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Abstract

Background: Many molecular phylogenetic analyses rely on DNA sequence data obtained from
single or multiple loci, particularly mitochondrial DNA loci. However, phylogenies for taxa that
have undergone recent, rapid radiation events often remain unresolved. Alternative methodologies
for discerning evolutionary relationships under these conditions are desirable. The dolphin
subfamily Delphininae is a group that has likely resulted from a recent and rapid radiation. Despite
several efforts, the evolutionary relationships among the species in the subfamily remain unclear.

Results: Here, we compare a phylogeny estimated using mitochondrial DNA (mtDNA) control
region sequences to a multi-locus phylogeny inferred from 418 polymorphic genomic markers
obtained from amplified fragment length polymorphism (AFLP) analysis. The two sets of
phylogenies are largely incongruent, primarily because the mtDNA tree provides very poor
resolving power; very few species’ nodes in the tree are supported by bootstrap resampling. The
AFLP phylogeny is considerably better resolved and more congruent with relationships inferred
from morphological data. Both phylogenies support paraphyly for the genera Stenella and Tursiops.
The AFLP data indicate a close relationship between the two spotted dolphin species and recent
ancestry between Stenella clymene and S. longirostris. The placement of the Lagenodelphis hosei
lineage is ambiguous: phenetic analysis of the AFLP data is consistent with morphological
expectations but the phylogenetic analysis is not.

Conclusion: For closely related, recently diverged taxa, a multi-locus genome-wide survey is
likely the most comprehensive approach currently available for phylogenetic inference.

Background
Phylogenetic relationships among cetacean taxa are
contended at many different levels. However, robust
phylogenies are necessary for gaining insight into the

evolutionary histories of these taxa and can help in
understanding speciation of highly mobile taxa in an
environment with seemingly few barriers to movement.
Studies using molecular markers, often mitochondrial
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DNA (mtDNA) sequences, to elucidate phylogenetic
relationships among cetacean taxa have just as often
created new controversy as resolved standing controversy
[1-8]. At deeper evolutionary levels, nuclear molecular
data supported early conclusions based on morphologi-
cal data that the hippopotamids are the sister lineage to
cetaceans within the Artiodactyla [9,10], although, more
recent morphological analyses do no support this
relationship and instead identify raoellids as the sister
group to cetaceans [11]. Within the Cetacea, a previously
controversial issue was the placement of sperm whales
(Physeteroidea); while initial mtDNA sequence analyses
suggested the sperm whale lineage is more closely related
to the baleen whales rather than the rest of the toothed
whales [4], analysis of mtDNA cytochrome b data [12],
multiple mtDNA sequences and morphology [13,14]
and nuclear data [5,6,15] all support the traditional view
of monophyletic suborders. For some cetacean lineages,
such as the beaked whales, mitochondrial sequences
have proven excellent markers for resolving phylogenies
and even pinpointing new species [1,16], although
nuclear markers offer new evolutionary insights [17].
For the endangered right whale species, mitochondrial
markers render phylogenies congruent with those
inferred from nuclear data [18].

One group where relationships among taxa still remain
unresolved is the family Delphinidae, and in particular
the subfamily Delphininae. This subfamily encompasses
eleven nominal species (sensu LeDuc et al. [3]): Tursiops
truncatus (Montagu, 1821), T. aduncus (Ehrenberg,
1833), Stenella frontalis (G. Cuvier, 1829), S. attenuata
(Gray, 1846), S. longirostris (Gray, 1828), S. clymene
(Gray, 1846), S. coeruleoalba (Meyen, 1833), Delphinus
delphis Linnaeus, 1758, D. capensis Gray, 1828, Lagen-
odelphis hosei Fraser, 1956, and Sousa chinensis (Osbeck,
1765). Morphological data have most often excluded the
genus Sotalia Gray, 1866 from this subfamily (but see
Kasuya [19]) in concordance with the mtDNA cyto-
chrome b phylogeny of LeDuc et al. [3], but a recent
molecular analysis suggested the genus should be
included [20]. However, interpreted in the most con-
servative manner, the combined analysis of mtDNA and
nuclear loci in Caballero et al. [20] supports a sister
relationship between the lineages leading to the sub-
family Delphininae and the genus Sotalia but is not
necessarily strong evidence for inclusion of Sotalia in the
subfamily; a subtle but important distinction.

A number of morphological and genetic studies have
been conducted in an attempt to resolve evolutionary
relationships among taxa within the family Delphinidae
and/or subfamily Delphininae [3,20-27]. LeDuc et al. [3]
and May-Collado et al. [24] used mtDNA cytochrome b
sequences to reconstruct relationships among the taxa

within the family Delphinidae. Although the LeDuc et al.
[3] phylogeny included representatives of all species
within the subfamily Delphininae, each species was
represented by only a few sequences (or in the case of
May-Collado et al. [24], single sequences and an
incomplete survey of the taxa within the subfamily);
the mitochondrial cytochrome b locus was unable to
completely resolve branching order within the Delphi-
ninae [3,24]. The lack of resolution in the cytochrome b
phylogeny suggests the Delphininae are the product of a
recent radiation; divergence among the numerous taxa is
small, rendering resolution of branching order difficult.
The LeDuc et al. [3] cytochrome b phylogeny also
suggests polyphyly of the delphinine genera Stenella
and Tursiops and this result for Stenella is also supported
by May-Collado et al. [24]. So far, nuclear and combined
analyses concerning the Delphininae raise more ques-
tions and provide support for only a few internal nodes
within the subfamily [20]. The polyphyletic genera and
lack of branching order resolution among many of the
delphinine taxa point to a need for a new approach to
discerning the evolutionary relationships among the
species in this subfamily and perhaps a revision of the
subfamily (Figure 1).

We attempted to resolve phylogenetic relationships
among members of the subfamily Delphininae using
two approaches. Both use complete taxon sampling for
the subfamily (sensu LeDuc et al.[3]) and incorporate
multiple individuals per species to capture the intraspe-
cific variation inherent within the species. First, phylo-
genetic analysis was performed using mitochondrial
DNA control region sequences. The control region was
chosen for comparison because it is commonly relied
upon for studies of cetacean systematics [1,8,22,28,29]
and species identification [1,30,31]. The higher mutation
rate may allow the control region locus to resolve
relationships that the cytochrome b gene sequences
could not [3,21,24,25]. However, mtDNA sequences
represent a single locus gene tree and phylogenetic
reconstruction of species trees can be greatly improved
through multi-locus analyses. To address this problem,
we employed an alternate approach to phylogenetic
reconstruction targeting multiple polymorphic markers
from anonymous sites across the genome.

Amplified fragment length polymorphism (AFLP) ana-
lysis is a powerful molecular technique combining a
restriction fragment length polymorphism (RFLP) assay
and DNA amplification via the polymerase chain
reaction (PCR) [32]. Hundreds of genomic markers can
be generated from the assay’s restriction enzyme digest
and two rounds of fragment amplification via PCR
[32,33]. The AFLP method provides a multi-locus
approach and may overcome problems in phylogenetic
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reconstruction resulting from incomplete lineage sorting
[34-37]. AFLPs have proven successful for resolving
phylogenetic histories at both shallow [38,39] and
deeper species level hierarchies [34,40,41]. Within
delphinids, these markers are powerful enough to reveal
differentiation between two sets of closely related taxa,

Delphinus delphis and D. capensis, and offshore and
coastal morphotypes of T. truncatus [42]. In addition,
Koopman [43] demonstrated substantial phylogenetic
signal in AFLP data and congruence between the AFLP
markers and other nuclear data (ITS sequences). Here we
compare and contrast the efficacy of mtDNA sequences

Figure 1
Hypotheses of the relationships among the nominal species in the subfamily Delphininae. (sensu LeDuc [3])
based on A. recent morphological analyses [26,27,102-104,108,109,115] (none included Sousa chinensis), B. full mtDNA cytb
sequences [3,21,24,25] in which Delphinus capensis was found to be nested within D. delphis, and C. a combined analysis of
2 mtDNA sequence loci and 10 nuclear gene sequence loci [20] (in which an additional genus, Sotalia, is hypothesized to
belong to the subfamily).
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and AFLP markers for reconstructing evolutionary
histories in a group that has undergone a rapid radiation.

Methods
Sampling - mtDNA
A total of 346 control region mtDNA haplotypes (i.e.,
unique sequences) representing eleven delphinine spe-
cies and seven outgroup taxa were utilized for this
analysis. Fourteen of the fifteen outgroup taxa haplo-
types were downloaded from GenBank as well as 23
Tursiops aduncus haplotypes, 7 south Australian T.
truncatus haplotypes, and one Indopacific T. truncatus
haplotype (Table 1). The remaining haplotypes resulted
from sequences obtained in our lab from 1808 indivi-
dual samples. Six hundred and six of these samples were
sequenced for previous studies: 312 Delphinus spp.
samples, 199 S. frontalis samples, and 95 Tursiops
truncatus samples [29,42,44-48].

Tissue (skin or muscle) was obtained from free ranging
dolphins following the methods of Gorgone et al. [49] or
from sampling of dead, stranded individuals; a mini-
mum of five individuals per species was included in an
attempt to encompass some geographic variation that
may be present in species with large oceanic distribu-
tions (Table 2). Samples from Tursiops truncatus included
collections from both of the distinct morphotypes found
in the Northwest Atlantic Ocean, described as the coastal
form and the offshore form [50]. DNA from the four

T. aduncus samples not obtained from GenBank and ten
Sousa chinensis samples was provided by the National
Marine Fisheries Service, Southwest Fisheries Science
Center Marine Mammal and Sea Turtle DNA Archive
(loan #113, loan #157).

Sampling - AFLP
A total of 124 samples representing eleven delphinine
species plus two outgroup species- Steno bredanensis
(G. Cuvier in Lesson, 1828) and Lagenorhynchus acutus
(Gray, 1828) - were included in the AFLP analysis. A
minimum of four individuals per species was used and
samples from different geographic areas were used when
available (Table 2). Tissue (skin or muscle) was obtained
as above via remote biopsy or sampling of stranded
individuals. DNA from the four T. aduncus samples and
ten Sousa chinensis samples was provided as above. One
hundred fourteen samples from the AFLP dataset were
also included in the mtDNA analysis; overlapping
samples were incorporated for all ingroup taxa.

DNA Extraction
DNA from 325 Delphinus spp. samples, 199 Stenella
frontalis samples, and 111 Tursiops truncatus samples was
extracted for previous studies [29,42,44-48]. DNA from
the remaining samples (n = 1183) was extracted via the
proteinase K method as described in [51] with the
exception of the buffer volume (250 μL). DNA concen-
trations were assessed on a Hoefer DyNA Quant 200

Table 1: GenBank accession numbers and species information for samples incorporated to augment species coverage for mtDNA
control region analysis

GenBank accession # species Reference

AB018584 Grampus griseus (Yamagiwa, 1998)
AF113486 Lagenorhynchus acutus [116]
AF113490-AF113491 Lagenorhynchus obliquidens [116]
AF113492-AF113496 Lagenorhynchus obscurus [116]
AJ226120 Globicephala macrorhynchus (Grohmann et al., 1998)
U20921 Globicephala macrorhynchus [117]
U20926-U20938 Globicephala melas [117]
AF056233-AF056243 Tursiops aduncus [118]
AF287952-AF287955 Tursiops aduncus [25]
AF355577-AF355581 Tursiops aduncus (Ji et al., 2001)
AF459507 Tursiops aduncus (Ji et al., 2001)
AF459518 Tursiops aduncus (Ji et al., 2001)
AF459520-AF459521 Tursiops aduncus (Ji et al., 2001)
AY371171-AY371177 Tursiops truncatus (S. Australia) (Charlton & McKechnie, 2003)
AF056232 Tursiops truncatus (Taiwan) [118]

Unpublished sequences from GenBank:
Charlton K, McKechnie SW: Diversity of mitochondrial DNA control region of bottlenose dolphins (Tursiops sp.) from Southern
Australian waters. Biological Sciences, Monash University; 2003.
Grohmann L, Bokermann I, Unseld M, Hiesel R, Malek O, Giese A, Brennicke A: Whale meat from protected species is still being sold on
Japanese markets. Berlin, Germany; 1998.
Ji GQ, Yang G, Liu S, Zhou KY: A study on the variability of the mitochondrial DNA control region of bottlenose dolphins (genus:
Tursiops) in Chinese waters. Institute of Genetic Resources, College of Life Sciences, Nanjing University; 2001.
Yamagiwa D: Grampus griseus (Risso's dolphin) mitochondrial d-loop region DNA. Graduate School, Agricultural Life Sciences,
The University of Tokyo, Veterinary Anatomy; 1998.
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fluorometer prior to PCR amplification and DNA quality
was assessed via agarose gel electrophoresis.

mtDNA control region sequencing
A DNA fragment approximately 450 bp in size contain-
ing the flanking proline tRNA gene and 5’ end of the
control region was amplified using the primers L15824
and H16265 [52]. Amplification reactions contained
50 ng of DNA, 0.3 uM of each primer, 150 uM dNTPs,
1.5 mM MgCl2, 1× PCR buffer (20 mM Tris-HCl, pH 8.4,
50 mM KCl) and 1.25 U of Taq DNA polymerase
(Gibco/Invitrogen Carlsbad, CA). The thermal cycling
profile started with a 30 second 94°C denaturing step
followed by 35 cycles of 94°C for 30 s, 55°C for 30 s,
and 72°C for 30 s. A final 10-minute extension step was
added after the last cycle to extend incomplete frag-
ments. The product was gel purified via excision from a
0.8% low melting point agarose gel followed by agarase
digestion. Cycle sequencing was performed using ABI Big
Dye Terminator® fluorescent dye chemistry versions 1.0,
1.1, or 2.0 (Applied Biosystems, Foster City, CA) and
PCR products were sequenced in both directions. Cycle
sequencing products were cleaned via ethanol precipita-
tion according to ABI protocols or with CentriSep spin
column strips (Princeton Separations, Princeton, NJ).

Products were sequenced via capillary electrophoresis on
ABI 310 PRISM® and ABI 3130 genetic analyzers.
Sequence electropherograms for forward and reverse
reads of each fragment were edited using Sequence
Navigator 1.0.1 (Applied Biosystems, Foster City, CA)
and a consensus of the two directions was constructed.
The consensus sequences were truncated to control
region only (362 bp) and haplotypes aligned by eye in
SeqPup 0.6f [53].

AFLP assay
The AFLP assay was run according to the protocol of
Vos et al. [32,33] and Applied Biosystems [54] with
modifications made in Kingston and Rosel [42]. TaqI
was used as the frequent cutter enzyme rather than MseI
for increased resolution in C/G rich vertebrate genomes
[33]. Twenty selective primer combinations were used to
generate the AFLP fragments [42]. EcoRI selective primers
were fluorescently labeled for detection on an ABI 310
PRISM® genetic analyzer so only fragments containing
an EcoRI site were detected.

AFLP Scoring
Resulting electropherograms were scored for polymorphic
peaks using Genotyper® 2.1 software (Applied Biosystems,

Table 2: Number of individuals sampled across nine geographic regions for mtDNA (NM) and AFLP (NA) datasets

ETP NEP GOM WSA WNA ENA BS SA IPO NmtDNA Nh NAFLP

NM NA NM NA NM NA NM NM NA NM NM NA NM NM NA

Delphinus capensis 12 9 12 10 9
D. delphis 6 4 8 11 241 6 60 4 3 319 94 24
Lagenodelphis hosei 1 1 4 4 5 2 5
Sousa chinensis 10 5 10 5 5
Stenella attenuata 6 6 31 5 3 40 13 11
S. clymene 10 5 12 6 22 14 11
S. coeruleoalba 1 1 5 5 18 9 24 17 15
S. frontalis 76 3 123 9 199 37 12
S. longirostris 1 1 23 5 24 8 6
Tursiops aduncus 4 4, 19 4 27 25 4
T. truncatus NW Atlantic coastal
form

159 7 647 8 1 807 48 15

T. truncatus NW Atlantic offshore
form

15 327 5 342 51 5

T. truncatus (undetermined form) 7 7 7 0
Globicephala macrorhynchus (OG) 1 1 2 2 0
Globicephala melas (OG) 3 3 3 0
Grampus griseus (OG) 1 1 1 0
Lagenorhynchus acutus (OG) 1 1 1 1 1
Lagenorhynchus obliquidens (OG) 2 2 2 0
Lagenorhynchus obscurus (OG) 5 5 5 0
Steno bredanensis (OG) 1 1 1 1 1
TOTAL

1853 346 124

Total number of samples (NmtDNA) and haplotypes (Nh) in the mtDNA dataset, and total number of samples in AFLP dataset (NAFLP). Numbers in
italics represent sequences from GenBank (see Table 1). Region abbreviations: ETP = eastern tropical Pacific; NEP = northeast Pacific; WSA =
western South Atlantic; GOM = Gulf of Mexico; WNA = western North Atlantic; ENA = eastern North Atlantic; BS = Black Sea; SA = South
Australia; IPO = Indo-Pacific Ocean; (OG) = outgroup species.
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Foster City, CA). Peaks were scored as dominant markers,
present or absent (1 = present, 0 = absent). One base-pair
(bp) sized bins were created for each dominant marker
category. Markers ranged in size from 75 bp to 300 bp. We
used the conservative scoring protocol described in King-
ston and Rosel [42] to protect against potential problems
associated with uneven amplification among samples and
poor amplification of larger fragments for degraded DNA
samples. Only fragments that showed even amplification
across all samples were scored (no fragments where any
sample exhibited poor amplification, less than 100
fluorescence units, were used) and scoring was halted at
the size (usually 200-300 bp) where poorer quality
samples began to lose monomorphic peaks [42].

Analyses - mtDNA control region
Sequences were aligned by eye (362 bp) and unique
haplotypes identified. A model and parameters for the
phylogenetic reconstruction were determined empirically
using likelihood via Modeltest 3.7 [55]. The Akaike
Information Criterion (AIC) indicated that the Tamura-
Nei model of DNA evolution with a gamma correction
(a = 0.3409), proportion of invariable sites = 0.3735, and
empirical base frequencies (A = 0.3423, C = 0.2218, G =
0.1035, T = 0.3324) was most appropriate given the data.

The alignment of control region haplotypes was ana-
lyzed in a likelihood framework using GARLI 0.96 [56].
The model and parameters determined above in Mod-
eltest 3.7 [55] were applied in GARLI (TrN +I +G). Two
replicates were performed in order to assess convergence
on a topology. Stop generation and stop time were set at
5,000,000; genthreshfortopoterm was set at 20000;
scorethreshforterm was set at 0.05. The remaining
options were set as default. The analysis was boot-
strapped for 500 iterations.

Additionally, the aligned control region haplotypes were
analyzed in PAUP* 4.0b10 [57] using distance methods.
Using the above model and the neighbor-joining
algorithm, a phylogenetic reconstruction was rendered
and bootstrapped (with replacement) using 1000 itera-
tions. Within species, between species and corrected
between species genetic distances were estimated using
MEGA 3.1 and the Tamura-Nei model with parameters
as described above.

The trees were rooted with a single outgroup haplotype
(Lagenorhynchus acutus) although six more outgroup taxa
(14 haplotypes) were included in the analysis (Tables 1, 2).

Analyses - AFLP
An initial binary data matrix was compiled for all
individuals and dominant AFLP markers. This presence-

absence matrix was used as the basis for all AFLP analyses.
Species-specific markers were defined directly from the raw
binary data; a species-specific marker was shared by all
individuals sampled from a particular species to the
exclusion of all other taxa (synapomorphy).

Relationships among taxa and individuals were defined
using a neighbor-joining phylogram [58,59] which was
built using Nei-Li distance derived from the binary data
matrix and bootstrapped (with replacement) 1000 times
using PAUP* 4.0b10 [57]. Distance-based methods were
included because the parsimony criterion, in particular,
may be inappropriate for use with dominant, anonymous
markers due to the inherent faulty assumption of homology
among shared absent markers and the possible parsimo-
nious, but incorrect, reconstruction in which nomarkers are
assigned to an ancestor at a given internal node [60,61].

We also utilized the Bayesian phylogenetic inference
method through MrBayes 3.1 [62,63]. Due to the binary
nature of the AFLP data and the difference in probabil-
ities between 1 to 0 and 0 to 1 state changes, we chose
the restriction “noinvariantsites” option and the “noab-
sentsites” option. The analysis was run over 2 replicates
to assure convergence on a topology; each run was
performed over 10,000,000 generations (sampling at
every 100 generations) and burn-in was set at 250,000
generations. The remaining options were set as default.

Non-metric multidimensional scaling analysis (NMDS)
was used to further clarify and visualize relationships
among taxa outside the context of a bifurcating tree.
NMDS is an ordination technique designed to portray
relationships as defined by a Jaccard similarity matrix in
three-dimensional space. A Jaccard similarity matrix was
created from the initial binary data using NTSYS-pc [64].
Jaccard similarity values range from 0 (no similarity) to 1
(identical) and are based on shared presence of markers:

J xy a a b c= + +( ) /( )

where a is the number of polymorphic markers shared by
individuals x and y, b is the number of markers present in
x but absent in y, and c is the number of markers present
in y but absent in x [65].

NMDS plots were created using NTSYS-pc [64]; three sets
of principal coordinates analysis values were used as the
initial configuration for better fit. The goodness of fit of
the NMDS model was measured using a stress value
ranging from 0-1 (0 = excellent fit, 1 = poor fit).

Interspecies hybrids
During the study, four spotted dolphin individuals (Stenella
frontalis and S. attenuata) were genetically identified as
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possible interspecies hybrids due to incongruence between
field identification, mtDNA haplotype and placement
within the phylogenetic reconstruction based on the AFLP
markers. These four individuals were added to the core AFLP
data set in separate, identical phylogenetic analyses repeated
as above (both Bayesian and distance methods rendered
nearly identical results with regard to the putative hybrids).

We then utilized the program STRUCTURE 2.2 on the
multilocus AFLP data to assess hybrid origin and perform
assignment tests for the putative hybrids [66,67]. We first
ran STRUCTURE using the AFLP genotypes of what we
considered pure S. attenuata (n = 12) and S. frontalis (n = 11)
samples to confirm the number of ‘populations’ and their
composition without the putative hybrids. These data were
analyzed via the admixture model, independent alleles,
10,000 burn-in and 100,000 MCMC, three replicate runs at
each K (1-5), lambda = 1, recessive alleles option, and no
prior population information. This test was repeated with
inferred lambda as well as under the no admixture model.
Next, the hybrids were added and prior population info
was used for the 23 “known” S. attenuata and S. frontalis
samples; this dataset was used to identify affinities of each of
the four putative hybrids to either species. This analysis was
run under both admixture and no admixture models,
10,000 burn-in and 100,000 MCMC, migration 0.05.
Finally, that same analysiswas runwithout prior population
info for all samples included in order to examine
probabilities of alternative parentage and grandparentage.

Results
mtDNA control region
The 1808 delphinid sequences - 606 sequenced for previous
studies (GenBank accession numbers AY997307 -
AY997311, DQ060054 - DQ060064, U01956, U02639 -
U02664, FM211489-FM211508, FM211510-FM211511,
FM211513-FM211563, GQ504040-GQ504057) and 1202
sequenced in this study - resulted in 303 unique 362 bp
mtDNA control region haplotypes. With the addition of
outside sequences from GenBank, a total of 346 haplotypes
were present in the alignment (Table 2). Two T. aduncus
sequences (Indo-Pacific-Taiwan) from our study matched
the downloaded GenBank haplotypes AF459507 and
AF459518. Haplotypes from our study submitted to
GenBank bear accession numbers DQ845437-DQ845453
and GQ504058-GQ504195. The maximum within-species
diversity was equal to or exceeded net between-species
distances in 24 of 55 (44%) pairwise comparisons (Table 3).
Net mean between-species distance ranged from 0.013-
0.093 while mean within-species distances ranged from
0.005 to 0.030.

The phylogenetic trees derived from the mtDNA control
region data reveal that although some species form
monophyletic groups (Tursiops truncatus coastal, T. truncatus
offshore, T. aduncus, Stenella attenuata, Delphinus capensis,
Sousa chinensis), these nodes are not unilaterally supported
after bootstrap resampling (Figure 2). Stenella attenuata and
Sousa chinensis are the only species that show robust

Table 3: Genetic distance within and between Delphininae species based on mtDNA control region sequences and the Tamura-Nei
model of evolution

Tt Ta Dc Dd Sa Sf Sco Scl Sl Lh Sch

Tursiops truncatus 0.030
[0.007]

0.066
[0.016]

0.053
[0.013]

0.049
[0.011]

0.077
[0.018]

0.054
[0.013]

0.042
[0.010]

0.058
[0.014]

0.053
[0.012]

0.061
[0.016]

0.078
[0.018]

Tursiops aduncus 0.041
[0.012]

0.020
[0.005]

0.064
[0.017]

0.056
[0.014]

0.112
[0.029]

0.055
[0.015]

0.054
[0.014]

0.063
[0.017]

0.068
[0.017]

0.085
[0.023]

0.095
[0.023]

Delphinus capensis 0.031
[0.011]

0.047
[0.015]

0.014
[0.004]

0.033
[0.009]

0.075
[0.019]

0.040
[0.012]

0.040
[0.011]

0.053
[0.015]

0.051
[0.013]

0.067
[0.019]

0.081
[0.020]

Delphinus delphis 0.024
[0.008]

0.036
[0.011]

0.016
[0.008]

0.021
[0.005]

0.065
[0.016]

0.031
[0.008]

0.032
[0.008]

0.043
[0.011]

0.042
[0.010]

0.052
[0.014]

0.070
[0.017]

Stenella attenuata 0.051
[0.015]

0.091
[0.025]

0.057
[0.017]

0.044
[0.013]

0.022
[0.005]

0.070
[0.018]

0.068
[0.017]

0.090
[0.024]

0.054
[0.013]

0.061
[0.016]

0.106
[0.026]

Stenella frontalis 0.030
[0.010]

0.037
[0.012]

0.026
[0.010]

0.013
[0.005]

0.051
[0.015]

0.016
[0.004]

0.037
[0.010]

0.044
[0.012]

0.047
[0.012]

0.060
[0.017]

0.077
[0.020]

Stenella coeruleoalba 0.014
[0.006]

0.032
[0.011]

0.021
[0.008]

0.009
[0.004]

0.044
[0.013]

0.016
[0.007]

0.026
[0.006]

0.038
[0.010]

0.043
[0.011]

0.045
[0.012]

0.082
[0.021]

Stenella clymene 0.030
[0.011]

0.041
[0.013]

0.035
[0.012]

0.020
[0.007]

0.066
[0.019]

0.024
[0.009]

0.013
[0.006]

0.024
[0.006]

0.056
[0.015]

0.061
[0.017]

0.086
[0.022]

Stenella longirostris 0.024
[0.010]

0.045
[0.014]

0.031
[0.011]

0.018
[0.007]

0.029
[0.010]

0.025
[0.009]

0.016
[0.007]

0.030
[0.011]

0.027
[0.007]

0.050
[0.013]

0.086
[0.021]

Lagenodelphis hosei 0.035
[0.013]

0.064
[0.019]

0.050
[0.017]

0.031
[0.012]

0.039
[0.014]

0.041
[0.015]

0.022
[0.009]

0.038
[0.013]

0.026
[0.011]

0.022
[0.010]

0.079
[0.021]

Sousa chinensis 0.061
[0.018]

0.083
[0.023]

0.072
[0.020]

0.057
[0.016]

0.093
[0.025]

0.066
[0.019]

0.067
[0.019]

0.072
[0.020]

0.070
[0.020]

0.066
[0.020]

0.005
[0.003]

Net mean between species distance below diagonal, mean within species distance along diagonal (italics), uncorrected mean between species distance
above diagonal. In brackets, standard error based on 500 bootstrap replicates.
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Figure 2
Phylogenetic analysis of mtDNA control region haplotypes. Phylogenetic tree (best tree) inferred from mtDNA
control region haplotypes using the maximum likelihood tool GARLI. Tree is rooted with the outgroup Lagenorhynchus acutus.
ML bootstrap values (500 replicates) greater than 50% are denoted as the first number above supported nodes, NJ/Tamura-
Nei bootstrap values (1000 replicates) greater than 50% are denoted as the second number. Supported nodes joining just a few
terminal taxa only are not listed for clarity. Haplotypes of species denoted by an asterisk (*) group to monophyletic clades with
bootstrap support greater than 50%. Arrows denote haplotypes that fall outside any coherent species clade.

BMC Evolutionary Biology 2009, 9:245 http://www.biomedcentral.com/1471-2148/9/245

Page 8 of 19
(page number not for citation purposes)



bootstrap support (Figure 2). The control region trees offer
little resolution with regard to branching order among
species even without bootstrap support. Several D. delphis
and S. coeruleoalba haplotypes fall outside any coherent
species clade (Figure 2, haplotypes marked with arrows).

AFLP
The AFLP assay rendered 418 total polymorphic markers
among 124 individuals representing 14 species. Each
primer combination exhibited on average 20.90 ± 7.22
polymorphic markers (mean ± SD). Each individual
exhibited on average 61.26 ± 6.10 (mean ± SD)
polymorphic markers when all primer combinations
were considered. Five of the 418 polymorphic characters
were species-specific markers as they demonstrated
species-level synapomorphies.

Both AFLP phylogenies are more resolved than the
phylogenies derived from the mtDNA data, although
branching order among some of the deeper nodes is not
determined (Figure 3A &3B). The Bayesian analysis
of the AFLP data resolves the deeper nodes best. Both
D. capensis and S. longirostris are nested within taxa,
D. delphis and S. clymene, respectively. The two spotted
dolphin species, S. frontalis and S. attenuata, are joined
with very high support, although on a species level, only
S. frontalis is monophyletic upon bootstrapping. These
sister species do not cluster exclusively with other
Stenella species, rendering the genus polyphyletic (or
paraphyletic due to the placement of the genus Delphinus
in the neighbor-joining tree). Tursiops truncatus coastal
and offshore morphotypes from the Atlantic Ocean form
two distinct groups; the node joining these two sister
taxa exhibits excellent support. An unsupported node
clustering the rest of the subfamily suggests Sousa
chinensis is the sister taxon to the rest of the delphinines
in the distance analysis. However, the placement of Sousa
chinensis is the most notable point where the two
analyses disagree; the Bayesian tree suggests this species
clusters with the spotted dolphins and T. truncatus. The
entire subfamily clusters to the exclusion of Steno
bredanensis with excellent bootstrap support in both
reconstruction methods.

Non-metric multidimensional scaling analysis reveals large-
scale differences between the sister taxa S. frontalis and
S. attenuata and the rest of the Delphininae (Figure 4A).
The genus Tursiops is slightly less distant from the
remaining delphinines. Stenella coeruleoalba, L. hosei,
and Sousa chinensis form distinct species groups, while
the overlapping S. longirostris and S. clymene clusters
associate closely with Delphinus spp. Although S. longirostris
and S. clymene cannot be distinguished on the delphinine
NMDS plot due to the variance among S. clymene, when

the NMDS analysis was run for only these taxa, the two
species formed distinct groups (Figure 4B). The same
has been demonstrated for sister taxa pairs D. delphis,
D. capensis, as well as coastal and offshore morphotypes
of T. truncatus [42]. Tursiops aduncus, although represented
by only four individuals, does not form a tight species
cluster. Two of the four T. aduncus representatives associate
more closely with the T. truncatus group than any other
group.

Interspecies hybrids
Initial STRUCTURE analyses confirmed two ‘popula-
tions’ (K = 2: (average lnP(D) for K = 1-5: -1361.7,
-1124.2, -1205.5, -1329.3, -1481.0, respectively) from
the AFLP data (excluding putative hybrid data) corre-
sponding to the two discrete species (S. attenuata and
S. frontalis). Probabilities of identity of the four putative
hybrids based on the AFLP data were opposite the
species identifications inferred from the mtDNA data,
but congruent with field identifications based on
external morphological characters (Table 4). An addi-
tional hybrid, for which the mtDNA, field data and AFLP
data are all congruent, may also have been identified.

Discussion
Mitochondrial versus AFLP phylogenies
Traditional methods of phylogenetic inference using a
single gene, or even several genes, often yield a limited
picture of evolutionary history for closely related species.
By focusing on a scale so fine and specific, discrepancies
between loci are the norm [68-70]. The difficulty of
finding a gene that reflects complete lineage sorting, yet
is variable enough to reliably untangle relationships
between closely related taxa that are the product of a
recent radiation event is apparent in many phylogenetic
studies [71]. With the advent of more powerful analyses
that consider hundreds of nuclear markers, the resolu-
tion and power of phylogenetic analyses has drastically
increased [72,73]. Here we compared the ability of two
different molecular marker types, mtDNA sequences and
AFLP markers, to reconstruct the evolutionary history
among a group of recent and likely rapidly radiated taxa.

The comparison of mitochondrial and AFLP phylogenies
reveals congruence in some cases but discrepancies in
other inferences concerning the relationships among
members of the subfamily Delphininae. Overall, the
mtDNA control region phylogeny, similar to previously
published cytochrome b phylogenies [3,24,25], offers
little power for resolving relationships among these
delphinine taxa (Figures 1, 2). In the control region, the
high levels of within species diversity, often equal to or
exceeding levels of between-species divergence (Table 3),
may significantly interfere with the ability to construct a
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robust phylogeny. In some cases, pairwise between-
species distances are less than the distance between two
individuals of the same species. The AFLP reconstruc-
tions provide stronger support for many relationships
within the subfamily and untangle other relationships
that mtDNA leaves unresolved (Figure 3).

Discrepancies between mitochondrial and nuclear phy-
logenies are not unique to this study [74,75]. Although
both sets of data exhibit a pattern of high levels of
intraspecific variation and low levels of interspecies
divergence, phylogenetic inference from the mtDNA data
in particular is hindered by this pattern. One explanation

Figure 3
Phylogenetic trees inferred from AFLP data for the subfamily Delphininae. Species are indicated by color-coded
branches. Trees are rooted with the outgroup Lagenorhynchus acutus. A. Nei-Lei neighbor joining analysis; bootstrap values
over 50% from 1000 iterations are noted on nodes. B. Majority rule consensus tree from Bayesian phylogenetic reconstruction
(MrBayes); posterior probabilities above 0.70 are noted on nodes.

BMC Evolutionary Biology 2009, 9:245 http://www.biomedcentral.com/1471-2148/9/245

Page 10 of 19
(page number not for citation purposes)



for this pattern is a recent, rapid radiation, with
incomplete lineage sorting of mtDNA control region
haplotypes among the delphinine species [76]. The
occurrence of the marked haplotypes that do not cluster
together with conspecifics (Figure 2) could be explained
by such a hypothesis. The fact that all of the “misplaced”
haplotypes in the mtDNA phylogeny group with the
expected species in the AFLP tree indicates they were not
simply misidentified samples. Although this pattern
might also arise if there were a recent nuclear duplication
of this mitochondrial gene [77,78], there is no evidence
to date of such a control region duplication in cetaceans.
Whatever the cause, the mtDNA control region tree alone
is insufficient for robust phylogenetic inference in this
subfamily. Although the resolution for individual species
groups is better in the AFLP trees, the deeper internodes
are short and not consistently well-supported. This short
internode congruence with the mtDNA pattern suggests
rapid radiation over other alternatives.

In the mtDNA analysis, few species form monophyletic
groups in the control region phylogeny and only two
species, Sousa chinensis and Stenella attenuata, render
monophyletic species clades consistently supported.
While it is possible to use the mtDNA control region
sequence for species identification if an unknown falls
into one of these groups, or even a monophyletic species

clade lacking bootstrap support (e.g. T. truncatus),
interpretation is much less clear if an unknown
haplotype falls outside a coherent monophyletic group.
Use of the AFLP markers appears to be a more consistent
choice for species identification when using phylogenetic
methods. It has proven successful in identification of
maple species and individuals [79]. Even in the dolphin
species, which have considerably lower levels of nuclear
variability [80,81], we found no two delphinine indivi-
duals to have identical AFLP profiles; this specificity
suggests the method may prove useful for identifying
individuals. However, the methodology is considerably
more labor intensive than DNA sequencing of an
mtDNA fragment, and may prove less useful in cases of
highly degraded tissue samples.

Given the low divergence among taxa (exhibited by short
internodes) and high levels of diversity within species, it
is not entirely surprising the single locus mtDNA
phylogenetic reconstructions offer little resolution. Due
to the prevalence of mitochondrial control region data
collected, as well as the assertion that mitochondrial
markers alone are excellent in phylogeographic context
[82], we felt it necessary to demonstrate this evolutio-
narily interesting example in which the data fail. Because
there is so much morphological variation within
delphinine species, one goal of this study was thorough

Figure 4
NMDS analysis of AFLP data. A. Non-metric multidimensional scaling (NMDS) analysis plot of AFLP data from 122
delphinine individuals from 11 species. Stress = 0.32 B. NMDS analysis plot of only S. clymene and S. longirostris individuals.
Stress = 0.19.
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taxon sampling. Since the great majority of the variation
in the control region is limited to the region we
amplified [83], one might be concerned about resolving
power for so many individuals over the short stretch of
DNA. If the number of taxa is pruned along the branches
of the tree, we still observe the same poor resolution (see
Additional file 1).

Interspecies hybrids
Interspecies hybrids among delphinid taxa have been
recorded, but most documented cases come from
animals in captivity rather than in the wild [84-88]. In
our study, the combined mtDNA and AFLP data, along
with corresponding morphological field identifications,
indicate at least four inter-species hybrids between the
two spotted dolphin species.

These two species, although morphologically similar [26],
exhibit ten fixed differences among mtDNA control region
haplotypes [45]. The S. attenuata group is one of only two
species exhibiting strong bootstrap support in the mtDNA
trees. Although the resolution is generally poor in the
mtDNA phylogenies, we can at least reliably discern S.
attenuata from all other delphinines based on mitochon-
drial data alone. In addition, none of the putative hybrid
haplotypes are unique, i.e., they are shared by other
individuals of that species in the data set.

In an AFLP phylogenetic reconstruction, the hybrid sample
exhibiting a S. frontalis mtDNA control region haplotype
sits in a monophyletic clade with the S. attenuata, while the
three hybrid samples bearing S. attenuata mtDNA control
region haplotypes fall inside the bootstrap-supported
S. frontalis clade (Figure 5). The mostly nuclear AFLP data
are concordant with field identification of the samples but
conflict with mtDNA haplotypes. This pattern suggests we

have detected hybridization in the wild in both directions,
with possible backcrossing into the paternal species. It is
important to note we would likely not be able to detect
backcrossing of hybrids into the maternal species, at least
with mtDNA sequence incongruence.

The STRUCTURE assignment and ancestry tests on the AFLP
data confirm the AFLP phylogenetic results (Table 4). The
results of the probability of assignment of each putative
hybrid to species strongly conflicts with the mtDNA
haplotype identity, suggesting hybrids are backcrossed
many generations into the paternal species. We also see an
interesting result with the S. attenuata individual Sa94106.
This individual shows a low probability of assignment to
the S. attenuata species but rather than a high probability of
assignment in S. frontalis, this individual exhibits high
probability of mixed grandparentage (Table 4). This
individualmay represent the category of hybridsmentioned
in the previous paragraph, those backcrossed into the
maternal species. Even some of the unambiguous indivi-
duals show non-zero probabilities for extra-species grand-
parentage, suggesting low levels of allelic introgression may
be widespread.

Hybridization and its evolutionary role have been
recently revisited in the literature now that larger nuclear
datasets are increasingly available for comparison to
mtDNA phylogenies [75,89-94]. Shaw [75] demon-
strated the phenomenon of mtDNA gene flow and in
some cases complete introgression (haplotype capture)
across species boundaries in the Hawaiian cricket genus
Laupala. The apparent importance of interspecific gene
flow in this system led Shaw [75] to issue a caveat about
potentially misleading patterns of mtDNA variation
among closely related species complexes. Among species
of Darwin’s finches in the Galápagos archipelago,
sympatric introgressive hybridization has also played

Table 4: Summary of hybrid morphological and genetic characteristics and results of STRUCTURE assignment and ancestry analyses

Assignment probability
with prior information

Assignment probability
without prior information

Sample Field ID mtDNA
haplotype

AFLP
clade

prob
S. attenuata

prob
S. frontalis

prob
parent*

prob
grandparent*

2Sf01 S. attenuata S. frontalis S. attenuata 0.972 0.028 0.000 0.000
D2BC122 Stenella sp. S. attenuata S. frontalis 0.040 0.960 0.000 0.000
D2BC75 S. frontalis S. attenuata S. frontalis 0.047 0.953 0.000 0.000
Sa99270 S. frontalis S. attenuata S. frontalis 0.022 0.978 0.000 0.000
Sa94106 S. attenuata S. attenuata S. attenuata 0.734 0.266 0.008 0.730

* Posterior probability that each individual has recent ancestry (parental or grandparental) from the species opposite that identified by the AFLP
analysis.
Two STRUCTURE assignment and ancestry analyses were performed, one with prior population information assigned and the second with putative
hybrid population identity set as unknown to examine alternate parentage contributions. Last row identifies fifth possible hybrid discovered by the
analysis.
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an important role in the adaptive radiation of species
[91]. It is now recognized that interspecific hybridization
in the wild is not uncommon in rapidly radiating groups
[95]. A reader might form an intuitive hypothesis
regarding the detection of hybridization in wild popula-
tions: hybridization levels must be relatively high if even
a handful of hybrids are detected by chance. Therefore,
species identities should be lost over time due to gene
flow. While this may be a possible fate for some lineages
through the course of evolutionary history, there is a
myriad of recent literature documenting cases of just the
opposite: divergence with gene flow and long-term
maintenance of species boundaries in the face of
secondary contact [89,90,92-94,96]. The highly labile
spotted dolphin species may demonstrate a stable hybrid
zone across yet to be quantified gradients or patches in
marine variables such as salinity, temperature, depth, or
prey distribution. Differential introgression of loci across
the genome between species due to hybridization is
possible and common; gene flow and species divergence
are not always mutually exclusive trajectories [89,90,94].

Although we cannot make definitive conclusions about
the role of hybridization in the evolution of the
delphinine species, it is important to note the evolu-
tionary similarities among the Delphininae, the Laupala,
and the Darwin’s finches. The Delphininae, like these
other taxa, are likely the product of a recent, rapid

radiation event. In addition, many of the species in the
subfamily are distributed across ocean basins. In contrast
with island species, it is more difficult to discern obvious
barriers to gene flow in marine species. However,
isolated allopatric or parapatric populations exist within
delphinine species that are in turn sympatric with other
delphinine species [44,97]. These features outline a
system in which rare, interspecies, introgressive hybridi-
zation could possibly play an evolutionary significant
role among the delphinines. At the very least, the
occurrence of interspecies hybridization in the wild
draws into question the practice of species identification
for some delphinines based on mtDNA sequences alone.

Systematic relationships inferred from AFLP data
The taxonomy and systematics of the family Delphinidae
have been unresolved for centuries. Rice [98] recognized
36 species, but new species of Sotalia and Orcaella have
recently been described [20,28] and additional species will
likely be described in coming years [25,99,100]. It is clear
that the biodiversity of this family remains underestimated
at this time. At the subfamily level, as few as two and as
many as five subfamilies have been proposed [98], but the
author suggests that subfamily designations are “best held
in abeyance” pending further studies [98]. The subfamily
Delphininae, however, has maintained itself across the
variant classifications with major conflicts of membership
confined to the genera Grampus, Steno, Sousa and Sotalia
[3,20,101]. It seems generally agreed that Grampus belongs
in the subfamily Globicephalinae [3,98,101], that Sousa
belongs within the Delphininae [3,20,24], and Sotalia may
be at least a sister lineage [20].

However, to date, no comprehensive morphological or
molecular study has had sufficient power to satisfactorily
resolve the relationships among the species in the
Delphininae. Most analyses do not have dense within
taxon sampling or complete taxon sampling for the
entire group [3,20,21,24]. Some recent single-marker
analyses aimed at larger phylogenetic groups may appear
to provide some resolution of internal nodes within the
subfamily Delphininae [21,24]. However, when a single
haplotype represents each species, we are simply looking
at a gene tree among the single lineages chosen by
chance from those species’ wide geographic distribu-
tions. As Figure 1 demonstrates, the stochastic sampling
of a single haplotype per species could render a myriad
of different results, some more resolved than others, but
none alone particularly accurate at estimating the true
course of the species’ evolutionary history. To avoid the
possibility of this particular confounding possibility,
the comprehensive within species sampling scheme for
all the Delphininae was implemented in our study. As
mentioned above, even complete taxon sampling
encompassing geographic variability within species

Figure 5
Inset of Stenella attenuata + S. frontalis clade if
putative hybrid samples are added to the AFLP Nei-
Li (NJ) phylogenetic analysis. The topology of the
remainder of the tree (not shown) is identical to Figure 3A.
Individuals denoted with # exhibit S. attenuata mtDNA
control region haplotypes; individual denoted with + exhibits
a S. frontalis mtDNA control region haplotype. These
putative hybrid individuals fall in clades in the AFLP tree
opposite their mtDNA identity.

BMC Evolutionary Biology 2009, 9:245 http://www.biomedcentral.com/1471-2148/9/245

Page 13 of 19
(page number not for citation purposes)



does not improve the mtDNA phylogeny based on
control region sequences. However, the Bayesian analysis
of the AFLP data, which provide many loci spread across
the genome, provides a more resolved phylogeny for the
subfamily in which many relationships are congruent
with previously described relationships based on mor-
phological evidence [26,102-104]. We believe the
evidence points to a real incongruence between the
gene history of the mitochondrion and the evolutionary
history of these recently diverged species.

Morphological data support a sister taxon relationship
between the two spotted dolphin species. Stenella
frontalis and S. attenuata overlap in every morphological
character analyzed by Perrin et al. [26] with the
exceptions of total vertebral count and color pattern
(although this is a subtle difference). Although there are
no fixed differences in skull morphometrics, the two
species can be differentiated using simultaneous dis-
criminant analysis of multiple characters [26]. Neither
the mtDNA control region nor the most comprehensive
cytochrome b [3] phylogenies indicate these two species
share a most recent common ancestor relative to other
Stenella species. In the mtDNA control region phylogeny,
S. attenuata haplotypes are so distinct that they are the
only widely sampled species within the Delphininae
supported by a bootstrap value approaching 100%, but
they never cluster with S. frontalis. In contrast, the AFLP
data recover a relationship congruent with the morpho-
logical evidence with bootstrap support of 100%,
suggesting that the morphological overlap may be a
result of homology rather than convergence (Figure 3).
The detection of hybridization between the two species
(see above) also argues for a recent shared evolutionary
history.

The AFLP phylogeny is the first molecular study to
suggest that S. clymene and S. longirostris are more closely
related to each other than any other taxa in the genus
Stenella. This relationship is supported by morphological
data as well [27,103,104]. Stenella clymene was only
officially recognized as a valid species in 1981 when
Perrin et al. [27] examined a series of skulls and photos
of S. clymene, S. longirostris and S. coeruleoalba. Prior to
this, the uncertainty in the validity of the species likely
resulted from the fact that external color patterns in
S. clymene resemble S. longirostris while the shape of the
skull more closely resembles S. coeruleoalba [27]. By
examining a series of skulls of all three taxa, Perrin et al.
[27] determined that S. clymene is a valid species and
concluded it is most closely related to S. longirostris.
Interestingly, only S. clymene and S. longirostris are known
to exhibit aerial spinning behavior and Perrin [102] has
suggested this may represent a synapomorphic character.
The AFLP data support this close relationship, in fact,

with the S. longirostris samples being nested within the S.
clymene clade, suggesting a recent common ancestry for
these two taxa. This result contrasts with the LeDuc et al.
cytochrome b phylogeny [3] that grouped S. clymene with
S. coeruleoalba. The authors suggested S. clymene may be
of hybrid origin from parental species S. coeruleoalba and
S. longirostris. However, the AFLP phylogeny does not
place S. clymene intermediate to the other two species
and in fact, groups S. clymene with S. longirostris and
Delphinus to the exclusion of S. coeruleoalba, thereby
arguing against such a hybrid origin.

In addition, Perrin and Mead [104] suggested a close
relationship between S. clymene, S. longirostris and
Delphinus, S. coeruleoalba and Lagenodelphis hosei. The
multidimensional scaling analysis of the AFLP data
mirrors the morphological inferences (Figure 4); the
phylogenetic analysis supports a relationship among S.
clymene and S. longirostris and Delphinus, with S. coer-
uleoalba as the next most closely related species to this
group. However, L. hosei is sister to all the delphinines
except T. aduncus in both AFLP trees, a result in conflict
with the morphological data as well as the mtDNA and
nuclear data in Caballero et al. [20]. The Caballero et al.
analysis of combined genes suggests, like the morphol-
ogy, a close relationship between L. hosei and D. delphis
and S. longirostris. However, the support for this node is
moderate (low for nuclear genes alone) and five of the
eleven species in the subfamily are not included in their
molecular analysis [20]. Further work is needed to
understand the conflicting position of L. hosei.

Contrary to morphological evidence, most molecular
studies [3,20,105] and the AFLP phylogenies all suggest
that the genus Tursiops is polyphyletic. In the AFLP tree,
the monophyletic coastal and offshore T. truncatus clades
show substantial divergence, but share a common
ancestor to the exclusion of all other delphinine taxa
(Figure 3). The divergence between the coastal and
offshore morphotypes of T. truncatus has been previously
documented [42,106]. This divergence is greater than the
divergence seen between two recognized species
D. delphis and D. capensis in both mtDNA and AFLP
data and may represent species level differentiation [42].
There is no support for a close relationship between
T. truncatus and T. aduncus, the other member of the
genus; surprising given the morphological similarities
between the two species. Recent genetic studies have
suggested the existence of additional species within the
genus Tursiops [25,107]. Given the polyphyletic nature
revealed by molecular analyses, this genus deserves
further investigation.

In addition, the AFLP data do not provide strong evidence
for monophyly of the genus Stenella. The validity of this
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genus as a coherent evolutionary lineage has been
questioned previously on both morphological and mole-
cular grounds [3,20,24,105,108]. While nuclear, mtDNA
sequence data and AFLP data do not support monophyly
for this genus, the relationships among Stenella species and
other members of the subfamily do differ significantly
between the data types. The Bayesian analysis of the AFLP
data is most in line with morphological inferences. The
Bayesian analysis groups S. longirostris and S. clymene with
the two Delphinus species while the two spotted dolphins
species are found together in a well supported group with
T. truncatus and Sousa chinensis (Figure 3B). These relation-
ships are congruent with morphological evidence, which
supports a close relationship between members of the
genus Tursiops, S. attenuata, and S. frontalis [26,109]. Perrin
et al. [26] describe a suite of cranial characters that
differentiate T. truncatus, S. frontalis and S. attenuata from
other delphinines. Stenella frontalis and T. truncatus also
share a similar ground coloration pattern [26].

All molecular data sets do support monophyly of the
genus Delphinus [3,24]. In the AFLP phylogenies, the
D. capensis samples are nested within the D. delphis clade.
The recent divergence between the two Delphinus species
has been demonstrated in previous studies using both
mtDNA and morphological data [3,23,29,42]. The fact
that D. capensis is nested within D. delphis in the genome-
wide survey as well as in the mtDNA phylogenies further
supports the hypothesis of incipient speciation in
D. capensis; reciprocal monophyly has not yet been
attained, while at the same time there is no evidence of
hybridization between these species even where they are
sympatric [23].

One major inconsistency in the AFLP analyses is the
placement of Sousa chinensis. The distance-based
approach positions this species on a fairly long branch
but an unsupported node placed outside of the remain-
ing Delphininae taxa (Figure 3A). The Bayesian analysis
of the AFLP data positions Sousa firmly within the
Delphininae cluster, grouping it with T. truncatus and the
two spotted dolphin species with posterior probability of
91% (Figure 3B). While this placement is the main
difference between the two topologies, the incongruence
is not drastic. The main backbone of the distance-based
tree is composed mostly short internodes and little
bootstrap support. While the Bayesian inference offers
greater resolution, the linking of Sousa as a sister lineage
to the pair Stenella frontalis and S. attenuata alone bears a
low posterior probability. The genus Sousa has histori-
cally been considered a more primitive taxon grouped
with genera generally considered outside the subfamily
Delphininae (Steno and Sotalia: [19,110,111]). As noted
by Leduc et al. [3], Arnold and Heinsohn [112] suggested
similarities in morphological characters among Sousa,

Tursiops and Stenella, perceiving more derived characters
in Sousa than previous investigators. The Bayesian
analysis of the AFLP data would support this hypothesis.
Neither analysis, however, suggests that this genus
belongs outside the subfamily, supporting other mole-
cular studies using mtDNA and nuclear genes [20].
Investigating further the relationship between the Sotalia
lineage and the Delphininae with complete species
coverage and dense within species sampling may help
clarify the placement of the genus Sousa [20].

Conclusion
Rapid radiation and implications for phylogeny
reconstruction
Although there are still ambiguities to be resolved
concerning relationships among some of the taxa in
the subfamily Delphininae, the comparison of extensive
mtDNA and AFLP datasets and their resultant phyloge-
nies offers considerable insight into this enigmatic
group. All molecular data to date support the hypothesis
of a recent, rapid radiation in the evolutionary history of
these taxa. The support for a rapid radiation in this
subfamily is of considerable interest. How did it come
about? Changes in sea level and concomitant changes in
water temperatures are often suggested as having played
a significant role in speciation of cetaceans
[7,27,69,113]. Such changes could explain the Atlantic
endemics S. clymene and S. frontalis, as described earlier.
Why these species did not expand outside the Atlantic is
not clear. However, currents around the Cape of Good
Hope would favor movement into the Atlantic rather
than out. It is more difficult to explain the rest of the
Delphininae, where many species are both sympatric and
distributed circumglobally. It is clear, however, that the
oceans support a diverse array of similar dolphin species
and hence must have produced conditions necessary for
the diversification seen in this subfamily. Careful,
comprehensive analyses of habitat and diet, as has
been recently done with beaked whales [114], may
provide insight into the different processes and pressures
that produced these closely related dolphin taxa.

The pattern of high intraspecific variation and low
interspecies divergence exhibited by the delphinines
can be problematic when dealing with single-locus
mtDNA phylogenetic reconstruction. Bootstrapping of
mtDNA datasets results in nearly completely unresolved
phylogenies that are highly unstable when changes in
outgroup, or even ingroup, taxa are made (data not
shown). Hence, inferences about the evolutionary
relationships among the delphinine species cannot be
made from these reconstructions. The multi-locus
approach using AFLP markers offers far greater resolving
power in the face of this pattern. Given the reduced
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effective population size of a mitochondrial marker, we
often expect better phylogenetic resolution from mtDNA
data. In this case, we find the opposite. Since the
mitochondrion bears the evolutionary history of a single
molecule nested within a species, the signal embedded,
while often powerful, must be interpreted with caution.
The AFLP markers are a cross section of markers across
the genome, providing the phylogenetic reconstruction
with a signal that is integrated across sites likely to be
neutral, selected, linked to selected sites, and everything
in between; the signal incorporates heterogeneity in gene
histories. It is from this attribute that the assay may draw
resolving power.

Finally, the AFLP data when coupled with mtDNA
sequence data provide evidence of interspecies hybridi-
zation. If interspecies hybridization plays a part in
delphinine evolution, even if rare in frequency, extreme
caution must be used when inferring phylogeny from
mtDNA loci in the absence of corresponding multi-locus
nuclear data. Considering the extensive process of
developing sequence-based, single-copy nuclear markers
useful for phylogenetic reconstruction on this scale [71],
the multi-locus AFLP approach offers us a powerful tool
with which to begin addressing the problems associated
with phylogenetic inference in closely related, recently
diverged taxa.
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