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Abstract

Background: It is commonly thought that large asexual populations evolve more rapidly than
smaller ones, due to their increased rate of beneficial mutations. Less clear is how population size
influences the level of fitness an asexual population can attain. Here, we simulate the evolution of
bacteria in repeated serial passage experiments to explore how features such as fitness landscape
ruggedness, the size of the mutational target under selection, and the mutation supply rate, interact
to affect the evolution of microbial populations of different sizes.

Results: We find that if the fitness landscape has many local peaks, there can be a trade-off
between the rate of adaptation and the potential to reach high fitness peaks. This result derives
from the fact that whereas large populations evolve mostly deterministically and often become
trapped on local fitness peaks, smaller populations can follow more stochastic evolutionary paths
and thus locate higher fitness peaks. We also find that the target size of adaptation and the mutation
rate interact with population size to influence the trade-off between rate of adaptation and final
fitness.

Conclusion: Our study suggests that the optimal population size for adaptation depends on the
details of the environment and on the importance of either the ability to evolve rapidly or to reach
high fitness levels.

Background

Understanding the factors that influence the evolution of
microbial populations not only provides fundamental
insights into evolutionary processes [1-4], but is also of
considerable applied importance, owing to the fact that
many microbes are pathogenic. Development of a predic-
tive framework of microbial evolutionary dynamics is
central to understanding processes such as the evolution
of drug resistance [5-7] and the emergence of novel infec-
tious diseases [8,9]. Numerous interacting factors deter-
mine evolutionary patterns of microbes, but all are likely

influenced by the size of the microbial population. In this
work we focus our attention on the consequences of pop-
ulation size in asexual microbes, and study how changes
in this parameter interact with other factors to modify its
role and importance in adaptive dynamics.

It is widely believed that the higher supply of beneficial
mutations allows large asexual populations to adapt more
rapidly to new environments compared to small popula-
tions [10-13]. However, the speed at which adaptation
occurs is only one component of evolutionary dynamics.
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Another important component is the magnitude of fitness
obtained following the adaptive process. The latter com-
ponent can result in the reduction or elimination of an
adaptive advantage enjoyed by large asexual populations
if the fitness landscape on which evolution occurs is a rug-
ged one that contains many local peaks [14]. This result is
explained as follows: If a population is large, its members
can fully sample all possible 1-step beneficial mutations
from a given genotype. Such large populations will tend to
become fixed for the beneficial mutations carrying the
largest benefits in an almost deterministic fashion, a proc-
ess enabling the large population to reach the nearest fit-
ness peak quite rapidly. If this peak represents a local
optimum, large asexual populations may become trapped
there, unable to reach a global optimum (Figure 1 top).

On the other hand, a small population will generate only
a subset of all possible 1-step beneficial mutations, with
few mutations that confer large fitness effects [13,15,16].
Both the reduced supply rate of new mutations and their
smaller fitness benefits contribute to the expected slower
rate of adaptation of small versus large populations. How-
ever, at the same time the small populations will follow
more stochastic adaptive trajectories [14], and this
increases their ability to explore the more distant fitness

Figure |

Schematic evolution of large and small asexual popu-
lations. Top panels: A large population quickly generates all
possible beneficial |-step mutations, the fittest of which (rep-
resented by the thick arrow) is most likely to become fixed.
In this example, the newly fixed mutant only has access to
deleterious mutations that reduce fitness, it is trapped on a
local fitness peak. Bottom panels: Small populations have
reduced access to beneficial mutations. This can lead to the
fixation of a mutant with intermediate fitness, which has
access to an even higher fitness peak (dashed arrow). This
allows the small population to eventually reach a higher level
of fitness than the large population, albeit at a slower speed.
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landscape. With this broader exploration comes an
increased likelihood of reaching more distant and higher
fitness peaks (Figure 1 bottom). Thus while both large and
small populations can become trapped upon local
optima, small populations may be more able to avoid this
trap and consequently reach higher fitness peaks. In the
present work, we use computer simulations to explore this
phenomenon in more detail, focusing on factors that
might modify the role of population size during adaptive
evolution. In particular, we focus on the interaction of
population size with factors that are likely to influence the
adaptive trajectories of microbes; namely ruggedness of
the fitness landscape, the target size of adaptation and
mutation rates.

The model

We simulate the evolution of bacteria as they undergo
repeated cycles of growth and serial dilution [1,14]. At the
start of each simulation, the population consists of N,
identical clones. The bacteria go through D rounds of divi-
sion, and each bacterium produces offspring depending
on fitness, f, as 2f. After D divisions, serial transfer, mod-
eled as multinomial sampling, reduces the population
size back to N, which initiates another round of exponen-
tial growth. This procedure is iterated until the desired
number of generations is reached. Because bacterial death
is ignored, the only way a given clone can be eliminated is
if it is not sampled during serial transfer [17,18].

Every clone is assigned a 1-step neighborhood of L
mutants that can be reached by a single mutation. The
ancestral clone is assigned a fitness value of 1 and the fit-
ness values for the L mutants are 1 + s;, with values for s;
drawn from an exponential distribution p(s) = ae* [19-
23]. This mimics a situation where a population finds
itself in a new environment to which it is ill adapted and
starts an adaptive evolutionary walk towards increased fit-
ness. When a clone divides, one of the L 1-step mutants is
generated with a probability 1. Whenever a new mutant is
generated, it obtains its own neighborhood of L 1-step
mutants with fitness values of 1 + s; (Figure 2). Note that
while all L mutants in the 1-step neighborhood of the
ancestral clone have higher fitness (1 +s;> 1), the 1-step
neighborhood of a newly created clone with fitness 1 + s;
can generate mutants that have higher or lower fitness,
depending on the randomly chosen values of s; for these
mutants. This generates a potentially rugged fitness land-
scape with multiple peaks. L can be interpreted as the
mutational target size of selection, or more generally the
number of possible beneficial mutations from a given
starting genotype.

By adjusting the rules for how the L-mutant neighbor-
hood is chosen, we can tune the fitness landscape from
one that is completely smooth to one that is completely
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Schematic of the computational model. Each clone is characterized by its fitness value, and has a neighborhood of |-step
mutants of size L. When a mutation occurs, a random mutant from this neighborhood is selected. For instance in the figure, the

initial clone with fitness f, gives rise to the mutant f;. This mutant has access to another set of L mutants, etc. The fitness of

each mutant is fy + s, where the s;are drawn from an exponential distribution. This can lead to mutants reaching fitness peaks.

If for instance all f" have lower fitness than the mutant f;, this mutant is considered to have reached a local peak. In the fig-

ure, three out of five fitness values of the |-step neighborhood change as the clone mutates from fyto f5 (dark gray blocks).

This corresponds to a value of r = 0.6 for the parameter which defines the amount of ruggedness of the fitness landscape (see

text).

rugged. For the smooth landscape, each newly created
mutant is assigned a mutant neighborhood that is identi-
cal to that of the ancestral strain. In other words, the muta-
tion does not alter the fitness effects of any subsequent
mutations that might be obtained. Under these condi-
tions there is a single fitness peak. At the other extreme,
for a completely rugged landscape, every new mutant is
assigned an entirely new L-mutant neighborhood with
values for the fitness effect of each new mutation re-sam-
pled from p(s). This means that a new mutation changes
the fitness effects of all other possible mutations. In this
scenario there is no correlation between the fitness effects
of the L-mutants from a parent clone and those available
to its mutant offspring. By changing the fraction, r, of the
L sites that are replaced, we can tune the amount of rug-
gedness of the landscape from smooth (r = 0) to com-
pletely rugged (r = 1). By considering a broad range of
values for r and L, we can explore a range of scenarios in
order to identify conditions where changes in parameters
lead to qualitative changes in adaptation. Figure 2 sche-
matically shows an example for r = 0.6.

While the ability to tune between smooth and rugged fit-
ness landscapes is analogous to that of previously studied

NK-models and their variants [24-31] there is a crucial dif-
ference between NK-models and our model. In NK-mod-
els, there is typically no explicit distinction between the
stochastic trajectory of a given population and the fitness
landscape upon which adaptation occurs. This means that
for every simulation, not only does the adaptive trajectory
of the evolving population change, but so does the fitness
landscape itself. We sought to disentangle these two
sources of variation. Our simulation was designed to
ensure that populations of different sizes, for each param-
eter set, experienced the same fitness landscape. In order
to determine the generality of our results across a range of
fitness landscapes, we sampled a total of 50 distinct fitness
landscapes and then for every fitness landscape, we study
100 evolutionary trajectories for populations of different
sizes. On each landscape, this approach was designed to
mimic the evolution of bacterial populations in labora-
tory experiments, where differences in evolutionary trajec-
tories across replicate bacterial lineages are most often due
to the stochastic nature of mutations occurring in a single
fixed fitness landscape, rather than to differences arising
from the fact that different lineages experience distinct
ecological or genetic conditions [32,33]. The simulations
are implemented in Matlab R2007a (The Mathworks), the
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code is available from the authors. Table 1 summarizes
the model parameters and values used throughout the

paper.

Results

Adaptation on a rugged landscape

On a smooth fitness landscape, all populations will even-
tually reach the sole fitness peak, with the larger popula-
tions doing so more rapidly. However, this can change
during adaptation on a rugged landscape, as explained
above. Here, large populations are expected to evolve
almost deterministically. This allows them to quickly
reach the highest local fitness peak, where, if asexual, they
can become trapped. In contrast, a smaller population
size allows for more stochastic trajectories on the fitness
landscape, and this can occasionally lead to higher fitness
peaks. The transition from more stochastic to more deter-
ministic trajectories occurs as the mutation supply rate, S,
becomes so large that a population is able to completely
sample all possible 1-step beneficial mutations, i.e. if S
L [34]. The mutation supply rate is the product of muta-
tion rate and effective population size, S = N, For the
three initial population sizes we consider here, N, = 102,
104 and 109, an effective population size given by N, ~
DN, [1], and mutation rate x# = 106, the mutation supply
rates are S, = 0.001, S,, = 0.1 and S; = 10 for the small,
medium and large populations respectively. We initially
choose the size of the 1-step neighborhood to be L = 50,
which means S;~ L, S,, <L and S « L. Thus we expect the
large population to evolve mostly deterministically, while
the medium population is expected to evolve somewhat
slower, but with the potential of reaching higher fitness
peaks. Because the small populations have S, « 1, they are
expected to operate in the strong selection weak mutation
limit, where evolution will be slow because it is limited by
the infrequent creation of beneficial mutations [35,36].

For each of the three population sizes, we simulated 100
evolutionary trajectories for 50 different rugged fitness
landscapes (r = 1). An example of the results for a single
landscape is shown in Figures 3 and 4. Figure 3 shows
sample trajectories for the different population sizes. The

Table I: Model parameters.
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figure indicates that, as expected, the large populations
evolve most rapidly. However, on this fitness landscape,
these large populations typically become trapped on a few
local fitness peaks which rapidly causes their adaptive
ascent to cease. In contrast, the medium sized populations
evolve somewhat more slowly but reach a more diverse set
of fitness peaks, several of which are higher than the local
fitness peaks reached by most of the large populations.
While almost all of the large and medium populations
have reached fitness peaks, most of the small populations
have not. This can be seen by quantifying the rank of the
most frequent clone in each population at the termina-
tion of the simulation. Rank for a given clone is defined as
the number of accessible beneficial mutations in the 1-
step neighborhood of this clone [31]. A rank of zero indi-
cates that the mutant has reached a fitness peak and that
no 1-step mutations with higher fitness are available.
Non-zero values indicate that 1-step beneficial mutations
are still available, and consequently that these popula-
tions can continue to adapt. The average rank values indi-
cate that the medium and large populations have reached
a local peak for nearly all simulations (Figure 4). In con-
trast, for the small populations the most frequent clone at
the end of the simulation is still far from exhausting all
available 1-step beneficial mutations, i.e. the small popu-
lations are still in the midst of their slow climb towards a
fitness peak. This illustrates the trade-off between fast,
mostly deterministic adaptation with the potential of
becoming stuck on local peaks for large populations, and
slower, more stochastic evolutionary trajectories that pro-
vide a chance to avoid becoming stuck on local peaks for
small populations. An intermediate population size that
trades some speed for the ability to reach higher fitness
peaks could under such circumstances be optimal. The
increased stochasticity in evolutionary trajectories for the
small and medium populations is confirmed by the
higher coefficient of variation in fitness across replicate
populations (Figure 4).

Because these simulations were carried out on 50 inde-
pendent fitness landscapes we were able to assess the
degree to which the result in Figure 4 is general. Figure 5

symbol meaning values

Ny initial size of population 102, 104, 106
L size of mutant neighborhood (number of accessible |-step mutants) 5, 50, 500

r fraction of mutant neighborhood that is changed (ruggedness of fitness landscape) 0.1,05, 1

7 beneficial mutation rate per replication 10-¢

D number of divisions per growth cycle 10

a distribution of fitness effects 30

Beneficial mutation rate, divisions per growth cycle and distribution of fitness effects were chosen in line with values reported in [16,14] and [20]
respectively. The other parameters were chosen to explore the evolution of populations for a wide range of scenarios, as described in detail in the

main text.
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Evolution on a rugged landscape. Mean population fit-
ness for the first 10 of the 100 evolutionary trajectories for
each population size as a function of the number of genera-
tions elapsed. All evolutionary trajectories occur on the
same fitness landscape (landscape 25, see Figure 5). Popula-
tion fitness is defined as the mean of the fitness values of
each individual bacterium in the population. Parameter values
as given in Table I, with r = | and L = 50.

shows summary results from simulations for all 50 land-
scapes. For these plots, we record the fitness of the most
abundant clone at the end of each evolutionary trajectory.
We then compare this fitness value between the different
population sizes. We indicate with black those simula-
tions for which the condition indicated on top of each
plot is fulfilled. As can be seen, the fraction of small or
medium populations that achieve higher fitness than the
larger populations depends strongly on the shape of the
underlying fitness landscape. For instance, the bottom
right panel shows that the fraction of simulations where
the fitness of medium sized populations exceeds the fit-
ness of large populations ranges from 0.02 (landscape 28
and 50) to 0.54 (landscape 23). From these results we
draw two conclusions. First, we find that populations of
smaller size regularly (though not in the majority of cases)
attain higher fitness than larger populations. Second,
these data indicate that this outcome relies strongly on the
detailed shape of the fitness landscape. We now explore in
more detail how differing values of the model parameters
impact these conclusions.

The impact of landscape ruggedness
The previous section showed that on rugged landscapes,
population size and fitness landscape architecture

http://www.biomedcentral.com/1471-2148/9/236
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Figure 4

Evolution on a rugged landscape. Distribution of final
population fitness of the 100 trajectories for the different
population sizes. Parameter values as given in Table I, with r
= | and L = 50. CV = coefficient of variation, defined as the
standard deviation divided by the mean of the 100 population
fitness values at the end of the simulation. For an explanation
of rank, see text.

strongly interact to influence the dynamics of adaptive tra-
jectories. While empirically characterized fitness land-
scapes can indeed have multiple peaks, the amount of
ruggedness is largely unknown [37-39]. In all likelihood,
some landscapes will be simple ones characterized by few
peaks, while others will have multiple local fitness peaks.
To address the impact of landscape ruggedness, we now
change the parameter r to tune the ruggedness of the fit-
ness landscape, and examine how it affects the interaction
between population size and adaptive processes. As Figure
6 shows, for a less rugged landscape (r = 0.5), populations
of intermediate size retain their ability to sample the fit-
ness landscape more broadly and to reach higher fitness
peaks than large populations. However, as the landscape
becomes smoother (r = 0.1), this advantage disappears.
This is expected, since for a completely smooth landscape
(r = 0), there is only a single globally optimum peak
which would be reached by all populations eventually,
simply more rapidly by the larger ones. The small popula-
tions are less affected by the change in ruggedness because
they are still far away from any peak on which they could
become stuck. This is confirmed by the mean final ranks
(averaged over all landscapes and trajectories, see Table 2)
which again indicate that most of the medium and large
populations have reached peaks, while the small ones
have not. Coefficients of variation in final fitness for dif-
ferent trajectories (also averaged over all landscapes) are
consistently higher for the smaller populations, due to the
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Figure 5

Evolution on different rugged landscapes (r = I). For
each of the three population sizes, we simulated 100 differ-
ent evolutionary walks for each of 50 different fitness land-
scapes. At the end of every simulation, we recorded the
fitness of the most abundant clone. The black squares show
those simulations for which the final fitness of this clone for
the smaller population exceeds the fitness of this clone for
the larger population, as indicated on top of each plot. The
bottom right panel shows the fraction of simulations for
which the medium populations reach higher fitness than the
large populations. The average fraction of M >L, S >M and S
>L over all 50 landscapes are 0.218(0.019), 0.038(0.003) and
0.003(0.001), values in parentheses indicate the standard
error.

more stochastic evolutionary trajectories taken by those
populations (Table 2). As expected, there is an overall
trend for the coefficient of variation to decrease as the
landscape becomes less rugged.

The impact of the size of the mutant neighborhood

In our simulation, L represents the size of the one-step
mutant neighborhood, i.e. the number of mutants that a
clone can reach. As explained above, the relation between
L and the mutation supply rate, S, will determine if evolu-
tion occurs in a more deterministic or more stochastic
manner. As L decreases, a population with a given muta-
tion supply rate is more likely to follow a more determin-
istic trajectory, while increased L leads to more stochastic
trajectories. Figure 7 and Table 2 show this to be the case.

For instance for L = 5, the medium populations have a
reduced amount of stochasticity and are more likely to
have reached a (local) peak, compared with the L = 50 sit-
uation (see Rank and CV in Table 2). This results in a

http://www.biomedcentral.com/1471-2148/9/236
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Figure 6

Fraction of simulations for which small or medium
size populations achieve higher fitness than their
larger counterparts, for landscapes of different rug-
gedness (from left to right: r =1, r = 0.5, r = 0.1). The
mean and standard error over all fitness landscapes is also
shown. Other values as given in Table I, with L = 50.

lower fraction of populations that reach fitness higher
than that of the large population (compare Figure 7 top
row L = 5 with L = 50). For small L, the small populations
are less disadvantaged in terms of adaptive "speed" and
are able to more frequently, although still quite rarely
overall, reach higher fitness peaks than larger populations
(compare Figure 7 bottom row L = 5 with L = 50).

For the large (L = 500) scenario, evolution for the large
population becomes markedly more stochastic (see CV in
Table 2), leading to a broader exploration of the fitness
landscape. This results in less frequent instances where the
medium populations reach higher fitness than the large
populations (compare Figure 7 top row L = 50 with L =
500). This supports the intuitive understanding that if
more beneficial mutations are accessible, the population
size that optimizes the trade-off between the speed of
adaptation and the magnitude of the adaptive response
shifts towards larger populations. Indeed, in the limit of L
— o, every clone has access to all possible other mutants,
in essence reducing the system to a smooth landscape on
which the large populations are always favored [30,34].

Mutation rates versus population sizes

Above, we explained how the relation of the mutation
supply rate, S, and the mutant neighborhood, L, are rele-
vant for determining whether adaptation tends to be
dominated by stochastic or deterministic change. The

Page 6 of 10

(page number not for citation purposes)



BMC Evolutionary Biology 2009, 9:236

Table 2: Rank/CV for different population sizes.
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Scenario Population Size

Changing ruggedness Small medium Large

L=50,r=1 29(0.42)/0.047(0.001) 0.42(0.02)/0.039(0.001) 0.01(0.01)/0.013(0.002)
L=50,r=0.5 30(0.35)/0.045(0.002) 0.37(0.02)/0.034(0.001) 0.002(0.001)/0.009(0.002)
L=50,r=0.l 30(0.36)/0.045(0.002) 0.36(0.03)/0.02(0.001) 0(0)/0.005(0.001)

Changing mutant neighborhood

L=5r=I 3(0.1)/0.034(0.002)
L=50,r=1 29(0.4)/0.047(0.001)
L=500,r=1 294(2.8)/0.047(0.001)

0.04(0.01)/0.026(0.002)
0.42(0.02)/0.039(0.001)
3.8(0.09)/0.044(0.001)

0(0)/0.012(0.002)
0.01(0.01)/0.013(0.002)
0.03(0.01)/0.031(0.001)

Changing mutation rate

1= 05IN, 0.074(0.007)/0.037(0.002)

0.083(0.01)/0.035(0.002) 0.094(0.012)/0.034(0.002)

Rank is the mean for all landscapes and trajectories, CV is the mean CV over all different landscapes. Values in parentheses are standard errors for

the sample of 50 landscapes.

mutation supply rate is the product of population size and
mutation rate. It is known that population size and muta-
tion rate can have differential effects on the evolutionary
dynamics [13,40,41]. For example, fixation times are
faster in smaller populations, even though mutations
arise less often.

We therefore examined how changing mutation rate and
population size, while keeping mutation supply rate
fixed, influenced the results of our simulations. As Figure
8 shows, for a fixed mutation supply rate, smaller popula-

L=5 L=50 L=500
7\' Mean:0.107 Mean:0.218 Mean:0.162
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c
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©
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Figure 7

Fraction of simulations for which small or medium
size populations achieve higher fitness than their
larger counterparts, for different sizes of the mutant
neighborhood (from left to right: L=5,L =50, L =
500). Parameter values as given in Table I, with r = I.

tions with higher mutation rates seem to have a slight
advantage. The final average rank values and CV for the
different populations are rather similar, with a slight trend
towards increasing rank and decreasing CV as population
size increases (Table 2). This suggests that for a fixed
mutation supply rate, smaller populations evolve both
somewhat faster and somewhat more stochastically. The
reason for these results is likely a consequence of clonal
interference [11,12,16,42,43]. If populations are large,
several beneficial clones compete against each other, with
the largest one likely winning and becoming fixed. This
would lead to more deterministic adaptive trajectories
compared to smaller populations [41]. Therefore, at the
same mutation supply rate, smaller populations with
higher mutation rates could be favored over larger popu-
lations with lower mutation rates.

Discussion and Conclusion
It is generally accepted that large populations will tend to
evolve more rapidly than smaller ones. This is caused by

m‘ 1 Mean:0.578 = 1 Mean:0.577 TI 1 Mean:0.575
A SE:0.911 n SE:0.009 A SE:0.009
= n 2]

c c

S S S

= = B

g & S

- “ 0 “ 0

20 40 20 40 20 40

Fitness landscape Fitness landscape Fitness landscape

Figure 8

Fraction of simulations for which small or medium
size populations achieve higher fitness than their
larger counterparts. The mutation rate is adjusted such
that all populations have a fixed mutation supply rate S = uN,
=0.5 (.,eu=5x% 1045 x 10-6and 5 x 108 for the small,
medium and large populations respectively). Parameter val-
ues as given in Table I, with r = I, L = 50.
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two related factors. First large populations have an
increased supply of beneficial mutations each generation,
which decreases the waiting time for new advantageous
mutations. Second, large populations have increased
access to mutations that confer large benefits. These fac-
tors imply that larger populations gain an advantage by
taking larger adaptive steps during population evolution.
However, as we have shown in a previous study [14],
sometimes smaller populations can reach higher levels of
fitness. Here, we have explored this phenomenon in more
detail. We found that while large populations evolve faster
on both smooth and rugged landscapes, on the latter there
can be a trade-off between speed and the potential to
reach high fitness peaks. Because large populations tend
to fix the most advantageous mutations first and thereby
follow a very limited set of adaptive trajectories, they have
a tendency to become trapped on local fitness peaks. In
contrast, smaller populations become fixed for a wider
range of possible beneficial mutations which leads to
increased variation in adaptive trajectories across popula-
tions and allows some populations to avoid becoming
trapped on local peaks. However, the potential to reach
higher fitness peaks can come at the cost of a slower speed
in adaptation. The optimal population size therefore
likely depends on the relative importance of speed versus
final fitness.

We further showed that for a rather smooth fitness land-
scape, there is no advantage in following more stochastic
adaptive trajectories; however, even an intermediate
amount of ruggedness can be sufficient to occasionally
favor more stochastically evolving populations of smaller
size. Experimental studies suggest that at least some
amount of ruggedness is present in natural situations
[38,44-47]. We also showed that when the size of the
mutational target under selection is very large or very
small, the system converges to an effectively smooth land-
scape where large populations are favored.

Lastly, we found some evidence that for a fixed mutation
supply rate, small populations evolved more rapidly and
more stochastically, which allowed them to reach higher
fitness compared to larger populations in a majority of
simulations. We suggest that this can be attributed to
clonal interference acting in larger populations, which
limits the amount of within population variation and can
retard the rate of adaptation [16]. To keep the mutation
supply rate constant, it was necessary to increase the muta-
tion rate for the small populations. That this tended to
confer an advantage may imply that small populations,
such as bacterial pathogens at or following the bottleneck
during transmission, may benefit by adopting a transient
mutator phenotype in order to successfully colonize new
hosts. An important caveat to this is that if the mutation
load increases with mutation rate, with an associated

http://www.biomedcentral.com/1471-2148/9/236

increase in genetic drift during bottleneck transmission, a
mutator strategy would carry a profound cost, both for
individual populations and descendant lineages in sepa-
rate hosts [48].

Although medium and small populations can exceed the
fitness of larger populations, we note that this outcome
does not occur in all, or even most, simulations. More
important, the degree to which this result is realized is
highly dependent upon underlying landscape architec-
ture. For example, as is most clearly evident in Figure 5,
there is considerable variation in the fraction of cases
where populations of medium size exceed the fitness of
large populations, with a broad range from 0.02 to 0.54.
Several features of the fitness landscape influence the
potential outcome of the adaptive walks. First, if the clos-
est fitness peak is a global peak, medium and small popu-
lations would fail to capitalize on their greater searching
ability. This would also apply if the local peak is the high-
est peak within a certain "radius" of the starting location
in the fitness landscape, since a far away peak might never
be reached by any of the populations. Second, the differ-
ence between the global peak and accessible local peaks
may be negligible, in which case differences in adaptive
magnitude across populations of different sizes will be
similarly small. Finally, the global peak may not be acces-
sible at all, in which case the smaller populations will
again fail to capitalize upon their potential search advan-
tages.

As with any model, we have made several simplifications.
For instance we excluded death of bacteria and only
allowed the loss of novel mutants to occur through sto-
chastic loss during sampling via serial dilution. The inclu-
sion of stochastic drift [49] would likely not change the
bulk of our results, but it might impact some of the
details, especially for our small population size with N, =
100.

A second simplification is our exclusive focus on asexual
populations. A number of studies have shown that the
incorporation of recombination can help to overcome
clonal interference or can help populations to more easily
escape from local fitness peaks [50-53], though recombi-
nation might not be always beneficial [54]. Extending our
model to allow for recombination is a focus of future
studies and will allow us to understand how recombina-
tion may help large populations to avoid becoming
trapped upon local fitness peaks.

We used our simulation to study populations that ranged
in size over 4 orders of magnitude. In this range, we found
that our large populations exhibited clonal interference
and very rarely escaped from local fitness peaks. However,
a number of recent studies suggest that if the population
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size is large enough, the impact of clonal interference
might be reduced [43,55-57]. Additionally, very large
populations are expected to more easily escape from local
fitness peaks [58-62]. For the combination of population
size and severity of bottleneck we used in our simulations,
we found that deleterious mutants were removed from the
population most of the time before they could reach
appreciable frequencies and lead to compensatory muta-
tions. This may suggest that for evolution through growth-
bottleneck cycles (which applies not only to laboratory
situations, but is likely also applicable to many patho-
gens), the bottleneck size interacts strongly with the pop-
ulation size and other parameters to determine the
dynamics of the evolutionary process [17,18,63]. Further
investigation of the interactions of population size, land-
scape ruggedness and mutation rate with bottleneck size,
and the importance of different types of mutations during
growth-bottleneck cycles [64] deserves further study.

In summary, we have shown that for asexual populations
evolving on rugged fitness landscapes, there can be a
trade-off between speed of adaptation and the attainable
fitness, which strongly depends on the underlying fitness
landscape. This suggests that the optimal population size
likely depends on both the details of the fitness landscape
and the relative importance of speed versus final fitness.
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