAPF is used to discover new motifs, the MORPH software
package modifies a simple probabilistic aligner to detect
and align instances of known motifs that have been previ-
ously characterized as position state weight matrices [21].
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Here too, the authors report higher accuracy when exam-
ining all alignments between two species.

While these studies present strong evidence for the bene-
fits of using statistical alignment to detect regulatory ele-
ments, they are limited in the amount of sequence data
they can analyze. Both SAPF and MORPH use standard
HMM algorithms [22] to compute likelihoods and poste-
rior probabilities, and as the number of sequences under
analysis increases, the number of states in the HMM
increases exponentially. As a result, MORPH is restricted
to pairwise alignments and SAPF can analyze only up to
four sequences. While the potential benefit of adding
more sequence data is highly dependent on the evolution-
ary distances between species in the dataset, recent simu-
lation studies have demonstrated how greater numbers of
species can increase the sensitivity and specificity of func-
tional element recognition [11,23]. Additionally, [23]
proposed the simple rule that for a given evolutionary dis-
tance, the number of genomes required to detect func-
tional elements scales inversely with element length.
Therefore, while two genomes may be sufficient for
detecting long conserved exons, three to fifteen genomes
may be needed to detect TFBS. The inability to analyze
more than four sequences puts SAPF at a disadvantage rel-
ative to phastCons, the single-alignment based phyloge-
netic footprinter used to create the 28-genome
conservation track in the University of California at Santa-
Cruz (UCSC) genome browser [5,24].

Markov chain Monte Carlo sampling techniques
[25,26]have been successfully applied to statistical align-
ment methods in order to expand the numbers of
sequences that can be analyzed [17,18,27]. The StatAlign
package - a Markov chain Monte Carlo (MCMC) sampler
implemented in Java - samples alignment parameters,
sequence alignments, tree branch lengths and tree topolo-
gies in order to infer both the alignment and the phyloge-
netic tree relating the input sequences [28]. The sampler
places a statistical alignment model on each branch of the
tree, and represents internal node sequences as a collec-
tion of gaps and Felsenstein wildcards [27]. To create Big-
Foot, we extend this package to perform phylogenetic
footprinting as well. We alter the alignment framework to
model both quickly and slowly evolving regions, and
develop new MCMC transition kernels to infer the break-
points between the slowly and quickly evolving regions.

Results and Discussion

Algorithm

Model Summary

While traditional alignment algorithms assume identical
mutation rates throughout the sequence, we introduce an
alternative evolutionary model allowing for rate heteroge-
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neity by modeling the evolution of both quickly and
slowly evolving regions. In our model, a two-state HMM
emits a sequence of conserved (slow evolution) and non-
conserved (fast evolution) states at the root of the tree.
This defines an alternating series of conserved and non-
conserved segments, allowing our model to represent
both neutral sequences expected to exhibit higher muta-
tion rates and functional sequences undergoing purifying
selection. Each segment evolves independently along a
phylogenetic tree according to a pairwise alignment
model which allows for insertions, deletions, and substi-
tutions on each branch of the tree. While the StatAlign
package jointly estimates both the tree and the alignment,
we condition the analysis on a user-inputted phylogenetic
tree in order to estimate the alignment and locations of
quickly and slowly evolving regions more efficiently.

Our model is a reformulation of the SAPF multiple HMM
with two main differences. As in [5], we model the differ-
ence between fast and slow states by scaling down the
branch lengths of the phylogenetic tree in slow states,
reducing the evolutionary time - and thus the expected
divergence - in these regions. While SAPF models slow
states by modifying the rate parameters of the mutation
models, BigFoot uses a branch scaling approach in order
to support multiple substitution models with different
numbers of parameters. Two different scaling factors,
both of which are model parameters endowed with user-
defined priors and constrained to be less than one, are
used for substitution and indel events.

Another minor difference is that the BigFoot model does
not allow for insertions at the exact boundaries of func-
tional regions. This modification was necessary to create
unambigious and reversible MCMC proposals, and is a
biologically relevant modification since an insertion event
in one sequence should not define the beginning (or end)
of a conserved region.

Modeling molecular evolution

Our alignment model is expressed as a pairwise HMM
transducer [29,30], a conditionally normalized HMM rep-
resenting the evolution of an ancestral sequence into a
descendent sequence, and is similar to the transducer
model in [20]. More complete details describing the trans-
ducer are presented in the Methods section and supple-
mentary sections S1.1 and S1.2 [see Additional file 1].

We base our transducer on the 1992 approach of Thorne,
Kishino, and Felstenstein (TKF92) [14]. TKF92 models the
birth and death of fragments with geometrically-distrib-
uted lengths in order to represent long indel events. Our
model can be viewed as an extension of the TKF92
approach, allowing these fragments to exist in either
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quickly or slowly evolving regions. In our fast states, as in
the TKF92 model, the length of indel fragments is mod-
eled by a geometric distribution with the same expected
length as a fragment of matched bases, resulting in an
expectation of long indel events. In annotated functional
regions, however, we noticed that most indel events were
very short (1-3 bp). To represent this, we create a separate
parameter to specify the expected lengths of indel events.
Thus, we not only expect functional regions to have fewer
indel events, we also predict that these events will be
shorter.

We place a pairwise transducer on each branch of the phy-
logenetic tree in order to model the evolution from each
ancestor to each descendent. Transducer theory [29,30]
shows how the concatenation of these transducers results
in a multiple HMM describing the evolution from the
ancestral root node to all leaves in the tree. We place a sep-
arate HMM on the root sequence, allowing it to switch
between emitting slow-evolving characters and fast-evolv-
ing characters with specific probabilities. This models fast
and slow regions with geometric distributed lengths, set
by model parameters.

One limitation of our approach is that our model does
not allow for the creation or deletion of conserved regions
along the tree. Since the annotation of fast or slow charac-
ters emitted by the root is conserved in the descendent
sequences, the model cannot detect the loss or gain of
binding sites. For this reason, when testing BigFoot we dis-
carded sequences with long deletions from analysis.

The full likelihood of a tree is equivalent to the full emis-
sion probability of the multiple-HMM. Unfortunately,
this likelihood cannot be calculated quickly, as the time
complexity of the Forward algorithm for a multiple HMM
grows exponentially with the number of sequences.
Instead of direct computation via dynamic programming,
we apply a Bayesian MCMC method with data augmenta-
tion.

Bayesian MCMC

All model parameter densities are estimated using MCMC
sampling. Exponential priors with expectation 1 have
been used as priors for insertion-deletion parameters in
the alignment transducer and for all free parameters in
substitution models provided with the software package.
For parameters responsible for annotation (branch scal-
ings and expected lengths for fast/slow regions, as
described above), we allow the user to input either Beta or
uniform priors on these parameters. This allows the user
to tailor the analysis to their specific needs. For example,
the user can set an informative prior to search for longer
weakly conserved regions, or for very short and highly
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conserved regions. Alternatively, the user can set unin-
formative priors and allow the MCMC to estimate param-
eter distributions freely.

The joint posterior distribution of alignments, trees and
evolutionary parameters forms a high dimensional and
complex distribution from which efficient direct sampling
is most likely impossible. Therefore, we applied Markov
chain Monte Carlo to converge to this prescribed distribu-
tion. After convergence, samples from the Markov chain
provide correlated samples from the posterior distribu-
tion.

The likelihood of a tree under the multiple HMM can only
be easily calculated when we augment the tree with addi-
tional data known as extended alignments. This data con-
tains information on how the observed sequences are
aligned to ancestral sequences associated with internal
nodes of the tree. We represent the unobserved ancestral
sequences as a collection of gaps and Felsenstein wild-
cards in order to sum over all possible nucleotide values
when calculating the total likelihood.

Our MCMC walks on the joint distribution of the
extended alignments, locations of fast and slow regions,
and model parameters. The random walk comprises the
following components:

¢ Changing model parameters
¢ Changing extended alignment

e Shifting the boundary of an existing fast or slow
region

¢ Creating a new (or deleting an old) fast or slow
region

The first two types of moves are described in [31], and the
last two are described in the Methods section. In each
MCMC iteration, we apply a Metropolis-Hastings move to
alter one of these components, and select moves with
fixed probabilities that were chosen to enhance mixing.

Postprocessing the samples from the Markov chain

The Markov chain provides correlated samples from the
posterior distribution of alignments, locations of fast and
slow regions, and evolutionary parameters. To report pos-
terior probabilities for phylogenetic footprinting predic-
tions we take the approach of [4,5,20], collapsing our
predictions onto one axis and reporting posterior proba-
bilities for a single species. Our results thus represent the
posterior probability of each nucleotide having been gen-
erated from a slow state. These probabilities are simply the
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proportion of samples in which each nucleotide appears
inside the boundaries of a slow region.

Multiple sequence alignment samples can be summarized
in several ways. Unlike other authors [17], we found the
MAP (Maximum a Posteriori) alignment estimation
drawn from MCMC samples to be very unstable, espe-
cially when there is autocorrelation between samples
from the chain. We chose instead to estimate the MPD
(Maximum Posterior Decoding) alignment [32], which
maximizes the product of alignment column posterior
probabilities. We found this estimation to be more stable
as it allows the uncertainty in each alignment column to
be assessed independently. We present a complete algo-
rithm for calculating the MPD alignment in supplemen-
tary section S1.3 [see Additional file 1].

Testing

As a first test of the accuracy of the MCMC results, we ran
BigFoot on a relatively small dataset to compare the
results with the exact dynamic programming predictions
of SAPF. The two methods were expected to return similar,
though not identical, results. This is because SAPF and
BigFoot use slightly different alignment HMMs on each
tree branch. We analyzed a cis-regulatory module in four
Drosophila species: D. melanogaster, D. erecta, D. pseudoob-
scura, and D. willistoni. This 485 base pair region has been
found to regulate the expression of the homeodomain
encoding protein eve in the second stripe of the develop-
ing Drosophila embryonic blastoderm [33]. The REDFly
database provided the sequence coordinates of the biolog-
ically verified regulatory module in the D. melanogaster
sequence [34], and the FlyReg database provided loca-
tions for 19 experimentally discovered binding sites [35].
Figure 1 exhibits the close agreement between the MCMC
and dynamic programming predictions, with the loca-
tions of the known binding sites displayed above the pos-
terior probabilities, and provides strong evidence that
BigFoot is sampling from and converging to the true joint
distribution. Both programs identify 14 of the 19 binding
known binding sites with high posterior probabilities. Of
the remaining five sites, none have homologous instances
in either D. melanogaster or D. pseudoobscura. Four were
biologically characterized as "weak-affinity" binding sites
[36] which could indicate reduced functionality and a loss
of evolutionary pressure, and the last was postulated to be
recently evolved in D. melanogaster due to an absence of
orthologous sequence in both closely and distantly
related Drosophila species [33,37].

The Drosophila 12 genome consortium has completed the
sequencing of 12 Drosophila genome sequences exhibiting
a large range of evolutionary distances [1,38]. For exam-
ple, the evolutionary distance separating D. melanogaster
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Dynamic programming (SAPF) and MCMC (BigFoot) predictions along with annotated binding sites for the
eve stripe 2 enhancer. For each nucleotide in the D. melanogaster sequence, both programs output the probability that the
nucleotide was generated by a functional (slow) state. Experimentally verified binding sites in D. melanogaster for the transcrip-
tion factors, Bicoid (BC), Hunchback (HB), Kruppel (KR), Giant (GT), and Sloppy-paired | (SIl) are shown above the posterior
probabilities.
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BigFoot results for the eve stripe 2 enhancer when analyzing four sequences and ten sequences. Increasing the
number of species in the analysis results in higher posterior probabilities in many experimentally verified binding sites, and
increases the nucleotide resoltion when identifying the precise locations for the TFBS.

Page 5 of 14

(page number not for citation purposes)



BMC Evolutionary Biology 2009, 9:217

and D. grimshawi is greater than that between any pair of
mammals when generation time is taken into account [1],
while other sequence pairs are very closely related. The
large number of sequenced genomes and the diversity in
their evolutionary distances make this an ideal dataset for
implementing phylogenetic footprinting techniques. We
tested the eve stripe 2 enhancer region using ten of the 12
genomes in this dataset. We chose to remove two species,
D. mojavensis and D. virilis, as both sequences contained
numerous long deletions and were thus too divergent to
be informative. Sequence data for all species were
obtained from a set of pre-computed whole-genome
alignments [39].

Figure 2 compares MCMC predictions generated by Big-
Foot when analyzing either four sequences or ten
sequences. The predictions made when analyzing the
larger dataset correspond more closely to the locations of
experimentally validated binding sites. The improvements
can be summarized in two main categories:

¢ Higher sensitivity to verified binding sites. While
Figure 2 exhibits a close agreement between the two
sets of analyses for many of the experimentally verified
binding sites, the addition of more species does
improve the conservation signal in some TFBS. In par-
ticular, peaks corresponding to a Kruppel binding site
(kr7), a Bicoid binding site (bcd4), and a joint site
(kr9/bcd5) are all more strongly identified as evolving
slowly when ten species are analyzed. Additionally,
one Kruppel binding site (kr5) is only detected, albeit
weakly, when using the larger dataset. This demon-
strates that while imperfectly conserved regions may
be reasonably likely to occur by chance in neutral
sequence when only a few species are analyzed, addi-
tional sequences may provide stronger evidence of
purifying selection. Heightened sensitivity is also
observed at previously unannotated peaks from bases
137-148 and 227-232. Both regions are adjacent to a
verified TFBS and have a high posterior probability of
being emitted from a slow state, and thus should be
candidate regions for future experimental study. This
heightened sensitivity does not result in a general loss
of specificity, as low probability peaks (bases 298-306
and 383-421) in previously un-annotated regions dis-
appear when using the larger dataset.

¢ Finer nucleotide resolution for TFBS start/stop
positions. When analyzing a small number of species,
it may be difficult to identify the boundaries between
quickly and slowly evolving regions, especially in a
region where TFBS may be grouped close together. The
results shown in Figure 2 demonstrate how adding
additional sequence data can result in a clearer signal
at the boundaries of binding sites. In the Kruppel site
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kr7, the distance in bases from the limits of the pre-
dicted conserved region (defined as the peak region
with probability greater than 0.5) to the limits of the
laboratory-identified regulatory element decreases by
3 bp when additional sequences are analyzed. Though
this difference is small, it corresponds to 27% of the
11 bp binding site. A similar effect is observed in the
Kruppel site kr8, for which additional sequence data
decreases the boundary error by 4 bp.

Additionally, in a closely spaced group of functional
elements (bases 440-482) separated only by a small
number of neutral bases, the small dips in posterior
probability correspond more closely to the neutral
regions when more sequences are added to the analy-
sis. While the agreement is not perfect, these results are
consistent with previous findings showing an increase
in nucleotide resolution as more species are analyzed
[23].

In order to quantify the predictive accuracy of our results,
we calculated receiver operating characteristic (ROC)
curves for both sets of BigFoot results. The area under the
curve (AUC), which has a maximum value of 100%, is a
summary statistic that accounts for both the sensitivity
and the specificity of the predictions. A value of 50%
implies that the predictions are no better than random
guessing. The methodology used for creating the ROC
curves is described in [20]. The curves are displayed in Fig-
ure 3, which exhibits the small but noticeable predictive
improvement when additional sequences are added to the
dataset.

To demonstrate that BigFoot can be applied to sequence
data from vertebrates, we analyzed a 256 base pair region
previously identified as the major regulatory element of
human o-globin (eMRE) [40]. This region was sequenced
in 22 species, analyzed with the TRANSFAC database, and
found to contain seven TFBS. These TFBS range from 8-15
bp in length, and include recognition elements for the
Maf protein and GATA-1, both important in globin gene
regulation [40,41].

To analyze this region, we downloaded the multiz28way
alignment of the region from the UCSC genome browser
[42]. This alignment provided sequence information for
15 vertebrate species, three of which (cat, shrew, hedge-
hog) contained long deletions and were therefore
removed from the analysis. The results of the analysis are
shown in Figure 4, where we display the results of two
independent MCMC runs initialized at independent start-
ing points. The first run was started using the UCSC align-
ment to initialize the Markov chain, while the second was
initialized with a random alignment proposed by BigFoot.
Both runs were also initialized with independent and ran-
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ROC curves comparing the performance of BigFoot
when analyzing four or ten sequences and phastCons
analyzing ten sequences. The figure legend shows AUC
values for all curves. Among the three methods, optimal per-
formance is acheived when BigFoot analyzes the larger data-
set.

domly selected evolutionary parameters. Despite these
differences, Figure 4 exhibits that there is extremely close
agreement - in many regions near exact correspondence -
between the two sets of results, demonstrating the mixing
and convergence of the MCMC sampling.

When analyzing the 12 vertebrate species, BigFoot detects
six of the seven known binding sites with posterior prob-
abilities of greater than 95%. However, the seventh bind-
ing site, notated in Figure 4 as bs2, is poorly conserved
and the binding site peak probabilities do not exceed
50%. In fact, this region was only detected due to the pres-
ence of a previously unannotated and weakly conserved
adjacent region, notated as bsAlt, which is incorrectly
aligned in the multiz28 way alignment. BigFoot corrects
this alignment error and annotates this region with a peak
exceeding 80% posterior probability. This example dem-
onstrates the importance of calculating and correcting for
alignment ambiguity and error. By doing this, BigFoot not
only discovers a previously undetected conserved region
in a well-annotated regulatory module, but also enables
the detection of a weakly conserved but previously identi-
fied regulatory element.

http://www.biomedcentral.com/1471-2148/9/217

Comparison with phastCons

One of the most widely used alignment-based phyloge-
netic footprinting tools is the phastCons program, used to
create the conservation track in the University of Califor-
nia at Santa-Cruz (UCSC) genome browser [5,24]. The
conservation track makes predictions from a single multiz
alignment and does not incorporate indel information.
This puts the method at a significant disadvantage to Big-
Foot, as indel information has been shown to be
extremely valuable in the detection of functional elements
[43]. Indeed, we observed that predictions from the UCSC
conservation track had significantly lower specificity and
sensitivity when compared to the BigFoot results in both
the Drosophila and the aMRE datasets.

In the command-line version of phastCons, however, it is
possible to set an option for the program to incorporate
indel information [44]. We set this option and ran phast-
Cons on the BigFoot test datasets, using the UCSC align-
ment as input. The two programs returned almost
identical results for the majority of the binding sites, since
the majority of the binding sites are well conserved and
thus perfectly aligned in the multiz alignments. In these
cases there is little alignment uncertainty, so BigFoot and
phastCons are expected to return similar results. However,
in shorter binding sites exhibiting weaker conservation,
BigFoot outperforms the single-alignment method. The
most drastic example is the Kruppel site kr7 in the eve
stripe 2 enhancer. The core of the TFBS is very well con-
served and BigFoot predicts the site with high probability,
but there are substitutions towards the edges and short
indels in some species, and the multiz alignment incor-
rectly aligns the binding site. As a result, phastCons
detects all nucleotides in the TFBS with less than 5% prob-
ability. The ROC curve for the phastCons predictions is
displayed alongside the BigFoot ROC curves in Figure 3.
Comparing the AUC values demonstrates how the
increase in predictive accuracy caused by adding more
sequence data is less than the corresponding increase
caused by analyzing a distribution of alignments instead
of a single alignment.

A similar error in the multiz alignment of the aMRE
enhancer results in phastCons failing to annotate any
nucleotide the weakly conserved region discussed in the
previous section (bAlt) with greater than 5% probability.
While we cannot know if this region is a functional TFBS
without further experimental analysis, examining a distri-
bution of alignments ensures that this region is not incor-
rectly passed over during the conservation analysis.

Since phastCons analyzes only one single alignment, the
computational time to analyze a single region, around 30
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Two independent BigFoot runs on the MRE enhancer in 12 vertebrate species. Despite having very different start-
ing points, the two runs give essentially identical results, indicating convergence of the sampling distribution. The locations of
seven previously identified binding sites are displayed above the posterior probabilities. The only binding site not detected with
greater than 95% probability, bs2, is directly adjacent to a weakly conserved region (bsAlt) that is undetected by other meth-

ods due to alignment errors.

seconds on a 2 ghz macbook computer, was substantially
less than the 12-16 hours needed to analyze a single
region with BigFoot. As a result, phastCons can be used to
compute functional element predictions for the entire
genome, while BigFoot can only be used to analyze indi-
vidual regions of interest. However, for users who have
identified specific genomic regions to study in detail, the
benefit of controlling for alignment error and uncertainty
by using BigFoot may justify the additional computa-
tional time needed for the analysis.

Implementation

The algorithms have been implemented in Java 1.5, and
are part of the BigFoot software package available at: http:/
/www stats.ox.ac.uk/~satija/BigFoot/

User input

BigFoot requires the user to input a set of homologous
DNA sequences (in FASTA format) and an evolutionary
tree (in newick format) describing the phylogenetic rela-
tionships between the inputted species. BigFoot can con-
struct an initial alignment of the sequences, or if the user
has a previously computed starting alignment in FASTA
format, they can set it as the starting alignment in the
Markov chain. The user can also place either Beta or uni-
form priors on parameters modeling the difference
between fast and slow states.

Substitution models

Our aim was to build a software package for an insertion-
deletion model that can be coupled with an arbitrary sub-
stitution model. Therefore we would like to give users the
option to implement their own substitution models. In
the software help file, we describe how users can extend
this class to create their own substitution models. We cur-
rently provide a large selection of eight nucleotide substi-
tution models including the Jukes-Cantor model [45], the
Kimura three parameter model [46], and the HKY85
model [47].

Postprocessing

Our program provides random samples from a Markov
chain whose stationary distribution is the joint Bayesian
distribution of sequence alignments, locations of fast and
slow regions, and model parameters. This high dimen-
sional joint distribution can be analyzed in several ways,
ranging from an analysis of the posterior distribution of a
single rate parameter to an investigation of Markov chain
convergence using a log-likelihood trace or a separate
multidimensional autocorrelation analysis. We imple-
mented a set of postprocess plugins which analyze data
from the Markov chain and display in the graphical inter-
face. In the software help file, we also describe how the
user can implement their own postprocess plugin by
extending the abstract class.
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We implemented the following plugins, each of which
represents a tab in the graphical interface:

¢ Log-likelihood trace This plugin plots the log-likeli-
hood trace and writes the log-likelihood values into a
text file when the analysis is complete.

e Current alignment This plugin shows the multiple
sequence alignment in the current state of the Markov
chain, along with the locations of slow and fast
regions. Capital letters in the alignment represent
slowly evolving regions in the current state of the
chain, while lower case letters represent quickly evolv-
ing regions.

e MPD alignment This plugin calculates and performs
running updates of the Maximum Posterior Decoding
alignment based on all previous samples of the
Markov chain. Figure 5 pictures this alignment dis-
play, along with two curves overlaying the sequence
information. The blue curve represents the posterior
probability of each alignment column: higher values
indicate greater confidence in the alignment. The red
curve represents the phylogenetic footprinting results:
higher values indicate a greater posterior probability
of purifying selection. The final MPD alignment, and

BigFoot

File MCMC Model Help
( Sequences | Tree | Alignment [ MPD | LogLikelihood |

http://www.biomedcentral.com/1471-2148/9/217

all footprinting results, are written into a text file after
the analysis is complete.

e Current tree This plugin graphically displays the tree
inputted by the user.

Computational power

We initially assessed convergence using a log-likelihood
trace, and verified convergence using independent MCMC
runs. We found that 10°-107 steps were required for con-
vergence, depending on the number of sequences and
their lengths. To remove the effects of autocorrelated sam-
ples, we took a sample of the chain after every 5000 itera-
tions of the MCMC. For all examples, total computational
time did not exceed 16 hours on a 2 ghz Macbook compu-
ter. Datasets larger than 12 species can also be analyzed,
but may take longer to achieve convergence.

Conclusion

We have presented and tested an algorithm for co-sam-
pling multiple sequence alignments, locations of quickly
and slowly evolving regions, and a set of evolutionary
parameters. Our likelihood engine evaluates an HMM
transducer switching between fast and slow states, where
the evolutionary models in the slow states indicate a
reduced rate of mutation as a consequence of purifying

=TT}

9
g
9
9
9
)
)
]
9
9

Figure 5

BigFoot screenshot showing a part of the estimated Maximum Posterior Decoding alignment during an
MCMC run. This screenshot is taken from an analysis of the &MRE enhancer region using 12 vertebrate species. The blue
curve represents BigFoot's confidence in the correctness of the alignment, and the red curve represents the phylogenetic foot-

printing predictions.
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selection. We also present a new MCMC transition kernel
enabling the combination of sequence alignment and
phylogenetic footprinting. We have demonstrated the
accuracy of our method by comparing the results with a
dynamic programming solution, and we have presented
strong evidence for the convergence of our sampling dis-
tribution by running independent MCMC runs from dif-
ferent starting points and obtaining essentially identical
results.

We tested BigFoot on the eve stripe 2 gene in Drosophila.
Our results exhibit two major potential benefits for ana-
lyzing additional sequences in comparative genomics
approaches. Augmenting our dataset from four to ten
sequences resulted in higher sensitivity towards experi-
mentally verified binding sites and finer nucleotide reso-
lution when detecting the exact boundaries for TFBS. The
ability to analyze larger datasets was the primary motiva-
tion for extending the SAPF dynamic programming
approach into BigFoot, and these results show that it is
important for existing tools to have the capacity to analyze
multiple sequence datasets.

By simultaneously estimating multiple sequence align-
ments and phylogenetic footprinting predictions, BigFoot
correctly incorporates alignment uncertainty information
into functional element predictions, and ensures that
alignment error or ambiguity will not prevent the software
from identifying slowly evolving regions. However, there
is an additional benefit to our joint model. In some
weakly conserved regions there is a highly conserved core
of 3-5 bp, but conservation drops off slightly towards the
edges of the site. In these cases, a simple aligner will often
correctly align only the binding site core while misalign-
ing the outer regions, or misalign the entire binding site.
Our combined model, however, recognizes that a con-
served core may indicate the presence of a slowly evolving
region, and thus could be surrounded by other conserved
nucleotides. In these cases, the model will push weakly
conserved positions together to align the full binding site.
As a result, BigFoot not only detects the binding site, but
also increases the accuracy of the posterior alignment dis-
tribution. The two best examples of this phenomenon are
the two conserved regions (the bsAlt region in vertebrates
and a Kruppel site in Drosophila) that were misaligned in
the multiz alignments. While both these regions con-
tained small indel events and multiple nucleotide degen-
erate sites, resulting in multiple plausible evolutionary
histories, the posterior alignment distribution from Big-
Foot exhibited how our joint model reliably aligned all
instances of the binding site together.

While there are binding sites for which analyzing a distri-
bution of alignments improves the accuracy of BigFoot's

http://www.biomedcentral.com/1471-2148/9/217

predictions, for many other binding sites, analyzing a sin-
gle alignment may return very similar results. The latter
case is particularly true when binding sites are highly or
perfectly conserved in which case the bulk of the probabil-
ity mass in the alignment distribution rests on a single
alignment. Thus, if all binding sites in a region are highly
conserved, the approximation of a single alignment is
adequate and BigFoot may not significantly improve
upon traditional methods. When roughly analyzing large
genomic regions or large numbers of regulatory modules,
traditional methods like phastCons may correctly predict
the majority of binding sites. The additional computa-
tional time and complexity required to calculate the align-
ment distribution may reduce BigFoot's practicality for
these datasets. However, during detailed analysis of indi-
vidual regions, such as identifying specific sites for further
laboratory analysis, the potential for BigFoot to correct for
alignment error and uncertainty may justify the neccessary
additional computational time. We are currently explor-
ing different techniques for drastically reducing BigFoot's
computational requirements. For example, approximat-
ing the multiple alignment distribution by analyzing the
set of all pairwise alignments instead of using MCMC
could allow for the analysis of large genomic regions.

Another particularly useful improvement to our model
would be to relax the constraint fixing the phylogenetic
footprinting annotation of all species in an alignment col-
umn. This would allow us to appropriately model the gain
and loss of functional regions in parts of the tree. We are
currently pursuing this improvement, hoping that it will
not only improve our ability to detect weakly conserved
binding sites but will also allow us to make statistical pre-
dictions about the evolution of regulatory elements in a
species or clade.

Methods

The Alignment Transducer

Our model is powered by an evolutionary transducer
describing the evolution between the ancestor and the
descendent on each branch of the phylogenetic tree. This
transducer, shown in Figure 6, models the evolutionary
history of insertions and deletions in order to infer a DNA
sequence alignment, but also identifies slowly evolving
regions represented by three slow states (colored in blue).
As described previously, evolutionary time is scaled down
in slow states to represent the effects of purifying selec-
tion.

An HMM transducer is similar to a pairwise HMM. How-
ever, all transitions and emissions in a transducer are nor-
malized conditional on the input (ancestral) sequence.
Transitions to a slow state only occur when there is a
"slow" character emitted in the ancestral sequence, and
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| 1 Start End | 1
Ins Ins
Match

Figure 6

The alignment transducer used to model evolution
from the ancestor to the descendent on each branch
of the phylogenetic tree. Match, Insert (Ins), and Delete
(Del) states represent evolutionary events. States with blue
outlines (slow states) have reduced rates of evolution com-
pared to states with red outlines (fast states). The model
enters one of the wait states (W1 and W2) when waiting for
input from the ancestral sequence.

the same is true of fast states and fast characters. The
model switches between fast and slow states only when a
character type switch is emitted from the ancestral root. As
previously discussed, the ancestral root node switches
between emitting fast and slow characters according to a
basic hidden markov model.

The transducer model contains two "wait" states, W1 and
W2, to which the model transitions while waiting for

Root gag—----ACC--GGGTTG----C
Internal gag-—---ACC--GGGTTG----C
Internal gaa----ACC--GGGTTG----C
DroMel gag----ACC--GGGTTG----C
DroEre gaaacaaACC--GGGTTG----C
DroPse gcg—----ACCAAGGGTTGtctgc
DroWil g-————- ACC--GGGTTG----C
Figure 7

http://www.biomedcentral.com/1471-2148/9/217

input from the ancestral sequence. These transitions occur
after the transducer has finished processing the previous
character from the ancestral sequence (for example, after
the ancestral character has been either matched or deleted
in the descendent), and the transducer will remain in the
wait state until the ancestral sequence emits the next char-
acter. This allows the transducer to pause while other evo-
lutionary events, such as indels on a different half of the
tree, occur in other sequences. A second wait state is
needed since unlike the insertion state, the delete state
cannot self-transition. This second wait state, which only
the delete state can access, creates an effective self-transi-
tion that allows for the modeling of long deletion events.
The full transition matrix for our HMM transducer is
shown in supplementary section S1.2 [see Additional File
1] and a complete explanation of wait states and the gen-
eral application of HMM transducers to sequence align-
ment can be found in [29].

MCMC Transition Kernels

In order to combine both alignment and phylogenetic foot-
printing, we needed to introduce new sampling moves for
our random walk. At each state in the chain, we kept track
of the points where the HMM transducer switched between
fast and slow states, corresponding to a predictive switch
between neutral sequences and functional elements. For
display purposes (see Figure 7), we capitalized nucleotides
emitted from slow states in the sequence alignment at each
step. We found that only three new types of moves were
necessary to provide good mixing.

e Shifting location of existing boundaries. We
extend (or shrink) an existing boundary and calculate
the effect on the overall likelihood. We fix the root
sequence and switch a small number of nucleotides
(determined by a geometric distribution) in the root
between fast and slow. Figure 7 displays a boundary

gag----acc--GGGTTG----C
gag----acc--GGGTTG----C
gaa----acc--GGGTTG----C
4——» gag----acc--GGGTTG----cC
gaaacaaacc--GGGTTG----C
gcg----accaaGGGTTGtctgce
g-—————- acc--GGGTTG----C

MCMC move where a boundary between slow and fast regions is shifted by three root nucleotides. This move is
especially important in accurately calculating footprinting posterior probabilities at the edges of functional regions. We do not
allow insertions to occur at the beginnings or ends of functional regions, as shown in the alignment on the right. For display
purposes, nucleotides emitted from slowly evolving regions are represented as capital letters. While we store internal
sequences as Felstenstein wildcards, we display the most likely nucleotide at each position here.
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Root gag----ACC--GGGTTG----C
Internal gag----ACC--GGGTTG----C
Internal gaa----ACC--GGGTTG----C
DroMel gag----ACC--GGGTTG----C
DroEre gaaacaaACC--GGGTTG----cC
DroPse gcg----ACCAAGGGTTGtctgc
DroWil g-————- ACC--GGGTTG----C
Figure 8

http://www.biomedcentral.com/1471-2148/9/217

gag----acc--gggttg----c
gag----acc--gggttg----c

gaa-—---acc--gggttg----c
4—» gag----acc--gggttg----c
gaaacaaacc--gggttg----c
gcg-—---accaagggttgtctgc
gm=————- acc--gggttg—----c

MCMC move creating a new pair (when going from right to left) or deleting an existing pair (going from left to
right) of boundaries. To improve mixing and convergence, we weight our proposals based on the lengths of the new or

existing regions and their approximate level of conservation.

shift of three nucleotides. This move is especially help-
ful for accurately calculating footprinting posterior
probabilities near the ends of functional regions.

¢ Creating a new pair of boundaries. This move pro-
poses either a new slowly evolving region in a stretch
of neutral sequence (see Figure 8), or a new neutral
region in the middle of a conserved element, creating
two separate binding sites. The lengths of the new
regions are proposed from simple stepwise distribu-
tions. When proposing new conserved regions, we
expect the lengths to span approximately 5-10 bp. We
propose shorter lengths for new quickly evolving
regions when splitting a conserved region in two, as
there are often short stretches of 1-4 degenerate nucle-
otides in a long conserved binding site.

To achieve better mixing, we scan the existing align-
ment for areas where new boundaries may improve
the likelihood before proposing new regions. We cal-
culate a very basic conservation score, based on the
number of mutations in the alignment column, and
weight our proposals towards regions with high con-
servation (for new slowly evolving regions) or low
conservation (for new quickly evolving regions).

¢ Deleting an existing pair of boundaries This move
is the exact reverse of the move described above, and
is also pictured in Figure 8. It corresponds to the merg-
ing of three heterogeneous regions into one homoge-
neous region. When proposing regions to merge, we
weight our proposals towards regions whose lengths
differ significantly from the expected geometric distri-
bution set by the HMM in the ancestral root.

After each of these moves, we calculate the probability of
proposing the new state and the probability of back-pro-
posing the old state, along with the resulting change in

likelihood. We then accept or reject the move, with an
acceptance probability set by the Metropolis-Hastings
ratio.

Availability and Requirements
¢ Project name: BigFoot

® Project webpage: http://www.stats.ox.ac.uk/~satija/

BigFoot/

e Operating system: Platform independent
e Programming language: Java

e Other requirements: Java Virtual Machine 1.5 or
higher

e License: GNU GPL
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Additional material

Additional file 1

Technical Methods. Additional technical information describing the Big-
Foot transducer parameters and the algorithm used to estimate MPD
alignments on-the-fly.
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