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Abstract

Background: Statistical approaches for protein design are relevant in the field of molecular
evolutionary studies. In recent years, new, so-called structurally constrained (SC) models of
protein-coding sequence evolution have been proposed, which use statistical potentials to assess
sequence-structure compatibility. In a previous work, we defined a statistical framework for
optimizing knowledge-based potentials especially suited to SC models. Our method used the
maximum likelihood principle and provided what we call the joint potentials. However, the method
required numerical estimations by the use of computationally heavy Markov Chain Monte Carlo
sampling algorithms.

Results: Here, we develop an alternative optimization procedure, based on a leave-one-out
argument coupled to fast gradient descent algorithms. We assess that the leave-one-out potential
yields very similar results to the joint approach developed previously, both in terms of the resulting
potential parameters, and by Bayes factor evaluation in a phylogenetic context. On the other hand,
the leave-one-out approach results in a considerable computational benefit (up to a 1,000 fold
decrease in computational time for the optimization procedure).

Conclusion: Due to its computational speed, the optimization method we propose offers an
attractive alternative for the design and empirical evaluation of alternative forms of potentials, using
large data sets and high-dimensional parameterizations.

Background attractive strategy [1-4]. By deriving the substitution proc-

Recent advances in computer science and in the acquisi-
tion of new genetic sequences from a variety of organisms
have opened up a wide spectrum of new possibilities in
molecular evolutionary modeling. In particular, codon
substitution models explicitly formulated in terms of a
balance between mutation and selection constitute an

ess from basic principles of population genetics, their aim
is to bridge the gap between population genetics and phy-
logenetics, and thus to offer a better understanding of the
driving forces of the long term evolutionary process. More
specifically, these mutation-selection models propose that
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the substitution rate from a sequence s to another s' (R,.)

depends on the rate of mutation from s to s' (Q" ), and

on the probability for this mutation to be fixed in the pop-
ulation (pj;(ss")):

Ry = QZ?’M : pﬁx(ss,)' (1)

The mutation matrix Q" depends only on the underly-

ing mutation model, and is generally assumed to be fixed
along the lineages and uniform along the sequence. The
fixation probability pj(ss') depends on the particular

model chosen.

Among the mutation-selection codon models, we focus
on the structurally constrained (SC) models [4-7] which
attempt to explicitly link a protein's tertiary structure to
the evolution of its sequence. They consider that a protein
is under a purifying selection maintaining a stable and
constant tertiary structure. Importantly, and unlike most
probabilistic models currently used in molecular evolu-
tionary studies, SC models are explicitly site-interdepend-
ent, and therefore, require complex Monte Carlo methods
to be implemented and applied to empirical data [3,4,8].

In SC models, the fixation probability of a given mutation
depends on a score function assessing the adequacy of a
sequence s to the tertiary structure of the protein, c. This
score should be devised so that the fixation probability is
low if the proposed mutation destabilizes the structure or
complicates the folding process. Since Anfinsen's experi-
ments [9], the relations between protein structure and
sequence have been carefully studied and an intuitive
approach consists in relying on first principles of protein
thermodynamics, using all-atom force fields (e.g. AMBER
[10], CHARMM [11]). However, in our case, the instanta-
neous rate of substitution (R), and thus the structure/
sequence score function, have to be computed for each
possible nearest neighbor mutant, and for each substitu-
tion, along the entire evolutionary tree. Therefore, we
need a fast computation of the fixation probability which
precludes the use of all-atom force fields.

An attractive alternative is provided by knowledge-based
(or statistical) potentials. They mimic the Boltzmann law
[12-15] and usually rely on a coarse-grained description
of the structure, implicitly integrating out the degrees of
freedom of the side chains and thus avoiding the com-
plexity and the computation requirements of all-atom
force fields [16-23]. In addition, they are trained empiri-
cally from databases of natural proteins. This latter point
is of particular interest in evolutionary studies, where we
are interested in all aspects of the relations between
sequence and structure prevailing in natural sequences,
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and not only in the specific problem of the thermody-
namic stability. In this respect, one expects that learning
potentials from native structure-sequence databases using
blind machine learning methods will capture all such
aspects.

Many statistical potentials have been proposed
[12,14,15,19,24,25], either to predict the fold of a given
sequence (protein folding) or to find a sequence or a set of
sequences folding into a given tertiary structure (protein
design). However, the same potential may not be best-
suited to both goals since the spaces of optimization are
very different: in the protein folding problem the search is
done over the structure space, while in the protein design
problem the search is done over the sequence space. The
phylogenetic context described here is more akin to a pro-
tein design perspective, as the structure of the protein is
assumed constant during evolution, representing a con-
straint under which the sequence is evolving.

Several methods have been developed to train statistical
potentials in a protein design perspective [19,24,25]. In a
previous work, we introduced a probabilistic framework
for protein design purposes based on the maximum like-
lihood principle [26]. The likelihood we considered was
the probability of the sequences S given their native struc-
tures C and the model parameters (here, the statistical
potential parameters, ), P (S|C, 6). This probability was
then maximized with respect to the potential parameters
(e.g. pairwise contact energy coefficients) by a gradient
method. However, the probability P (S|C, 6) involves a
normalizing factor, summing over all possible sequences,
which cannot be analytically calculated. We thus had to
resort to a Markov Chain Monte Carlo (MCMC) numeri-
cal procedure: at each step of the gradient descent, we gen-
erated a set of sequences by Gibbs sampling, conditional
on the current values of the potential. This set of
sequences was then used to estimate the gradient. The
Gibbs sampling procedure was the limiting step of our
algorithm, restricting the set of alternative potentials that
we could explore and empirically test. The potentials we
obtained using this method are called joint potentials
hereafter.

Interestingly, Kuhlman and Baker [27] used a leave-one-out
procedure to estimate a restricted set of parameters of a
free physical energy function in order to do protein
design. In this procedure, only one site of the protein is
changed at a time, while the other positions are kept fixed
in their native state. The procedure is thus similar to train-
ing a potential to recognize acceptable sequence variants,
given the target structure, among all possible point
mutants. The leave-one-out criterion seems to give good
results. However, it has never been assessed against alter-
native methods. Here, we adapt the statistical framework
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we defined in [26] now using the leave-one-out definition
of the likelihood to perform the gradient descent instead
of the joint likelihood. We compare the potential param-
eters obtained by the two methods, and we establish that
we can be highly confident in the results obtained using
the leave-one-out likelihood. Overall, the leave-one-out
procedure allows much faster computations while giving
sensibly the same results as the joint one.

Results
Likelihood framework

As in [26], we formulate the problem in terms of a proba-
bilistic model, considering a sequence s = (s;), , of length
n according to a probability distribution P (s|c, ), condi-
tional on the conformation ¢ and on a set of potential
parameters . The parameters are estimated by maximiz-
ing the probability of observing a database of N inde-

pairs (S, Q)

S= (gp)p=1..N ,C= (Cp)p= 1. Here, 37 = ()1

i=l.n,

pendent sequence-structure with
is the p-
th native sequence of the dataset, 1, is the lenght of this
sequence and ¢? is the native conformation associated

with 5”. In practice, a native sequence-structure pair cor-
responds to a protein taken from the PDB.

The probability that we want to maximize can be
expressed as follows:

P(5|C,6) =Hp(§p |c?,0). @)
p

As a function of 6, this term can be seen as a likelihood.
Hereafter, we define the methodology with one protein,
but it can be easily generalized to a set of proteins.

Borrowing from [26], we set:

2 —Gl(5lc.0) 2 —G(slc.0)

P(s|c,0)= —r7 =
ZS,ES e G(S |C’0) Y

N E)

where Y is called the normalization factor, and G(s|c, 6) the
inverse potential, defined as

G(s|c,0) = E(s | c,0) - F(s), (4)

where E(s|c, 6) is the statistical potential and F (s) is anal-
ogous to a free energy term and can be approximated
using the random energy model [19,28-30]:

E(s) = 2 Mo 5)

1<i<n
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where 1, a = {1..20} are unknown parameters, analogous
to chemical potentials [26].

Optimization method
Joint likelihood maximization

In our previous work [26], we defined a score function w
(5] 6) as:

o(5|¢,0)=—InP(|c,0)=G(5|c,0)+InY. (6)

This score function should be minimized conditional to 6.
Its gradient is:

90(Slc,0) _ 9G(3le0) , dInY _ 9G(3lc,0) < G >
26 20 20 20 20 /|’
(7)

where (- ) stands for the expectation over sequences drawn
from the probability defined by eq. 3. Given the size of the
sequence space (20"), this expectation cannot be com-
puted analytically, and therefore, in [26] we used a
MCMC method to numerically estimate this expectation.

Leave-one-out likelihood maximization
We define for site i, i = 1..n, the leave-one-out probability

(8)
which is the probability of having an amino acid a at site

i, in the context of the native sequence at all other sites (Vj

#1is;= §;). This leave-one-out probability can easily be

obtained by a normalization over all possible twenty out-
comes at site i:

. —Gilsi=al5\.c.0)

Pl(s; =a|3,c0)= = -9
( | \ ) Z%Qle_ci(si=k|5\ilcle) ( )

We can write this probability for any amino acid 4, and in
particular for the native amino acid at site i, §;

ie.Pl(s; =5 §\is¢,0) . Taking the product over all posi-

tions i = 1..n, and by analogy with our previous definition
of likelihood, we define the leave-one-out likelihood:

P'(315,¢,0) = H Pl(si =5 15,,¢,0).

1<i<n

(10)

Note that this leave-one-out likelihood is normalized over
the sequences, exactly as in the case of eq. 3. Therefore it
yields a valid probability distribution over the sequence
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space. On the other hand, the probability depends not
only on ¢ and 6§ but also, in some sense, on the native
sequence itself. To make this point explicit, we make §
appear on both sides of the conditioning bar.

We define the corresponding scoring function:

(11)

the gradient of which is immediately obtained (Addi-
tional File 1):

0'(3]5,¢,0)=—InP'(5|5,¢,0),

[ PR N (oi=al?y s
0w’ (5[5,¢,0) _ 9G;(si=5j[5\j.c,0) B dGi(sj=als\;.c.0)
0T 20 PIPITIC P

i=l.n i=1..na=1..20
(12)

This gradient can be analytically calculated, at each step of
a gradient descent. We note that the term corresponding
to the normalization factor (the second term in eq. 12)
can be seen as an expectation over the leave-one-out prob-
ability. It is thus analogous to the expectation appearing
in the right hand of eq. 7. However, it is defined on a
much more restricted universe (20 - n states, compared to
the 207 states in the case of the joint likelihood).

For implementing both methods, we used a simple form
of potential [26], consisting in two terms: one related to
contact interactions and the other to the solvent accessi-
bility (see Methods).

Potential optimization

We first run our leave-one-out method on DS, (see Meth-
ods). We consider that the optimization is complete when
the overall maximum gradient is smaller than 10-2. This
corresponds to a variation of 10-%, at most, in the value of
the potential parameters. Using this stopping condition
on the dataset DS; with empirically tuned general steps

(e.g for the contact parameters: ,,,; = 10~ and for the

a

solvent accessibility parameters: &,

4 = 10%), we com-

pare three different gradient descent methods (described
in Methods): the simple gradient descent, the inertial gra-
dient descent, and the controlled inertial gradient descent.
The values of the parameters stabilized after 14,500 gradi-
ent steps for the simplest gradient descent, versus 1,500
gradient steps for the inertial gradient, and 1,200 gradient
steps for the controlled inertial gradient. Concerning the
last method, if we choose a different general step (e.g.

103and 84,4 = 102) the procedure automatically

a —_
grad ~
reaches the optimal step for that dataset. At the beginning

of the optimization procedure, the inertial component of
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the gradient greatly speeds up the optimization, but is
automatically deactivated when the values of the potential
parameters are near the optimum, thus avoiding the
numerical instabilities usually observed using less adap-
tive gradient methods.

Independent runs from different and randomly chosen
initial values for the parameters of the leave-one-out
potential (&), lead to the same final values of /(5 |5, ¢,
0) (fig. 1) and of the potential parameters (fig. 2). These
computations were done with the three gradient descent
methods, and resulting always in the same final values,
which suggests that, in the present case, we do not have
local minima in the space of parameters. Similarly, the
potential parameters obtained by two independent runs
on the same dataset are very similar, indicating that our
stopping condition is sufficient to have a good precision
in our estimates (Additional file 2). In fig. 1 we have also
represented the evolution of some parameters of the
potential during optimization. We can see that the values
of these parameters oscillate at the beginning of the gradi-
ent descent and then reach their optimal values. This
behavior is caused by the evolution of the other parame-
ters, as they influence each other during optimization. The
complete series of parameter values obtained by our opti-
mization method are presented in the additional file 3.

The contact potentials obtained with the leave-one-out
optimization criterion make sense from a biological point
of view (fig. 3): as expected, favorable interactions
between amino acids in the contact potentials are repre-
sented by large negative value (e.g. the Cysteine-Cysteine
contact energy, fig. 3), and by large positive value for unfa-
vorable interactions (e.g. the Lysine-Lysine or Lysine-
Arginine interactions, which are electrostatically repul-
sive). Concerning the accessibility potentials, it is impor-
tant to note that we are working in a protein design
context (i.e. we are evaluating the fitness of alternatives
amino acids in a given accessibility class). Accordingly,
the accessibility potentials have to be interpreted row-
wise. If one wants to compare the accessibility potentials
between classes for a given amino acid (i.e. in a protein
folding perspective), one solution is to remove the loga-
rithm of the frequency of the accessibility classes to each
potential (additional file 4). Also, note that there is a lack
of identifiability between « and g, which has been be
resolved by including the chemical potentials in the acces-
sibility terms.

Complexity
In our previous work, we had to use a MCMC protocol to
numerically evaluate the derivative of the gradient (see.
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Convergence of the optimization procedure. Evolution of (a) the score function, (b) contact potential parameters and
(c) accessibility potential parameters, for the dataset DS, using the controlled inertial gradient descent.
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XY comparisons of the leave-one-out potential parameters. XY comparisons of two independent runs on the same
dataset DS, for (a) contact and (b) solvent accessibility potential parameters respectivly.

eq. 7), which was a computationally demanding task. At
each step of the gradient descent, we had to sample a set
of sequences by Gibbs sampling, under the current values
of the parameters, so as to numerically estimate the gradi-
ent of the log-likelihood.

To compare the joint and the leave-one-out potentials, we
first define an elementary calculation as the evaluation of
the inverse potential at a particular site i for one particular
amino acid a (what we called Gi(s; = a| 5\;, ¢, 0), eq. 9).
This calculation has to be made in both cases. It is explic-

itly defined in the leave-one-out procedure (eq. 10), and
is implicitly used in the joint context: an elementary step
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Figure 3

Validation of the potential parameters. Bubble plot
representations of (a) contact potential parameters and (b)
accessibility potential parameters obtained upon the dataset
DS,. Negative values are plotted in green while positive values
are plotted in red.

of the Gibbs sampling algorithm consist in computing, at
a given site i the leave-one-out probability (eq. 9) for each
possible amino-acid at this site, conditional on the rest of
the sequence, and to choose the new aminoacid at site i
according to these probabilities. Performing such an ele-
mentary update for every site in turn corresponds to one
Gibbs sampling sweep and represents 20-n elementary
computations. A reliable estimate of the joint expectation
requires K sweeps (burn in included) and so, for a gradi-
ent step, we need K-n-20 elementary calculations (in
practice, K = 1,000).

In the case of the leave-one-out potential, we only have to
make the equivalent of one sweep to exactly compute the
gradient (eq. 12). Thus, we only need n-20 elementary
calculations for a gradient step, which thus represents a
1,000-fold increase in computational speed compared to
the joint method. In practice, and after the addition of the
acceleration of the gradient descent, it took about one
week to have a good estimate when we used the joint
method, versus less than fifteen minutes when using the
leave-one-out approach.

Potentials are indistinguishable

We applied the two optimization procedures (joint and
leave-one-out) to the same dataset DS;, and found a high
correlation between the two resulting potentials (fig. 4).
The correlation coefficient R2 was about 0.96779 for the
contact potential parameters and about 0.97374 for the
accessibility potential parameters. For comparison, we
applied the leave-one-out procedure on the two datasets
DS1 and DS2 (see additional file 2) and found a correla-
tion coefficient of 0.9477 for the contact parameters and
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the correlation between the contact potential parameters, and (b) the correlation between the accessibility potential parame-

ters.

of 0.9596 for the accessibility parameters, indicating that
the difference between the joint and the leave-one-out
potentials is small compared to the sampling error due to
the finite size of the training set. Altogether, the leave-one-
out method appears to be a fast and reliable optimization
procedure, yielding potentials that are virtually indistin-
guishable from those obtained under the joint method. As
presented in [26], the contact potentials present a correla-
tion (R2= 0.6565) with those of Miyazawa and Jernigan
[13].

Phylogenetic evaluation

In eq. 1, we defined the substitution process of the SC
model as a process depending on a mutation rate and a
fixation probability. There are many ways the fixation
probability could be expressed. Here, we do as in Robin-
son et al [4] and assume that this probability depends
only on the potential difference (AG) between the original

and s’

and the mutated sequences. Let us denote by s e 1

nuc
two sequences which differ only by a nucleotide, and s,
and s/, the corresponding amino acid sequences (which

may be identical due to codon synonymy). Then, the rate
of substitution between s and s’ is:

_BAG. .
RS s = Qmut .e B Saasaa , (13)

’
nuc> nuc S nucS nuc

where QZ:’:_ES;[ _ is the mutation term depending only on

’ . .
the two sequences s, and s, . AG, ¢ is the energy dif-

ference between s, and s

wa a» and B> 0 can be considered

as the strength of the structure-sequence constraint
enforced by the model. Thus, a negative (resp. positive)
AG means that the mutation is more (resp. less) likely to
be accepted than a purely neutral (e.g. synonymous)
mutation.

Note that the substitution process defined by eq. 13 is
reversible and has a stationary distribution defined by:

1_[5 o< HO(Snuc)e_ZﬁG(SM)/ (14)

where [;(s,,.) is the stationary distribution induced by
the pure mutation process (Q{" ). Given the way our

potentials are optimized (see eq. 3 and 9) and assuming
that natural sequences are sampled at equilibrium from
the process defined by eq. 13, we then expect that the opti-
mal value of should be close to 0.5. In the following, we

explore the entire range S € [0, 1].

We denote by SC ;3 the SC model defined using the leave-
one-out potential and SC ;3 the SC model defined using

the joint potential; the two models depend on S Obvi-
ously, when 8 =0, SC, = SC} = SC,, and the model

reduces to a pure mutation model which will be consid-
ered as our reference model.
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We implemented our potential in the SC model as
described in [3] and applied it to the GLOBIN15-144 data-
set, with an underlying mutational specification inspired
by the codon model in [31] and denoted as MG in [3].
This MCMC framework allows one to obtain a sample of
parameter values and substitutional histories along the
tree, drawn from the posterior distribution under the

SC) s model. Such a sample can then be marginalized

over quantities of interest. Here, we briefly illustrate the
approach by displaying the logo of the reconstructed
mammalian ancestor hemoglobin sequence (fig. 5).

Since the leave-one-out procedure can be seen as an
approximate but faster training method, compared to the
joint method developed previously, we evaluated its
impact on model fit via Bayes factors evaluations (see
Methods). In this section we consider the three versions of

http://www.biomedcentral.com/1471-2148/9/227

the SC model, SC%, based on a contact + accessibility
leave-one-out potential, SCJ, based on a contact + acces-

sibility joint potential, and SC% based on a contact only

joint potential. As explained in the methods, in the
present case, the thermodynamic integration method
yields a complete fitness curve (fig. 6) of each model (i.e.
a curve representing the Bayes factor of each model
against the reference model, as a function of f). In this
way, we can readily spot the optimal value of funder each
model, and report the Bayes factors under this optimal
value (table 1).

As can be seen from fig. 6 and table 1, the models based
on the joint and the leave-one-out potentials have a very
similar fit across the whole range of value of f§ that we
tested. Interestingly, in all but one cases, the Bayes factor

RLLGVVLVVLARFF B TPOYCAAFCKVVAGANALAFK YR

110 120

— RLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH
— RLL GNVLVCVLAHHFGKEFTPQVQAAYCKVVAGVATALAHKYH
RLLGNVLVVVLAHHFGKDFTPQVQAAYCKVVAGVATALAHKYH
— KLLG\MI | VL | HDLGKDFTPSAGSAFHKVVAGVANALAHKYH
RLLGNM VI VLGHHLGKEFTPCACAAFCKVVAGVASALAHKYH Rat
— RLLGNA |V VLGHHLGKDFTPAAQAAF GKVVAGVATALAHKYH
— KLLGNVLVVVLARNFGKEFTPVLQADFGKVVAGVANALAHRYH
— RLLGNVLVVVLARHHGNEF TPVLQADF GKVVAGVANALAHKYH
— RLLGNV | VWVLARALGHDFNPNVQAAFOKVVAGVANALAHKYH  Pig
KLLGNVLVCVLARHFGKEF TPOMOGAFOKVVAGVANALAHKYH
KMLGN | 1V | CLAEHFGKDFTPECQVANCKLVAGVAHALAHKYH
RLLGDIL | | VLAAHFTKDFTPDCQAAWOKLVRVVAHALARKYH
RLLGD L | [ VLAAHFSKDFTPECQAANCKLVRVVAHALARKYH
KRFGGVLV | VLGAKLGTAFTPKVQAAWEKF | AVLVDGLSCGYN
KRLADVLV | VLAAKLGSAFTPQVOAVWEKLNATLVAALSHGYF

Human
Tarsier
Bush Baby
Hamster

Mouse
Cow
Sheep
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Marsupial

Duck
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Xenopus laevis
Xenopus tropicalis
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Figure 5

130 140 146

Logo profile of the mammalian ancestral globin sequence. The node is marked by an arrow. The translated sequences
of the true alignment are displayed along with the secondary structure of the structure PDB code 4HHBB.
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Figure 6

Bayes factor. Curves representing the Bayes factor as a

function of B, with SC (in yellow), SC} (in light blue) and

SCj (in dark blue), for the dataset BGLOBIN|5-144.

appears to be slightly in favor of the leave-one-out poten-
tial, although the differences are not significant. As a point
of comparison, we also measured the fit of the contact
only potential (joint method), to illustrate that the differ-
ence between the joint and the leave-one-out methods is
small compared to the differences observed between the
alternative forms of statistical potential that we would like
to empirically compare (see [26] for an evaluation of the
relative contribution of each potential component to the
fitness of the model).

Discussion

In a previous work [26], we defined a statistical frame-
work for protein design, using the maximum likelihood
principle, with the aim of devising statistical potentials to
be used in phylogenetic studies. However, the optimiza-
tion procedure we introduced at that time requires a
MCMC protocol to cope with the proportionality con-
stant entailed by the normalization of the probability over
the sequence space. Here, we introduce a different likeli-
hood, which we called leave-one-out, to optimize the

Table I: The natural logarithm of the Bayes factors.

http://www.biomedcentral.com/1471-2148/9/227

potentials. A similar procedure was previously used by
Kuhlman and Baker [27], but was not statistically assessed
against alternative procedures. We found in this work that
the joint and the leave-one-out potentials are virtually
indistinguishable, both by direct comparison and by
Bayes factor evaluation in a phylogenetic context.

We note that the optimal g for the SC lﬂ model is not 0.5,

as one may expect given the way our potentials were nor-
malized (see eq. 3, 6 and 13). Several explanations can be
proposed. First, strictly speaking, this expectation is valid
under the joint procedure, and not under the leave-one-
out procedure. But the very high similarity between the
two resulting potentials, and the fact that a similar phe-
nomenon (f#0.5) can be observed also under a potential
optimized using the joint method [3] do not favor this
explanation. Alternatively, it may appear at first that this
could be due to the fact that the underlying mutation
model (the Qm matrix in eq. 13) was not explicitly taken
into account when optimizing the potential (so that the
chemical potentials implicitely include a mutational com-
ponent), whereas our phylogenetic model does involve an
explicit mutational process. In this sense, in the phyloge-
netic analysis, there is a potentially (partially) redundant
modeling of mutational features, in having explicit
parameters devoted to these, in combination with the use
of the SC setting. This might explain the optimal value of
Slower than 0.5. The phenomenon may also be the result
of model violations, which are very likely to be present
given the simple form of the potentials. Finally, it is also
likely that the mutation pressure, or the selection strength
(represented by f) is not the same for each protein.
Accordingly, two possible improvements to the method
can thus be proposed here: the first is to optimize the
potential while allowing for different values of f for each
protein or each family of protein. The second is to cluster
proteins into classes, and optimize a potential specifically
for each class.

ADH23-254 CALM36-444 GLoBINI5-144 Lys25-134
SCy [74.748-75.032] [149.819-149.929] [57.953-58.135] [11.5-11.968]
SCyp [102.666-102.766] [161.340-161.491] [70.666-70.948] [26.287-26.417]
SC ;3 [102.977-103.115] [158.679-158.858] [72.485-72.872] [29.545-29.852]
optimal S [0.387-0.397] [0.371-0.383] [0.450-0.498] [0.179-0.249]
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Conclusion

Apart from these two possible improvements, many other
directions of research should now be explored: alternative
functional forms for the potential should be implemented
and empirically tested. Several methods accounting for
negative design, through the use of explicit decoys [18]
such as the use of a normalized energy gap between a
native structure and misfolded structures [32], or using
variational methods [19], also deserve further investiga-
tion. The supervised learning described here depends on
structure-sequence pairs. In the present case, we have used
native pairs, but this could be relaxed by taking a set of
structures (e.g. obtained by molecular dynamics) as the
reference structure or by taking a set of homologous
sequences instead of a unique sequence [33]. A more
appealing method would consist in doing the optimiza-
tion directly within the phylogenetic context. Impor-
tantly, the fact that the leave-one-out procedure is much
faster than the joint method (in the present case, roughly
by a factor 1,000), has obvious practical consequences, as
it allows a much larger diversity of alternative models and
methods to be tested.

Methods
Gradient descent
When performing a gradient descent, several methods can
be used. We expose here the three gradient descent meth-
ods that we compared. In all cases, the method rely on a
cyclical updating of parameter values, where, given the
values of parameters at the mt cycle, which we write as
ém), the update is given by:

o(m+1) — g(m) _ A g(m+1) (15)
The increment, A@™+1), is conditional to the scoring func-
tion, that we simply denote in this part as @ (™).

Fixed step gradient
This is the simplest form of the gradient descent. We write:

da(6(M)y
grad * T ’

where 6,,,, is the fixed step of the gradient descent. Even
though this formalism is simple, the choice of the step is
not trivial. Indeed, if the step is too large, the values of the
potential will oscillate around the optimal values. Con-
versely, if the step is too small, the gradient descent will be
too slow.

A9 = 5 (16)

Inertial gradient

To reduce the optimization time, another method of gra-
dient descent was developed, based on an analogy with
the physical phenomenon of inertia.

http://www.biomedcentral.com/1471-2148/9/227

de(6(M)
grad * w(ae )+5iner'A9(m)' (17)

Oiner 18 the damping rate of the inertial component, 0 < &,,,,,

<1.1f §,,.= 0, eq. 17 reduces to the case of the simple gra-
dient. In practice, we set J,,. equal to 0.9.

Ae(erl) =5

However, there is a drawback when taking into account
the previous variation of the parameters: when the direc-
tions of the gradient change, the inertial part of the gradi-
ent brings the parameters too far beyond the maximum.
In addition, the gradient step J,,, has to be small enough
so that the values of the potential do not oscillate around
the optimal values, as in the case of the fixed step gradient.

Controlled inertial gradient

To avoid these two drawbacks, we define here a controlled
inertial gradient descent formalism. Specifically, let us
define:

d0(0™ ) o (18)

g -ap(m)
AO* =gy S iner - A0,

o(0(m1))
grad 20 .

The decision procedure can thus be described as follows
(see additional file 5). First, we test if the addition of Ag*
(derivative component and inertial component) to the
actual values of parameters &™) gives a higher likelihood
than &m). If it does, then the step corresponds to a classical
step of the inertial gradient descent. Otherwise, the algo-
rithm tests if the addition to &™) of the derivative compo-
nent (A&) only gives a higher likelihood than the actual
values. If it does, the step corresponds to a classical gradi-
ent descent. Otherwise, we retry a simple gradient descent
with a smaller &,

AO* =5 (19)

rad-

The above procedure has two advantages. The first is the
speed-up offered by the inertial component, when its
addition has a positive influence on the likelihood. The
second advantage is that the last part of the algorithm
automates the search for an optimal value of the steps,
and avoids both oscillations of 8 around the optimum,
and a slow gradient descent.

Statistical potentials
We used the same statistical potential function as in our
previous work [26]. The (pseudo) energy score consists of

two terms:
E(s|c)= Z Ajegs, + Z a’.

1<i<j<n 1<i<n

(20)
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The first term represents the contact free energy (defined
between sidechain centers): A;; = 1 if i and j are closer than
the cutoff distance (here 6.5 A), and ¢, represents the con-
tact potential between amino acids a and b. The second
term represents the accessibility free energy: v;is the acces-

sibility class of the sitei and « j is the solvent accessibility

potential of the amino acid a when placed into the acces-
sibility class d (d = {1..D}), where D is the number of
accessibility classes.

We use the random energy model principle to approximate
F (s) (eq. 5), so that the inverse potential becomes:

G(s|c,0)= Z Agegs + Z a:i" + z Hs, -

1<i<j<n 1<i<n 1<i<n

(21)
As in our previous work we fix the constraints:
Z Ha =0, (22)
1<a<20
2 €ap =0, (23)
1<4<20 1b<20
d

Z a, =0,d={1..D}, (24)

1<a<20

since G(s|c, 6) is invariant under the following transfor-
mations u, =p, +J,, =64 +J, and @/ =al +];.
However, there is an additional lack of identifiability

between a and g, which can be resolved by including the
chemical potentials in the accessibility terms. Indeed, the

M, terms can be seen as an additive constant to each acces-

sibility term for a given accessibility class (see additional
file 6). In the present case, our final inverse potential is
therefore:

G(s|c) = 2 Aijgsisj + Z asvl_",

1<i<j<n 1<i<n

(25)

and our set of parameters for the statistical potential will
thus consist of:

0={e, a’}, 1<a<20, 1<b<20, d={1.D}.
(26)
Bayes factor evaluation

In a Bayesian statistical framework the method of choice
for comparing models is to compute Bayes factors. The

http://www.biomedcentral.com/1471-2148/9/227

Bayes factor between two models is defined as the ratio of
their respective marginal likelihood. The case B(SC,,

SCZ ) > 1 (resp. B(SC,, SC}; ) < 1) is considered as an evi-
dence in favor of (resp. against) the SCZ model. We write

the Bayes factor between SC,and SC 2 as:

p(A|scb)

T p7 (27)
P(A[SCp) ’

B(SC,,SCp) =

where A corresponds to the data, composed by an align-
ment of coding nucleotide sequences and a topology and

P(A|SCL) = L P(A | 0)P(6)d6. (28)

Here we compute Bayes factors by thermodynamic inte-
gration (or path sampling) as described in [3]. The proce-
dure consists in sampling along a continuous path

between SC;and SC ;3 through a set of slight changes in

the value of 8. In fact, this procedure provides a complete
curve representing the fit of the model as a function of £.
Sampling from f=0to = f,,.and from f= g, to f=
0 gives two different curves for the logarithm Bayes factor,
which we used as an internal check of the reliability of the
method (not shown).

Datasets

Optimization datasets

The datasets are made of proteins (structure-sequence
pairs) culled from the PDB, with less than 25% of mutual
sequence identity and a resolution better than 2 A [34].
This sequence homology percentage and the size of the
database avoid possible bias that could be induced by
related proteins. To compare the joint and leave-one-out
potentials, we used the dataset on which we previously
estimated the joint potentials, DS;. This dataset is made of
441 proteins and 98,155 sites [26]. We also consider a
dataset DS; (made of 3,363 proteins and 835,717 sites)
which was split into two subsets: DS1 (1,691 proteins and
419,208 sites), and DS2 (1,672 proteins and 416,509
sites). To determine the accessibility classes, we first com-
pute the solvent accessibility area using Naccess 2.1 [35]
and partitioned the resulting values into classes [26].

Phylogenetic Datasets

The SC model was applied to 4 distinct multiple sequence
alignments: GLOBIN15-144, LYSIN25-134, ADH23-254 and
CALM33-444. GLOBIN15-144 is made of 15 vertebrates
sequences of the S-globin gene (taken from the original
dataset from [36]), with a protein structure defined by the
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PDB file 4HHB and a tree topology estimated using Phy-
lobayes 3.1c [37] (which is consistent with the tree topol-
ogy described in [38]). LySIN25-134 is made of 25
Abalone sperm lysin sequences [39], with a protein struc-
ture defined by the PDB file 1LYS and the tree topology
previously defined by [39]. ADH23-254 is made of 23
alcohol dehydrogenase sequences taken form Drosophila
[36], with a protein structure defined by the PDB file
1A4U and the tree topology previously defined by [36].
CALM36-444 is made of 36 calmodulin sequences taken
from eukaryotes, with a protein structure defined by the
PDB file 1CFD and the tree topology estimated using
phyML [40] under the model JTT + F + I" [41,42].
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