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Abstract
Background: The evolution of social cooperation is favored by aggregative behavior to facilitate
stable social structure and proximity among kin. High dispersal rates reduce group stability and kin
cohesion, so it is generally assumed that there is a fundamental trade-off between cooperation and
dispersal. However, empirical tests of this relationship are rare. We tested this assumption
experimentally using ten genetically isolated strains of a ciliate, Tetrahymena thermophila.

Results: The propensity for social aggregation was greater in strains with reduced cell quality and
lower growth performance. While we found a trade-off between costly aggregation and local
dispersal in phenotypic analyses, aggregative strains showed a dispersal polymorphism by producing
either highly sedentary or long-distance dispersive cells, in contrast to less aggregative strains
whose cells were monomorphic local dispersers.

Conclusion: High dispersal among aggregative strains may not destroy group stability in T.
thermophila because the dispersal polymorphism allows social strains to more readily escape kin
groups than less aggregative strains, yet still benefit from stable group membership among
sedentary morphs. Such dispersal polymorphisms should be common in other social organisms,
serving to alter the nature of the negative impact of dispersal on social evolution.

Background
Aggregative and dispersive behaviors could be antagonis-
tic in many systems since high mobility should reduce the
formation of aggregative associations. If aggregative
behavior confers substantial benefits (e.g. via cooperation
among kin), high dispersal destroys these benefits by
reducing group stability [1]. Under these conditions, one
should expect social species to have much lower dispersal
than solitary species producing an aggregation-dispersal

trade-off. The connection between dispersal and aggrega-
tion or cooperation, however, is far from straightforward.
In a characteristically groundbreaking discussion of the
issue, Hamilton and May [1] suggested that while aggrega-
tion among kin can indeed drive kin cooperation, as
aggregations grow so does competition among related
individuals (kin competition). Such strong competition
among kin hence engenders inclusive fitness costs of
aggregation that could be ameliorated by dispersal [2,3],
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but dispersal reduces group stability, and stability should
promote cooperation [4-6]. Because aggregation can lead
to more advanced forms of cooperation, including altru-
ism [7-10], understanding the conditions that allow for
increased aggregation despite costs associated with this
behavior are of intense interest to evolutionary biologists
[10,11].

At the extreme, a trade-off between aggregation and dis-
persal is expected as described above, and a negative rela-
tionship between these two parameters has been a basic
assumption of many models examining the evolution of
social behavior [11-14]. Some theoretical studies have
shown that high dispersal and cooperative behavior are
incompatible when populations are saturated [4,15-17].
However, very low levels of dispersal lead to competition
that occurs primarily among kin, which can exactly cancel
the benefits of cooperative behavior [16]. A small amount
of dispersal is always necessary for cooperative strategies
to spread in a population and so that the burden of
increased competition is not exclusively among kin.
Hence, while a trade-off between dispersal and coopera-
tion is expected, the nature of this relationship shows
extensive variation among different theoretical formula-
tions and the coexistence of dispersal and cooperation
will likely depend on life history assumptions.

A few theoretical studies have examined the coevolution
of dispersal and cooperation with both parameters
allowed to vary and have found that the spatial scale of
competition and cooperation relative to dispersal distance
is a critical factor governing the nature of a trade-off
between dispersal and cooperation [15,18-21], reviewed
in [13]). In essence, cooperators must disperse far enough
to leave the kin group to avoid kin competition at high
densities [19,21]. For example, more cooperative groups
might produce individuals that are highly sedentary to
take advantage of kin structure and long distance dispers-
ers who colonize new habitats with no kin-competition
(e.g. [22,23]). In general, then, resolution of the conflict
between cooperation and dispersal occurs either through
the disappearance of cooperation [24] or through specific
behaviors that allow cooperators to maintain group struc-
ture despite dispersal (budding: [17], founding events:
[8], social clusters: [25-27], temporal separation of coop-
eration [9,11]).

Empirical studies have shown that dispersal occurs even
in the most social species, suggesting that specific behav-
iors that mediate the relationship between cooperation
and dispersal may be widespread. For example, many
social hymenoptera (e.g. ants) produce mating swarms
among alates that end in the founding of new colonies
considerable distances from natal nests [8,28]. The found-
ing of a new nest by a single queen allows for high levels

of relatedness while still reducing competition among sis-
ters after dispersal. A few empirical studies have also
explicitly investigated variation in the link between dis-
persal and aggregative or cooperative behaviors within a
population [24,26]. For example, in Pseudomonas aerugi-
nosa bacteria, reducing kinship or increasing kin-competi-
tion - both behaviors related to increased dispersal in wild
systems - destroyed the social cooperation seen in this spe-
cies [24]. However, in a more natural context, such bacte-
ria are thought to reduce competition while preserving kin
cooperation by budding off small social groups into new
underutilized habitat [17]. In side-blotched lizards, Uta
stansburiana, strong kin competition favors high juvenile
dispersal, and cooperation among adults is only possible
through greenbeard recognition of genetically similar
individuals [26]. The variation in dispersal-aggregation
trade-offs among species [29] could be due to a broad
range of specific strategies used to mediate the inherent
conflict between aggregation and dispersal and modulate
the nature of this trade-off.

We investigated the link between cooperative behavior
and dispersal in experimental microcosms of a unicellular
ciliate, Tetrahymena thermophila, to understand the poten-
tial and nature of trade-offs between these traits and to
detect the consequences of this relationship on other life
history characteristics. In this species, dispersal occurs nat-
urally and is ecologically relevant since individuals
occupy patchy ephemeral feeding habitats (F.P. Doerder,
pers. comm.). Our previous work with T. thermophila
showed considerable variation in the propensity to dis-
perse among ten genetically isolated strains and this vari-
ation is linked to many other life history traits [30]. Also,
our work and that of others [31] has shown that cell mor-
phology is linked to dispersal and movement in this spe-
cies: highly elongated cells (dispersal morphs) are capable
of long distance dispersal due to growth of flagella [31],
somewhat elongated cells are capable of short distance
dispersal, and round cells are fairly sedentary (although
not immobile; Figure 1). In addition, aggregation in this
species, which occurs more readily among kin (unpub-
lished data), entails cooperative behavior through the
exchange of growth factors that improve cell survival and
growth at low density [32], making the balance between
aggregation, dispersal, and colonization a key feature of
their evolutionary history. In this context, we tested 1)
whether there was variation in aggregative behavior
among ten genetic strains, 2) if a dispersal-aggregation
trade-off existed among strains, and 3) if associations
between aggregation and other core life history traits
(measured in [30]) provided evidence for dispersal-aggre-
gation syndromes within this species.
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Methods
Strains, cultures, experimental design and data collection
This study is based on measures of core life-history traits
of ten strains of T. thermophila gathered through five dif-
ferent experiments. The first four experiments have been
described in detail in a previous study [30], which also
gives basic information on strains, culture conditions,
general manipulation of T. thermophila and data collec-
tion using digital imaging. Here, we summarize the main
elements of the four published experiments, and then
present the fifth in full details.

The first experiment estimated growth rates of strains in
the presence of nutrients by initializing populations at
low density (10000 cells/ml) and taking population den-
sity counts over eight days. Each cell line had three repli-
cates for this population growth experiment. The second
experiment assessed survival under starvation by placing
cells in a nutrient-absent media and measuring decreases
in cell density over 17 days. Starvation survival was esti-
mated through three replicates per cell line. The third
experiment evaluated dispersal rates of strains by intro-
ducing cells into one side of a two-patch experimental sys-
tem (two 1.5 ml tubes linked by 17 mm long tubing) and
measuring dispersal to the second patch over 17 hours.
Dispersal was assessed through six replicates per cell line
(exceptions due to technical problems: five replicates for
strains 4A and Q, and three for strain B). Finally, the

fourth experiment studied the capacity of strains to colo-
nize a new patch without cell-cell cooperation by seeding
new populations with a single cell and estimating survival
and cell division rates after eight days. Ten cells were iso-
lated for each cell line to determine the percent survival
for each cell line from the percentage of coolies found
among the ten tubes, and the whole experiment was rep-
licated twice, giving two replicates per strain (except strain
E where one replicate failed).

A fifth experiment, measuring the aggregation behavior of
strains, is reported in the present study. Due to constraints
on manipulation time, this experiment was performed in
an incomplete block design, with five strains per day ran-
domly allocated to each of four experiment days. Thus
each strain was studied two times and originated from
mother cultures separated by a number of generations (as
in [30]). On each experimental day, five replicate samples
were isolated into separate 1.5 ml Eppendorf tubes from
the source culture of each strain. Culture tubes were
homogenized through gentle vortexing, and appropriate
volumes of cells were transferred into the five replicate
tubes in order to create a density of 300 000 cells/ml in
tubes with 500 μl medium. Tubes were left for one hour
at room temperature for cells to acclimate to their test
density. Then, one 10 μl aliquot was taken out from each
of the five tubes, again homogenized through gentle vor-
texing, and loaded onto a count chamber of a Plexiglas
slide (Hycor Glasstic slide with ten cell count chambers)
placed under a microscope. Cells were then allowed to
aggregate at will over 20 minutes inside the cell count
chambers before a digital picture was taken of each count
chamber (Figure 2). The experimental design therefore led
to the measurement of aggregation for two repetitions of

Tetrahymena thermophila dispersal morphs move substantially faster than normal morphsFigure 1
Tetrahymena thermophila dispersal morphs move 
substantially faster than normal morphs. Shown are 
the positions of two T. thermophila cells at three successive 
time points (6, 7 and 8 seconds from start in the movie 
accompanying our previous paper [30]; picture background is 
for time = 6 seconds), illustrating the much higher swim 
speed and net displacement of elongated dispersal morphs 
(circles) compared to round sedentary morphs (squares).

Example of a digital picture of Tetrahymena thermophila used to quantify aggregation behaviorFigure 2
Example of a digital picture of Tetrahymena ther-
mophila used to quantify aggregation behavior. The 
circle indicates limits of the study area, corresponding to the 
viewing field through the microscope. The magnified portion 
illustrates the point location (grey dots) of cells as computed 
by ImageJ analysis software, and the grid approximation used 
to compute the point pattern statistics via the Programita 
software (see text for details).
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five replicate tubes each for each of the ten T. thermophila
strains, giving ten replicates per strain (exceptions due to
technical problems: five for strain B and nine for strain
D2).

Quantification of the degree of cell aggregation
Pictures were analyzed with ImageJ software (v. 1.40 g,
National Institutes of Health, http://rsb.info.nih.gov/ij;
an updated version of the Scion Image used in [30]) to
extract descriptors of the cells, including their position in
an X-Y coordinate system. The aggregation tendency of
cells on each picture was assessed with spatial point pat-
tern statistical analyses using Programita software [33].
We created SAS [34] codes to automatically make Pro-
gramita input files, read Programita result files, and con-
duct statistical analyses on these aggregation data.

Point pattern analysis is used by biologists to infer the
existence of underlying spatial processes, like cell aggrega-
tion. A large number of methods have been developed but
are all largely based on the same idea [33]. First-order sta-
tistics describe the intensity λ of points and its large-scale
variation. Second-order characteristics are summary statis-
tics based on the distribution of all point-to-point dis-
tances, and are used to detect different types of patterns
and their associated scale via the quantification of small-
scale spatial correlation structure of the point pattern.

We quantified the degree of aggregation of the point pat-
tern (i.e. the cells present on a given picture of a cell count
chamber) by the univariate pair-correlation function g(d),
which gives the expected number of points at distance d
(called scale) from an arbitrary point, divided by the
intensity λ of the pattern. Aggregation is indicated by g(d)
> 1 (there is a higher density of points than expected),
whereas g(d) <1 indicates regularity of the pattern at dis-
tance d (there is a lower density of points than expected).
Contrary to the classical Ripley's K or L functions, g(d)
uses rings instead of circles, and is therefore not a cumu-
lative function [33]. We used the grid-based numerical
approach implemented in Programita to estimate g(d),
because this method prevents biases due to edge effects
regardless of the study area shape [33]; in our case this
shape corresponds to the approximately circular viewing
field through the microscope (Figure 2). The following
parameter values were used in Programita for all point
pattern analyses: grid size = 22.72 pixels, corresponding
roughly to the average T. thermophila cell size (~50 μm;
Figure 2) (this gives a grid of 100*75 cells for our
2272*1704 pixel digital pictures); scale d = 0 to 37 cells
(i.e. up to half the lowest dimension, as recommended
maximum: [33]); several points per cell allowed; ring
width = 2.

The basic result for each point pattern (i.e. each picture)
consists in the value of g(d) for d = 0 to 37 (Figure 3),
from which we computed a single summary measure of
pattern aggregation, which we denote "aggregation index
g": the mean of g(d) values superior to 1 (indicating aggre-
gation) on d = 0 to 15. We restricted the mean to include
a maximum scale of d = 15 as we were interested in quan-
tifying small scale aggregation and not large scale varia-
tions in densities. However, sensitivity analyses (not
shown) suggest that this specific value of d = 15 to com-
pute the mean g had little effect on the statistical signifi-
cance and correlation patterns between aggregation index
g and life history traits; this was also the case for the value
of ring width = 2.

Correct positioning of contiguous cells, which are not dis-
tinguished in image analysis software, is a prerequisite for
valid estimation of aggregation. Available image process-
ing procedures (e.g. watershed separation) were not relia-
ble at splitting partially overlapping cells in our pictures.
We therefore statistically split groups of contiguous cells
based on their size relative to the median size of all cells
in the picture. The classes used (<1.6*median = 1 cell,
1.6*median to 2.6*median = 2 cells in a line, 2.6*median
to 3.6*median = 3 cells placed as a triangle, 3.6*median
to 4.6*median = 4 cells placed as a rectangle) were opti-
mized to minimize the error rate (under- or over- split-
ting) by manually checking 3781 cell clusters (72% were
correctly split, and errors were symmetrically distributed
between under- and over-splitting). We also checked the
validity of this procedure by comparing the aggregation
estimate for each picture with this procedure and with a
manual cell separation achieved by drawing black lines

Quantification of cell aggregation from point pattern analysisFigure 3
Quantification of cell aggregation from point pattern 
analysis. The pair-correlation function g(d) gives the 
expected number of points at distance d from an arbitrary 
point, divided by the intensity λ of the pattern. g(d) > 1 indi-
cates aggregation, g(d) <1 regularity of the pattern at dis-
tance d. In this example of the picture displayed in Figure 2, 
cells are aggregated up to a distance of 14. Dashed lines: 95% 
confidence envelopes obtained from 19 simulations.
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between contiguous cells on the pictures themselves. The
correlation between the g value obtained by the two meth-
ods on the same picture was high (Pearson r = 0.86, n =
94, p < 0.001). Statistical splitting also has the advantages
of greater efficiency and more reliable criteria for dividing
partially overlapping cell clusters.

Statistical analyses
Statistical tests for aggregation or regularity are usually
based on the comparison of the observed g(d) with confi-
dence envelopes obtained from simulations. Generally,
this approach is subject to several problems [35] includ-
ing the selection of an appropriate null model, but these
were not relevant here because we were not interested in
hypothesis testing (i.e. assessing the statistical signifi-
cance) of the degree of individual point pattern aggrega-
tion. Our goal was to quantify the magnitude of cell
aggregation, compare levels among strains, and measure
correlations with other life history traits previously meas-
ured for T. thermophila [30]. A few preliminary tests on the
aggregation index g allowed verifying that no artifacts or
biases due to the incomplete block experimental design
(four different experimental dates to obtain two repeti-
tions per strain) or to the natural variation in cell density
(λ) between pictures confounded our analyses.

Differences in cell aggregation between strains were stud-
ied by generalized linear models and discriminant analy-
ses. The covariation of aggregation with other life-history
traits was examined through Spearman's correlation and
principal component analysis, all implemented using SAS
software.

Despite clonal reproduction of our source cultures, varia-
tion among replicates is expected from three sources. First,
each replicate will have small differences in density due to
the estimation technique used to establish replicate pop-
ulations and phenotypic traits could be in part influenced
by external conditions among clones ([30], unpublished
data). Second, the genetic architecture of T. thermophila,
which includes both a germinal micronucleus and a
macronucleus transcribed to produce the phenotype [36],
lends itself to extensive phenotypic variation among
clones. While the germinal micronucleus is faithfully cop-
ied during clonal fission, the macronucleus is reconsti-
tuted upon division and is usually composed of a different
number of copies of a different subset of the micronucleus
genes among daughter cells [36,37]. Finally, large popula-
tion sizes, rapid generation times, and the additional tran-
scription step in creation of the macronucleus will have
introduced a significant number of mutations with the
potential to yield random among-replicate variation dur-
ing establishment of replicates.

For the above reasons, the between- and within strain var-
iation in life history traits are both important to assess the
existence of associations between life-history traits, aggre-
gation, and dispersal among strains, even if this measure
includes both genetic and non-genetic effects (plasticity,
epigenetics including macronucleus sampling). Statistical
analyses were therefore done on measures obtained at the
replicate level. However, this approach could increase the
risk of artificially augmenting the statistical power by
increasing sample size (replicates within a strain vs. strain
averages). Therefore, results are also given for the same
analyses done at the strain level by averaging measures
across replicates. The results from the two analytic meth-
ods are generally similar in magnitude and direction, but
we have kept interpretation and discussion of the results
more tentative in cases where statistical significance dif-
fered.

We conducted a number of independent experiments to
measure each life history trait since it is not technically
possible to measure all variables with a single experimen-
tal design. In addition, due to different time constraints
faced by each protocol, some experiments had a different
number of replicates. Since experiments were independ-
ent of each other, specific replicates of a given strain were
not directly linked between all of the experiments. There-
fore, in analyses that account for within-strain variation,
we used a randomization procedure [38] to correlate
parameters at the replicate level from different experi-
ments, similar to the method used by [30].

Aggregation tendency of the ten studied strains of Tetrahy-mena thermophilaFigure 4
Aggregation tendency of the ten studied strains of 
Tetrahymena thermophila. Mean (and 95% confidence 
interval) aggregation index g is reported, based on ten repli-
cates per strain (exceptions due to technical problems: 5 
replicates for strain B and 9 replicates for strain D2).
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Results
Aggregation among cell strains
Aggregation tendencies of T. thermophila cells in our exper-
iments, quantified as the aggregation index g, differed sig-
nificantly among the ten studied strains with no
significant variation between the two repetitions per
strain (two-way incomplete block factorial design: strain:
F9,83 = 3.03, P = 0.004, Figure 4; repetition: F1,83 = 0.21, P
= 0.649). The degree of cell aggregation g was not signifi-
cantly correlated to the mean number of cells captured in

pictures, estimated by the mean point intensity λ (Spear-
man's correlation coefficient r = -0.140, n = 94, P = 0.179)
as expected given its definition [33], though λ differed sig-
nificantly between experimental dates (F3,90 = 11.74, P <
0.0001). Among-strain differences in cell aggregation
were therefore not an artifact caused by capturing different
numbers of cells in the pictures taken of cell count cham-
bers. Furthermore, the aggregation index g did not differ
significantly between dates (F3,90 = 0.28, P = 0.838).

Correlation of aggregation with seven other life-history traits of Tetrahymena thermophilaFigure 5
Correlation of aggregation with seven other life-history traits of Tetrahymena thermophila. Those named "PC" are 
combinations of traits obtained from Principal Component Analyses; we describe their essence here but full details are given in 
[30]. The degree of cell aggregation under food rich conditions showed a negative relationship with short-distance dispersal 
including variation within and among strains, but not in more restrictive among strain analysis (A). Elongation strategy under 
starvation conditions was markedly associated with the tendency to aggregate, with strains where some cells elongated far 
more than others (up to becoming dispersal morphs) and for a shorter time showing stronger aggregation than strains where 
all cells elongated similarly for a long time (B). Strains that tended to aggregate strongly were less efficient as single-cell coloniz-
ers (C). Strains with small and elongated cells under food rich growth conditions showed a higher tendency to aggregate than 
strains with big and round cells, this effect was only present when within-strain variation was included (D). More aggregative 
strains showed reduced survival and average elongation abilities under starvation conditions when within strain variation was 
included in analyses (E). Strains growing faster and reaching a higher final cell density in the presence of nutrients were less 
inclined to aggregate (F). Growth strategy (K vs r) showed no relationship with aggregation (G). Because replicates of a given 
strain were not linked between experiments, we used a randomization procedure [38] to correlate parameters from different 
experiments, similar to the one used by [30]: the replicates of a given strain were randomly associated across experiments 
1000 times, and a correlation was computed for each random association. n: sample size (limited by the experiment with the 
smaller sample size); r: mean Spearman's correlation over the 1000 random associations; s: proportion of significant correla-
tions over the 1000 random associations; P: probability of obtaining s if the null hypothesis of no correlation is true. Points on 
each graph reflect the means of five random associations between the two traits to illustrate both between and within strain 
variations. The second line of statistics at the top of each graph gives results for Spearman correlations based on means of the 
10 strains only, discarding variation between replicates of each strain.
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Aggregation-dispersal trade-off
More aggregative strains showed reduced short distance
dispersal rates under food rich conditions (Figure 5A),
although the strength of this relationship was fairly weak
and only showed statistical significance when accounting
for within-strain variation among replicates. The strength
of the dispersal-aggregation relationship may have been
weakened by specific dispersal strategies. Strains with
strongly aggregating cells were characterized by an elonga-
tion strategy under starvation conditions where some cells
elongated more than others, to the point of becoming dis-
persal morphs (vs a strategy where all cells elongate simi-
larly for a long time: Figure 5B). That is, strains with a
strong aggregative behavior also produced more of the
morphologically specialized, rapid-swimming dispersal
morphs.

Associations between aggregation and life history traits
Differences among strains in the aggregation index g were
significantly correlated to variation in other life history
traits: cells from strains showing high levels of cell aggre-
gation were poor at colonizing a new patch in the absence
of clone mates and conspecifics (Figure 5C) suggesting a
strong dependence on sociality. Associations also existed
between aggregation and traits associated with cell
growth. Aggregative strains exhibited a small and elon-
gated cell shape under normal growth conditions (Figure
5D), survived somewhat less well under starvation condi-
tions (Figure 5E), and had relatively poor population
growth performance (Figure 5F) with food present,
although the first two patterns were only significant when
within-strain variation was taken into account. No rela-
tionship was found between aggregation levels and the
cell line's growth strategy (K vs r: Figure 5G).

The above associations, with strongly aggregating strains
being poor single-cell colonizers with small cell size and
poor growth performance in nutrient rich conditions, and
a high production of long-distance dispersal morphs
under starvation, were well represented by the first two
axes of a principal component analysis including all the
life history traits studied here (Figure 6). The first axis of
this comprehensive PCA explained on average 36% of the
variance (SD: 1.9%; range: 32% to 38%, over 1000 ran-
dom associations of replicates across experiments; 43%
when analysis was done on the 10 strain means) and the
second axis 22% of the variance (SD: 1.6%; range: 20% to
25%; 23% when analysis was done on the 10 strain
means). These two axes allowed us to accurately discrimi-
nate among strains, with only on average 22% (SD:
11.5%; minimum, median, maximum: 5%, 26%, 37%,
respectively) of the replicates not correctly classified sug-
gesting distinct life history strategies of each cell line. This
latter analysis cannot be done if working on the 10 strain
means only.

Discussion
Our results show a trade-off between aggregation and dis-
persal (Figure 5A) in T. thermophila as expected at a very
basic theoretical level, but this trend was only significant
when taking into account within-strain variation. The dif-
ference between results from the two analyses suggests
that this trade-off is fairly weak and not necessarily due to
additive genetic variation. Given this pattern at the pheno-
typic level, increased dispersal should reduce group stabil-
ity and thus the benefits of maintaining aggregative
behavior. We also found that aggregative strains showed a
reduced capacity for colonizing new patches from single
cells (Figure 5C), which may reflect a reduced capacity to
exchange growth and survival factors essential at low den-
sity [32]. This reduced colonization ability of more aggre-
gative cells would produce strong selection against
dispersal in aggregative strains and one would predict a
strong negative association between aggregative and dis-
persive behavior among strains. However, the strength of
the trade-off between dispersal and aggregation we
detected in T. thermophila was not as strong as one might

Summary of the associations between aggregation and the seven other life-history traits of Tetrahymena thermophilaFigure 6
Summary of the associations between aggregation 
and the seven other life-history traits of Tetrahymena 
thermophila. Principal component plot representing the 
associations between the first two component axes and com-
ponent loading vectors for cell aggregation index g and the 
seven other life-history traits quantified for the ten T. ther-
mophila strains studied [30]. Vectors that share a similar 
direction and length suggest traits that are more highly asso-
ciated among cell strains. For the same reason that replicates 
of a given strain were not linked between experiments, 
points on the graph show means of five random associations 
between replicates of each strain to illustrate both between 
and within strain variation as in Figure 5. Results on analyses 
of the 10 strain means were extremely similar and are not 
shown.
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expect if aggregation reflects cooperation in this species
and may exemplify the notion that dispersal-cooperation
relationships could be far from straightforward
[11,13,20].

Aggregative behavior is an essential component for coop-
eration to evolve since it allows individuals the proximity
necessary to transfer information or resources. Such
behavior has been documented in many taxa, ranging
from Pseudomonas aeruginosa bacteria [24] to side-
blotched lizards Uta stansburiana [26], and is character-
ized by both benefits and costs of social interactions.
Aggregation in T. thermophila reflects cooperation through
both the exchange in growth and survival factors at low
population density [32] and longer population persist-
ence among kin in more aggregative cell strains (unpub-
lished data). In the present paper we also detected a
number of potential costs associated with this cooperative
aggregation behavior that were more prominent in analy-
ses including within-strain variation. More aggregative T.
thermophila strains had lower growth rates (Figure 5F) and
showed a tendency to have smaller elongated cell shapes
(Figure 5D) that could reflect lower resource acquisition
and a reduced ability to divide. This lower resource base
may have also contributed to the reduced survival rates of
these clones when nutrients were suddenly removed (Fig-
ure 5E) found at the phenotypic level but not in analyses
on averages across replicates. Increased dispersal would
cause a loss in kin-based cooperative behavior (unpub-
lished data) which counter-balances the phenotypic costs
of aggregation as social structure becomes less stable and
thus would lead to selection for reduced dispersal among
more aggregative strains. Increased dispersal would make
social structure less stable and so cause a loss in the kin-
based cooperative behavior (unpublished data) that
counter-balances phenotypic costs of aggregation, and
this loss would lead to selection for reduced dispersal
among more aggregative strains.

Two lines of logic lead to the expectation of a strong trade-
off between dispersal and aggregation: 1) that dispersal
will break apart aggregations and thus lead to the loss of
cooperative group benefits, and 2) that high dispersal
rates preclude the ability to form stable social groups nec-
essary to evolve cooperation [4,29,39]. We detected a dis-
persal-aggregation trade-off consistent with basic theory
in analyses including within-strain variation, but this rela-
tionship disappeared in analyses focused only on among
strain variation suggesting the relationship is weak or due
to non-genetic effects. The nature of this trade-off could be
weaker than expected from theory due to specific adapta-
tions that would allow cooperative aggregators to benefit
from dispersal. For example if there is strong selection for
dispersal (e.g. due to high levels of kin competition: [1] or
habitat instability: [40]; reviewed in [39]), then both
social and asocial strains should disperse and behaviors

that allow social strains to find or create social groups after
dispersal would be favored.

Kin-recognition (and/or greenbeard recognition) is one
such adaptation that would allow strains to gain the ben-
efits of dispersal and subsequently regroup among genet-
ically similar individuals to benefit from cooperation. For
example, in both ascidians and side-blotched lizards, kin
or greenbeard-recognition allows genetically similar indi-
viduals to regroup and cooperate after juvenile dispersal
[26,41]. Indeed, T. thermophila shows kin-recognition and
kin-recruitment among cooperative strains which can
both protect cooperators from invasion by cheaters as well
as encourage cooperation among genetically similar indi-
viduals after a dispersal event (unpublished data). Thus
kin-recognition in this species facilitates the evolution of
dispersal among cooperators and could contribute to a
reduction in the strength of a dispersal-aggregation trade-
off that we found.

Context-dependent and phenotype dependent dispersal
[42-44] provides a second mechanism that can alter the
strength and nature of the relationship between dispersal
and stable social group structure and could lead to more
similar dispersal rates for social and asocial phenotypes.
Dispersal to new patches will result in a loss of coopera-
tive opportunities for social strains, endangering their sur-
vival and reproductive success, because they are likely to
arrive in patches that are empty or occupied by other,
potentially non-cooperative, strains (field samples suggest
some mixing of strains in nature; [45], F.P. Doerder, pers.
comm.). However, this cost could be ameliorated by phe-
notype dependent dispersal, if such dispersing morphs of
aggregative strains are equipped for greater independence
and can more easily start up a new colony or avoid com-
petition, similar to cases such as highly social naked mole
rats and many ants [8,46,47]. Consistent with this, we
found that more aggregative T. thermophila strains showed
a much greater variation in the degree of elongation
among cells, producing some highly elongated cells and
some very round cells (Figure 5B). Because elongation of
this type can lead to long distance dispersal [30], aggrega-
tive strains appear to be making some highly dispersive
individuals and some very sedentary individuals. In con-
trast, less aggregative strains show much less variation in
cell morphology and less cell elongation suggesting that
individual cells are more similar in their dispersive capa-
bilities and travel shorter distances than 'cooperative dis-
perser morphs'. Dispersal phenotypes may be a common
solution to minimize the loss of cooperation during dis-
persal and colonization in highly social species.

The effects of kin-recognition coupled with a dispersal
polymorphism provide important mechanisms to allow
the benefits of dispersal without completely sacrificing the
benefits of cooperation and stable group structure. Kin-
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recognition is used to modulate cooperative behavior and
orient dispersal in this species (unpublished data), which
would allow disperser morphs among cooperative strains
to leave high density or over-exploited patches while still
benefiting from cooperation upon arrival. Kin-oriented
dispersal among cooperative strains has only been tested
at shorter distances (unpublished data), so it remains pos-
sible that the highly elongated disperser morphs we
detected among cooperators specifically target uninhab-
ited patches. Indeed, one advantage of dispersal is to
escape kin competition. Since cooperative strains suffer
reduced colonization success, we might predict that dis-
perser morphs among cooperative strains will have much
higher colonization success as single cells than the average
value we detected here from randomly selected individu-
als in the population. Alternatively, dispersal by T. ther-
mophila 'disperser morphs' might occur in groups [17]
which would provide the benefits of cooperation at low
population size [32], thereby facilitating the colonization
of new habitat patches.

Production of alternative life history strategies detected in
T. thermophila (here and [30]) stems from the integration
of many different traits (Figure 5). We found extensive
variation in the degree of aggregation among T. ther-
mophila strains (genetically isolated cell strains) which
was consistent across replicates, suggesting considerable
genetic variation for aggregative behaviors. Variation in
aggregative behaviors detected here is linked to variation
in both the costs (this paper) and benefits (unpublished
data) of cooperative behavior as well as dispersal ability
[30] and a whole suite of other life history traits (here and
[30]). A consequence of these linkages between traits is
the trade-off between dispersal and aggregation, which in
turn favors adaptations for dispersal among cooperative
strains. The successful production of cooperative dispersal
morphs most likely requires the coordination and integra-
tion of a large number of traits which might be greatly
facilitated by outcrossing among specific combinations of
'mating types' [36]. Similar mating systems appear to be
common among other single celled eukaryotes that show
cooperative behaviors yet inhabit patchy and ephemeral
habitats that favor dispersal [48-50] and may suggest that
dispersal polymorphisms also exist in species such as Dic-
tyostelium slime molds.

An emerging pattern in highly cooperative taxa (e.g. mole
rats, aphids, ants, and Tetrahymena) appears to be that dis-
persal is characterized by specialized phenotype-depend-
ent dispersers (see also [44]). When dispersal is favored
[1,40], sedentary cooperative individuals will benefit
from being able to take on a very different phenotype
associated with higher mobility and the ability to exist in
solitary conditions in order to successfully disperse. Con-
sistent with this, dispersal morphs among cooperators

would be capable of much longer range dispersal than
non-cooperative individuals in T. thermophila since longer
shaped cells are capable of longer distance dispersal [31].
Dispersal distance depends on many factors with cooper-
ation being key [2,14,19]. Many highly social species have
large group size (e.g. ants, bees, ground squirrels; [51])
thus requiring long distance dispersal to escape kin neigh-
borhoods and kin competition (i.e. the scale of competi-
tion must be greater than the scale of cooperation, [9,11]).
In contrast, asocial individuals can benefit from smaller
scale dispersal [25] to find patches with better resources or
cooperative individuals to exploit without suffering the
costs and risks of long distance dispersal. While T. ther-
mophila shows this pattern, our current data does not
allow us to evaluate whether the causes of dispersal differ
between social and asocial strains (kin competition vs.
resource availability respectively). However, a gradient of
cooperative and dispersive strategies is an essential feature
needed in an organism to realistically test the evolution of
condition-dependent dispersal patterns.

Conclusion
Advanced forms of social behavior benefit from stable
population structure, so we expect a trade-off between
social aggregation and dispersal and indeed find such pat-
terns across species. Our results suggest such a dispersal-
aggregation trade-off may exist among different cell lines
within a species of single celled ciliates, Tetrahymena ther-
mophila. However, the relationship between dispersal and
cooperative aggregation may not be due to genetic effects
and is much weaker than expected by theory given the
impact of reduced colonization success suffered by aggre-
gators. Our evidence suggests that the strength of the dis-
persal-aggregation trade-off is reduced by a number of
specific adaptations including kin-recognition and a dis-
persal polymorphism that allow aggregators to disperse
without losing all the benefits of aggregation. Such life
history adaptations are likely a more common resolution
to tension between dispersal and social aggregation than
generally appreciated.
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