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Abstract
Background: The primates are among the most broadly studied mammalian orders, with the
published literature containing extensive analyses of their behavior, physiology, genetics and
ecology. The importance of this group in medical and biological research is well appreciated, and
explains the numerous molecular phylogenies that have been proposed for most primate families
and genera. Composite estimates for the entire order have been infrequently attempted, with the
last phylogenetic reconstruction spanning the full range of primate evolutionary relationships having
been conducted over a decade ago.

Results: To estimate the structure and tempo of primate evolutionary history, we employed
Bayesian phylogenetic methods to analyze data supermatrices comprising 7 mitochondrial genes
(6,138 nucleotides) from 219 species across 67 genera and 3 nuclear genes (2,157 nucleotides)
from 26 genera. Many taxa were only partially represented, with an average of 3.95 and 5.43
mitochondrial genes per species and per genus, respectively, and 2.23 nuclear genes per genus. Our
analyses of mitochondrial DNA place Tarsiiformes as the sister group of Strepsirrhini. Within
Haplorrhini, we find support for the primary divergence of Pitheciidae in Platyrrhini, and our results
suggest a sister grouping of African and non-African colobines within Colobinae and of
Cercopithecini and Papionini within Cercopthecinae. Date estimates for nodes within each family
and genus are presented, with estimates for key splits including: Strepsirrhini-Haplorrhini 64 million
years ago (MYA), Lemuriformes-Lorisiformes 52 MYA, Platyrrhini-Catarrhini 43 MYA and
Cercopithecoidea-Hominoidea 29 MYA.

Conclusion: We present an up-to-date, comprehensive estimate of the structure and tempo of
primate evolutionary history. Although considerable gaps remain in our knowledge of the primate
phylogeny, increased data sampling, particularly from nuclear loci, will be able to provide further
resolution.
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Background
The evolutionary relationships of our own order, Pri-
mates, have been of central interest since the birth of phy-
logenetic analysis. There has been consistent attention
towards the relationships of primates to other mammals,
with molecular and (more recently) morphological evi-
dence providing strong support for the placement of Pri-
mates in the superorder Euarchontoglires [1-3]. Within
Primates, the relationships within and between various
families and genera continue to cause debate, despite the
numerous molecular estimates of the phylogeny that have
been presented over the past 10 to 15 years [4]. With
increasing concerns over the extinction risks facing many
primates, along with the recent publication of complete
nuclear genomes from the chimpanzee [5] and rhesus
macaque [6], there has been a resurgence of interest in
resolving the evolutionary relationships amongst these
diverse taxa [4,7].

In modern classifications, the order Primates comprises
two suborders: Strepsirrhini (wet-nosed primates) and
Haplorrhini (dry-nosed primates). This has not always
been the case. One of the foremost debates in primate sys-
tematics has long concerned the position of tarsiers. Tra-
ditionally viewed as being more closely associated with
lemurs and lorises, tarsiers were placed within a suborder
Prosimii, under the gradistic view of primate taxonomy
[8]. Modern taxonomic schemes generally recognize their
closer affiliation with monkeys and apes, grouping them
with Haplorrhini [9]. The majority of molecular evidence
supports the latter grouping [4,10-13], although a large
number of molecular studies still provide support for the
Prosimii concept [14-18]. The question is succinctly
reviewed by Yoder [19] and is further examined by Eizirik
et al. [18]. There is now general agreement on the higher-
level relationships within the two suborders [20], with
Strepsirrhini comprising Lorisiformes (galagos and
lorises) and the sister-pairing of the monophyletic
Lemuriformes (lemurs) and Chiromyiformes (the aye-
aye), and with Haplorrhini consisting of Platyrrhini (New
World monkeys) and Catarrhini (apes and Old World
monkeys). Within these groups, however, there are
numerous disagreements over interfamilial relationships.
Molecular evidence has sometimes favored Cheirogalei-
dae as sister group to Lemuridae, although current evi-
dence suggests that the four lemuriform families
(Lemuridae, Cheirogaleidae, Lepilemuridae and Indrii-
dae) represent a four-way split, which may be real or may
simply reflect a lack of resolution [4,21,22]. Within Hapl-
orrhini, controversial taxonomic issues remain. The para-
phyly of an all-encompassing Cebidae with respect to the
tamarins and marmosets is widely recognized now
[9,23,24], but the branching order of the major lineages is
still questionable. Among the Old World monkeys, partic-
ularly within Colobinae, intergeneric relationships are
still unclear.

The timescale of primate evolution has also been the sub-
ject of numerous molecular analyses over the past few dec-
ades [4,11,18,20,21,23-32]. Typically, divergence time
estimates made using molecular phylogenetic approaches
have supported a much more protracted timeframe for
primate evolution than that suggested by the fossil record
[27,33]. Inferring the age of the most recent common
ancestor of all primates using molecular data has been of
particular interest, owing to the poor understanding of
early primate fossils and the contested affinity of Plesiad-
apiformes. The oldest unambiguous primate fossil is
dated at 55 million years [34,35], whereas molecular esti-
mates often place the common primate ancestor in excess
of 80 million years ago (MYA) [4,18]. Estimates have var-
ied with the reconstruction method employed and genetic
loci used. In some instances this has resulted in consider-
ably different date estimates; for example, Raaum et al.
[29] recently dated the Cercopithecoidea-Hominoidea
split at 23 MYA, whilst Yoder and Yang [27] and Steiper
and Young [26] favored an older date of 30-40 MYA. This
is further exemplified by Kumar et al. [36], who showed
that both sampling method and calibration dates affect
the confidence limits of the estimated timing of the
human-chimpanzee divergence (calculated at 4.86 - 7.02
MYA, depending on the preferred date of the split between
apes and Old World monkeys). Furthermore, previous
estimates have been limited by the number and range of
primate species, genera and families included in phyloge-
netic analyses, leaving certain groups (such as Tarsiidae
and Daubentoniidae) in need of further study.

The task of estimating primate divergence times has been
complicated by the presence of pronounced substitution
rate heterogeneity among lineages, a phenomenon that
has been of long-standing interest. For example, Good-
man's 'hominoid slowdown' hypothesis was proposed in
the early 1960s [37,38], and has recently been strongly
supported by genomic studies [39,40]. Detailed analyses
of primate sequences have revealed extensive departures
from rate constancy in several other parts of the tree
[4,18,27], calling for the employment of relaxed-clock
methods that can explicitly accommodate rate heteroge-
neity among lineages [41,42].

While there may be consensus regarding relationships
across the main primate clades, there is continued disa-
greement at the species, genus and even family levels. One
of the primary challenges in primate molecular phyloge-
netics remains the issue that different markers support
conflicting trees. Introgression between congeneric spe-
cies, occasionally even between species in different (if
closely related) genera, is an ever-present possibility, as is
the origin of whole species by hybridization. The
macaque example, as analyzed by Tosi et al. [43,44],
serves as a warning.
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Previous attempts to reconstruct the phylogeny of whole
orders, even classes, have often used a "supertree"
approach [11,30]. This method has a number of impor-
tant weaknesses [45,46]; we also point out below that, in
Primates, equating trees of different quality has produced
some extremely misleading results. In this study, we draw
together data from a number of mitochondrial and
nuclear genes to construct data supermatrices, with a view
to developing a consensus tree and estimating dates for
key divergence events.

Results and Discussion
This study represents a comprehensive phylogenetic study
of the Order Primates, with regard to both taxonomic and
gene coverage. This enables previous phylogenetic assess-
ments of the order, which have been performed at smaller
scales, to be placed into context. Previous estimates of rate
heterogeneity and divergence dates, which have been
raised in a piecemeal fashion for various primate clades,
can now be examined on a wider scale. Below, we present
and discuss the results obtained by Bayesian and maxi-
mum-likelihood analysis of three DNA data supermatri-
ces (mitochondrial species-level, mitochondrial genus-
level, and nuclear genus-level).

BEAST analysis of mitochondrial sequence data
The results of our analyses using the Bayesian phyloge-
netic software BEAST [47], which is able to estimate the
tree topology and divergence times in a relaxed-clock
framework, are in agreement with those of previous stud-
ies regarding infra-ordinal relationships across the pri-
mates (Figure 1) [4,11,30]. The mean date estimate for the
basal primate split, Strepsirrhini and Haplorrhini at 63.7
MYA (Additional file 1), is broadly in agreement with
other estimates such as that of Goodman et al. [25] at 63
MYA, but younger than those of Steiper and Young [26] at
77.5 MYA and Janecka et al. [48] at 79.6 MYA.

Tarsiiformes
Our results place the tarsiers as sister group to Strepsir-
rhini, with a posterior probability of 1.0. The divergence
date estimate for the split between tarsiers and strepsir-
rhines at 58.6 MYA is only slightly younger than the Pri-
mate-Euarchonta split (67.6 MYA) and the Strepsirrhini-
Haplorrhini split (63.7 MYA). We concur with Eizirik et al.
[18] that the split between the three major primate line-
ages occurred soon after the origin of primates, affording
limited timed for a shared evolutionary history, which
explains the difficulty in resolving the phylogenetic posi-
tion of tarsiers. Given the long-standing disagreements
over the phylogenetic position of tarsiers, this result obvi-
ously needs to be tested and retested. The consequences of
a tarsiers/strepsirrhine association, if it is correct, are that
haplorrhinism, including a haemochorial placenta and
fovea and macula in the retina, are the primitive condi-

tions for Primates as a whole. Given the general implica-
tions of this conclusion (for example, the retinal structure
would require that the ancestral primates were diurnal), it
would be wise to accumulate further molecular data. We
also note that the very acceptance of the subordinal divi-
sion between Strepsirrhini and Haplorrhini depends on
the tarsiers being in a clade with the "anthropoids", not
with the lemurs; were this association with the lemurs to
be corroborated by future studies, the old category
Prosimii would have to be revived.

Strepsirrhini
The phylogenetic analysis presented here is in agreement
with most recent molecular studies which indicate that
the major split within Strepsirrhini was between Lemuri-
formes/Chiromyiformes and Lorisiformes, although the
split between Lemuriformes and Chiromyiformes came
shortly afterward [4,21,22,30]. Furthermore, we find
strong support for the placement of Cheirogaleidae within
Lemuriformes, not within Lorisiformes.

Our mean estimate of the time to the most recent com-
mon ancestor of Lemuriformes, 32.4 MYA, is congruent
with other date estimates [30], although notably younger
than the date proposed by Matsui et al. [32] of 55.3 MYA.
All molecular studies, including this one, support a very
early divergence of Daubentonia from the other Malagasy
lemurs, contra early morphological assessments
(reviewed in [9]). It is mainly for this reason that Poux et
al. [49] rejected the relevance of a putative land-bridge,
which may have existed from the middle Eocene to the
late Oligocene (about 45 to 26 MYA), to the question of
the origin of the mammals of Madagascar. According to
their molecular clock estimates, the tenrecs would have
begun their diversification 31.8-19.7 MYA, the
nesomyines (Malagasy rodents) 29.6-18.2 MYA, and the
Malagasy carnivores 24.8-14.1 MYA, and all of these
would more or less fit within the timeframe proposed for
the supposed land-bridge. However, the Malagasy lemurs,
whose initial diversification they dated to 69.6-51.6 MYA,
would not. The initial diversification of Lemuriformes
(s.s., that is, excluding Daubentonia) does fit within the
timeframe for this land-bridge. If the Malagasy primates
colonized via the land-bridge, they did so after the diver-
gence of Lemuriformes and Chiromyiformes. Godinot
[50] has pointed to similarities between Daubentonia and
the enigmatic Fayûm primate Plesiopithecus and explicitly
supported such a scenario. It is perhaps striking that the
ancestors of Chiromyiformes and Lemuriformes sepa-
rated so much longer ago than the known diversification
within Lemuriformes (between one-and-a-half times and
twice as long), particularly in light of the significant diver-
sity of extant Lemuriformes. If the above scenario is cor-
rect and the common ancestors of Lemuriformes and
Chiromyiformes arrived separately in Madagascar during
Page 3 of 19
(page number not for citation purposes)



BMC Evolutionary Biology 2009, 9:259 http://www.biomedcentral.com/1471-2148/9/259

Page 4 of 19
(page number not for citation purposes)

Mitochondrial tree of primate generaFigure 1
Mitochondrial tree of primate genera. Maximum-clade-credibility tree of the Order Primates, inferred from a genus-level 
mitochondrial DNA supermatrix using the Bayesian phylogenetic software BEAST. Nodes are labelled with a/b, where a repre-
sents the Bayesian posterior probability expressed as a percentage and b represents the percentage of 1,000 maximum-likeli-
hood bootstrap replicates that support the node. Asterisks indicate 100% support; nodes with 100% support in both Bayesian 
and maximum-likelihood frameworks are labelled with single asterisks. The tree is drawn to a timescale, with node heights rep-
resenting mean posterior estimates.
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the time of the putative land-bridge, it is evident that there
is still much to learn about the time period between their
Palaeocene or Eocene separation in Africa and the Late
Oligocene when the simultaneous four-way split among
the lemuriform families occurred in Madagascar.

Notwithstanding the above, it is clear that whether the
most recent common ancestor of the Malagasy lemurs was
Malagasy or African, the separation of the Daubentonia lin-
eage followed very shortly after the separation between
the Malagasy lemurs and Lorisiformes. Accordingly, we
maintain the infraorder Chiromyiformes as separate from
Lemuriformes.

Date estimates for the timing of the lorisiform radiation
have varied widely, including: 13.8-14.2 MYA [4] and 55
MYA [51]. We propose a radiation at around 37.5 MYA
which is, broadly speaking, compatible with the recent
identification of one fossil from the Late Middle Eocene of
Egypt as a galago and of another as a probable lorisid [52].

Strepsirrhini: Lemuriformes
Inter-relationships amongst Lemuriform families are less
well understood. Here we propose two sister clades, Lep-
ilemuridae-Cheirogaleidae and Lemuridae-Indriidae (Fig-
ure 2); this is in contrast to previous studies which have
either been unable to resolve relationships at this level at
all, or provided other sister groupings for these families
(compare the range of solutions proposed in
[4,11,21,22]).

The grouping of Phaner with Lepilemuridae, rather than
with the other Cheirogaleidae, is difficult to explain. At
least one striking synapomorphy (the form of the carotid
circulation) unites Cheirogaleidae. Potential explanations
may include the following: the carotid synapomorphy
may have characterized the common ancestor, but
reversed in Lepilemur; the unusual carotid circulation may
have evolved in parallel between Phaner and the (other)
Cheirogaleidae, a possibility made more plausible by the
fact that it recurs in the Lorisiformes; there could have
been some parallelism in mitochondrial DNA sequences
between Phaner and Lepilemur; there could have been
introgression between lineages after their initial separa-
tion; or the unexpected placement could be an artefactual
result caused by the presence of one or more nuclear pseu-
dogenes in the data supermatrix. Roos et al. [53] also
group Phaner with Lepilemuridae based on sequences of
cytochome b, but this is in contrast to their analysis using
SINEs in which Phaner groups with Cheirogaleidae. A fur-
ther explanation may simply be that there are insufficient
sequence data and that the true placement of Phaner will
only be resolved when more data become available,
although all assessments, except the supertree of Purvis
[11], agree that it is by far the most phylogenetically dis-

tinct member of Cheirogaleidae. Within Cheirogaleidae
(if Phaner is correctly excluded), the genus Cheirogaleus is
depicted as the sister to the rest of the family (Figure 2),
followed by Allocebus, leaving Microcebus and Mirza as sis-
ter genera. Divisions within both Cheirogaleus and Micro-
cebus seem to be deep, implying a considerable time depth
and raising the question of whether each should be split
into two or more genera. The same question arises when
considering the large genetic distance between Lepilemur
mustelinus and other members of that genus.

Pastorini et al. [54] have examined inter-relationships
amongst species of Eulemur. We find some agreement with
these authors regarding the early divergence of E. macaco
and of E. coronatus compared with the more recent diver-
gence of E. albifrons, but other relationships are less con-
sistent between the two studies. Complete congruence can
be seen between the present results and Pastorini et al.'s
[55] phylogeny of Hapalemur and its relatives. Indri is
depicted as the sister to the other genera of the Indriidae;
within Propithecus, we confirm that P. tattersalli belongs in
the P. verreauxi group, as Pastorini et al. [55] maintained,
not in the P. diadema group.

We have to inject some notes of caution into the interpre-
tation of the rest of the lemuriform results. These relate to
the accuracy of identifications. For example, prior to
2000, the small mouse lemur sympatric with Microcebus
murinus in Kirindy was identified as M. myoxinus, but
Rasoloarison et al. [56] showed that this identification
was in error, and described the pygmy species as M. ber-
thae. Likewise, until 2000, all Western Malagasy woolly
lemurs were thought to belong to a single species, but
Thalmann and Geissmann [57] began the process of split-
ting them into several species. We therefore cannot guar-
antee the correctness of the species determinations in
these two genera.

Strepsirrhini: Lorisiformes
Inter-relationships amongst members of Lorisiformes
have also been problematic, with little agreement reached
across studies and genetic loci. The data are analytically
challenging, as the results presented here illustrate (Figure
2). Within Lorisiformes, in our mitochondrial trees,
Galagidae is monophyletic but Lorisidae is not - the two
African genera, Perodicticus and Arctocebus, group with
Galagidae rather than with the two Asian genera, Loris and
Nycticebus. This supports the long-standing conclusions of
Goodman (see [25] and elsewhere) that the African
lorisids, Asian lorisids and galagids form a fairly even
three-way split, and has implications for the polarity of
their morphological adaptations (the "slow-climbing"
features of lorisid anatomy would be plesiomorphic for
Lorisiformes, and the vertical-clinging-and-leaping
galagid anatomy would be derived from it). Three fami-
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Mitochondrial tree of strepsirrhine speciesFigure 2
Mitochondrial tree of strepsirrhine species. Maximum-clade-credibility subtree of Strepsirrhini, inferred from a species-
level mitochondrial DNA supermatrix using the Bayesian phylogenetic software BEAST. Nodes are labelled with a/b, where a 
represents the Bayesian posterior probability expressed as a percentage and b represents the percentage of 1,000 maximum-
likelihood bootstrap replicates that support the node. Asterisks indicate 100% support; nodes with 100% support in both Baye-
sian and maximum-likelihood frameworks are labelled with single asterisks. The tree is drawn to a timescale, with node heights 
representing mean posterior estimates.
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lies, rather than two families, one of them having two sub-
families, would be the taxonomic consequence. So far, the
only convincing evidence for monophyly of the family
Lorisidae is the presence of three SINEs [53], though in
one earlier study [11] not only was the family mono-
phyletic, but an African/Asian partition within it did not
exist - a reflection of the quality of the dataset on which it
was based.

Within Galagidae, the tree shows paraphyletic relation-
ships amongst what Groves [9] provisionally regarded as
the genera Galago, Otolemur and Euoticus. The paraphyly of
Galago with respect to Otolemur is not unexpected, and has
already been espoused by Brandon-Jones et al. [58] and
Masters et al. [59]. Groves [9] recognized Otolemur and
Euoticus as genera separate from Galago, but considered
that it would be "unsafe for the present" to recognize any
others, distinctive though some of the species groups
might be. It would appear from the present results that
this potential paraphyly of Galago (sensu [9]) may have
been underestimated. DelPero et al. [60] placed the spe-
cies (better, species-group) commonly called Galago alleni
in the Otolemur clade, and placed members of the demidoff
and zanzibaricus groups as sisters to a clade combining
Galago (the senegalensis group) and Otolemur. They did
not, however, have any specimens of Euoticus or Galago
matschiei, or of members of the "roller-caller" group (G.
orinus, G. rondoensis) of Bearder et al. [61]; so their analy-
sis, while suggestive, is incomplete. It is certain that there
is much more to be learned about the inter-relationships
of taxa in Galagidae, and a final taxonomic arrangement
is not possible as yet; it seems likely that at least one new
genus (for the zanzibaricus group) is needed, possibly one
or two others (for the roller-callers and perhaps for Galago
matschiei). Morphological studies are urgently needed to
test this possibility and to define any new genera.

Haplorrhini
Within Haplorrhini, the catarrhine families Cercopitheci-
dae, Hylobatidae and Hominidae are each monophyletic
(Figure 3). Of the platyrrhines, however, only Atelidae
and Aotidae are monophyletic, while Cebidae and
Pitheciidae are both paraphyletic (Figure 4).

Haplorrhini: Platyrrhini
The platyrrhines have long been a source of debate regard-
ing inter-relationships at family, genus and species levels.
Platyrrhines were traditionally divided into two families,
Callitrichidae (marmosets and tamarins) and Cebidae
(cebids), sometimes even placing Goeldi's marmoset in a
third family, Callimiconidae [62]. As long ago as 1981,
however, this arrangement was challenged by Rosen-
berger [63], who pointed out its artificiality, and instead
proposed to include the marmosets and tamarins in Cebi-
dae, placing Ateles and its relatives together with Pithecia

and its relatives in a second family, Atelidae (each of the
two families having two subfamilies: Cebinae and Callitri-
chinae in Cebidae, and Atelinae and Pitheciinae in Ateli-
dae). This perceptive analysis differed from modern
molecular results only in one respect: that Aotus was
included in Atelidae (in the subfamily Pitheciinae)
instead of in a clade with Cebidae where we now know it
belongs. Goodman et al. [25], Canavez et al. [64], Schnei-
der et al. [23] and Poux and Douzery [4] agreed in aligning
the marmosets with Cebinae and in placing Ateles and its
relatives in a separate family Atelidae, but removed Pithe-
cia and its relatives from that family and placed them in a
separate family, Pitheciidae. Meireles et al. [65] demon-
strated that, within the subfamily Atelinae, Brachyteles and
Lagothrix form a sister group to Ateles, while Alouatta forms
a sister group to Atelinae. Groves [9] adopted these divi-
sions, but ill-advisedly replaced some of the family-group
names with the others which have priority but in fact con-
travene the International Code of Zoological Nomenclature
[66].

There are a number of questions remaining about Platyr-
rhini, such as the position of Aotus. For Groves [9], this
genus forms a monotypic family, but for others, going
back as far as Rosenberger [63], it is close to other groups
among the platyrrhines. Do Pithecia and its relatives, Cal-
licebus, Chiropotes and Cacajao, form a family on their own
(Pitheciidae), or do they form a clade with Ateles and its
relatives so that they should be included with them in
Atelidae? How distinctive are the four groups of true mar-
mosets: that is to say, should Callimico, Cebuella and Calli-
bella be separated from Callithrix at generic level, or
should they be retained in Callithrix as subgenera? What is
the position of the yellow-tailed woolly monkey? The lat-
ter has commonly been included with other woolly mon-
keys as Lagothrix flavicauda, but Groves [9] could find no
synapomorphic characters to unite them and on this basis
revived the generic name Oreonax for flavicauda; no molec-
ular sequence data are yet available for this species. Age
estimates for the most recent common ancestor of Platyr-
rhini have ranged between 20.8 MYA [26] and 25 MYA
[25]; here our mean estimate (26.6 MYA) is only margin-
ally older. The question has a taxonomic importance quite
apart from that of knowing the true phylogeny; Goodman
et al. [25] proposed that taxonomic rank be linked to time
of separation (approximately the Oligocene-Miocene
boundary for families, and the Miocene-Pliocene bound-
ary for genera).

Answers to some of these questions are suggested by the
present study. In contrast to those studies that group Aotus
within Cebidae [23,67,68], we find a closer affinity
between Aotus and Atelidae, in part reviving Rosenberger's
arrangement. The severe paucity of platyrrhine sequence
data renders resolution of these issues problematic until
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Mitochondrial tree of cercopithecoid speciesFigure 3
Mitochondrial tree of cercopithecoid species. Maximum-clade-credibility subtree of Cercopithecoidea, inferred from a 
species-level mitochondrial DNA supermatrix using the Bayesian phylogenetic software BEAST. Nodes are labelled with a/b, 
where a represents the Bayesian posterior probability expressed as a percentage and b represents the percentage of 1,000 
maximum-likelihood bootstrap replicates that support the node. Asterisks indicate 100% support; nodes with 100% support in 
both Bayesian and maximum-likelihood frameworks are labelled with single asterisks. The tree is drawn to a timescale, with 
node heights representing mean posterior estimates.
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Mitochondrial tree of platyrrhine speciesFigure 4
Mitochondrial tree of platyrrhine species. Maximum-clade-credibility subtree of Haplorrhini, inferred from a species-level 
mitochondrial DNA supermatrix using the Bayesian phylogenetic software BEAST. Nodes are labelled with a/b, where a repre-
sents the Bayesian posterior probability expressed as a percentage and b represents the percentage of 1,000 maximum-likeli-
hood bootstrap replicates that support the node. Asterisks indicate 100% support; nodes with 100% support in both Bayesian 
and maximum-likelihood frameworks are labelled with single asterisks. The tree is drawn to a timescale, with node heights rep-
resenting mean posterior estimates.
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data for a greater variety of species become available. Our
date estimates for Cebidae, Atelidae and Pitheciidae are in
broad agreement with previous estimates [23,25,26].

Some of the relationships between species are of particu-
lar interest here. In agreement with Goodman et al. [25],
we place Callicebus torquatus as the sister taxon to the
remaining congeneric species included in our analysis.
Within Saguinus, there is no support for a division
between a "bare-faced" (geoffroyi, oedipus) and a "hairy-
faced" (midas, fuscicollis, melanoleucus); as with some of the
lemuriform species, it is possible that incorrect identifica-
tion of specimens, in particular S. fuscicollis, may have
confounded analysis. Within Callithrix, we confirm a basic
division between the Atlantic forest species (C. jacchus
group) and the Amazonian species (including C. pygmaea,
which until about 10 years ago was usually placed in a
separate genus, Cebuella [11]). One consistent feature is
the separation of Central American from South American
groups: Saimiri oerstedii from S. sciureus and boliviensis;
Ateles geoffroyi and fusciceps from other species; and
Alouatta pigra, coibensis and palliata from the other conge-
neric species. The division within Saguinus, if it can be
maintained, could be seen as part of the same biogeo-
graphic scenario.

Haplorrhini: Catarrhini
Within Catarrhini, our results agree with most other stud-
ies [20] that Hominidae and Hylobatidae form a sister
clade to Cercopithecidae, and that, within Cercopitheci-
dae, both Cercopithecinae and Colobinae are mono-
phyletic (Figure 3). Phylogenetic relationships within
these two subfamilies, especially Colobinae, are less well
understood. Groves [9] divided the colobines into three
informal groups based on geographic and morphological
data: African (Colobus, Procolobus and Piliocolobus), Odd-
Nosed (Nasalis, Pygathrix, Rhinopithecus and Simias), and
Langurs (Presbytis, Semnopithecus and Trachypithecus). Here
we find the Langurs and Odd-Nosed monkeys group
together to the exclusion of the African group (Colobus).
Xing et al. [69] found Pygathrix and Nasalis to form the sis-
ter group to Trachypithecus, followed by Colobus; this
would suggest that the Langur and Odd-Nosed groups
formed a sister clade to the African group. Here we find
evidence for this sister grouping but no support for dis-
tinct Langur and Odd-Nosed sister clades; interspecific
relationships among the Odd-Nosed colobines and
Langurs have been little studied.

The problem of the South Asian langurs is a vexing one.
Osterholz et al. [70] studied mitochondrial DNA, Y-chro-
mosome DNA and retroposon integrations in Semno-
pithecus from North India, South India and Sri Lanka, the
Trachypithecus pileatus group from the north-eastern part
of the subcontinent, T. vetulus from Sri Lanka, T. johnii

from South India, and a variety of Trachypithecus species
from Southeast Asia. They found, as do we, that the South-
east Asian species cluster together regardless of the choice
of genetic marker, but that the T. pileatus group formed a
branch of the Semnopithecus clade for mitochondrial DNA
whereas for Y-chromosome DNA it was part of the Trach-
ypithecus clade, and for retroposon integrations it formed
a branch equal to Semnopithecus and other Trachypithecus
(lacking the integrations of either). Of the two southern
Trachypithecus species, which are morphologically very
similar and have generally been reckoned to be closely
related to each other, for mitochondrial DNA T. johnii
formed a clade with South Indian Semnopithecus and T.
vetulus with Sri Lankan Semnopithecus, for Y-chromosome
DNA the two formed equal branches with the three Sem-
nopithecus branches, and they shared two retroposon
insertions with Semnopithecus. Our mitochondrial DNA
results are congruent with these, and the results taken
altogether indicate a complex pattern of hybridization in
the past, which resulted in the formation of what are evi-
dently several species of hybrid origin.

The other subfamily, Cercopithecinae, also presents prob-
lems. Xing et al. [69], using Alu elements, provided sup-
port for the widely held view that there are two tribes
within Cercopithecines, Papionini (Macaca, Papio, Therop-
ithecus, Lophocebus, Cercocebus and Mandrillus) and Cerco-
pithecini (Allenopithecus, Miopithecus, Erythrocebus,
Chlorocebus and Cercopithecus); these findings are corrobo-
rated here. Date estimates for the Cercopithecini-Pap-
ionini split have tended to be more recent than the mean
date proposed here (~18.6 MYA) generally being around
10 MYA [26,29]. There is some consensus [69] that
Macaca forms a sister group to the rest of Papionini, with
a baboon group of genera and a mandrill group of genera
forming sister groups within this separate clade. We like-
wise find distinct baboon (Papio) and mandrill (Mandril-
lus) clades, but do not find support for the separate sister-
group status of these clades relative to Macaca.

Divergence patterns within Cercopithecini are not com-
pletely resolved (Figure 3). In most schemes Allenopithecus
is sister to the other genera (see, for example, [71]), but
like Xing et al. [69], we find that the lineage leading to
Miopithecus was the first to separate, although posterior
probability support is only 0.69. Allenopithecus, the next
lineage to separate form the remaining genera of Cercop-
ithecini, is extremely morphologically different, retaining
a considerable amount of symplesiomorph (papionin-
like) conditions.

It is within Cercopithecini, subsequent to the separation
of Miopithecus and Allenopithecus, that our results seem to
be entirely novel and unexpected. Instead of a Cercop-
ithecus clade contrasting with a Chlorocebus/Erythrocebus/
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Allochrocebus clade (arboreal and terrestrial clades of [71]),
we have some Cercopithecus species groups (neglectus,
mona, hamlyni) forming a clade with Allochrocebus solatus
and Chlorocebus, while others (mitis, diana, cephus) form a
clade with Allochrocebus lhoesti plus preussi and Erythroce-
bus. However, the posterior probabilities of groupings
within Cercopithecini are generally low.

There have been numerous studies focusing on interspe-
cific relationships amongst one of the most speciose and
successful primate groups, the macaques, beginning with
Fooden [72] and elsewhere). Fooden divided the genus
into four species groups: the sylvanus-silenus group
(including nemestrina and the Sulawesi macaques), the
fascicularis group (including mulatta and others), the sinica
group (including assamensis and others) and Macaca arc-
toides forming a group on its own. This initial division was
based on morphology, in particular the shape of the
penis. Molecular studies have tended to corroborate this,
with the notable exception that there is a general consen-
sus that the basal divergence within the macaques was
between Macaca sylvanus and the Asian species, the associ-
ation between M. sylvanus and Asian macaques like M.
silenus being based on symplesiomorphic states
[43,73,74]. We provide further evidence for the basal
divergence of M. sylvanus here. Tosi et al. [73] and Evans et
al. [75] recovered three primary clades, corresponding to
the silenus, sinica and fascicularis groups. In their study of

the silenus group, the Sulawesi macaques in particular,
Evans et al. [75] suggested that M. hecki and M. ochreata
are sister taxa to another clade (M. tonkeana, M. nigrescens,
M. nigra and M. maura), which might have had separate
origins outside Sulawesi; we however recover a sister
grouping of distinct silenus and Sulawesi clades. We, like
others, find a distinct sinica group (M. radiata, M. sinica,
M. assamensis and M. thibetana), and a fascicularis group
encompassing M. fascicularis, M. arctoides, M. mulatta, M.
cyclopis and M. fuscata. With the current mitochondrial
dataset we are unable to test the hypothesis of Tosi et al.
[43] that Macaca arctoides is a species of hybrid origin
between early members of the fascicularis and sinica
groups: our mitochondrial analysis is in accord with theirs
in resembling the fascicularis group, but we have no addi-
tional Y-chromosome DNA sequences, which would be
important to verify the placement of M. arctoides.

Within Hominoidea (Figure 5) there is general consensus
that Hylobatidae, followed by Pongo, then Gorilla and
finally Pan and Homo as sister taxa, represent the pattern
of divergence (see, most recently, [29]). The family Hylo-
batidae has recently received considerable attention with
a general consensus being reached regarding its taxonomy
which includes four genera: Hylobates (H. lar, H. pileatus,
H. agilis, H. albibarbis, H. moloch, H. muelleri and H. klos-
sii), Hoolock (H. hoolock and H. leuconedys), Nomascus (N.
concolor, N. nasutus, N. gabriellae, N. leucogenys, N. siki and

Mitochondrial tree of hominoid speciesFigure 5
Mitochondrial tree of hominoid species. Maximum-clade-credibility subtree of Hominoidea, inferred from a species-level 
mitochondrial DNA supermatrix using the Bayesian phylogenetic software BEAST. Nodes are labelled with a/b, where a repre-
sents the Bayesian posterior probability expressed as a percentage and b represents the percentage of 1,000 maximum-likeli-
hood bootstrap replicates that support the node. Asterisks indicate 100% support; nodes with 100% support in both Bayesian 
and maximum-likelihood frameworks are labelled with single asterisks. The tree is drawn to a timescale, with node heights rep-
resenting mean posterior estimates.
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N. hainanus) and Symphalangus (S. syndactylus) [9,58,76-
78], and there is now overwhelming support for the
monophyly of each of the four genera [79-84]. There is
some consensus that Nomascus represents the first to
group to diverge, followed by Symphalangus, leaving
Hoolock and Hylobates as sister genera [76,81,82] (but see
also [11], which had Symphalangus and Nomascus forming
a polytomy with the rest of Hylobatidae), Takacs et al. [83]
disagreed with Roos and Geissmann [76] and Chatterjee
[81,82], finding that Hoolock represented the first to
diverge, with Nomascus as a sister group to Hylobates. Here
we find support for a (Symphalangus,(Nomascus,(Hoolock,
Hylobates))) divergence pattern, differing from Roos and
Geissmann [76] and Chatterjee [81,82] only in the posi-
tion of Nomascus. Our mean date estimate for the hylo-
batid clade (10.3 MYA) is in agreement with previous
estimates [81,82,84,85].

Cercopithecoid-Hominoid divergence time estimates
have ranged from 20 MYA [86], based on the premise of a
global molecular clock) to 47 MYA [87], based on a cali-
bration outside the order Primates), with most estimates
being around 30 MYA [26,31,32,48]; our estimate of 29.3
MYA is congruent with recent estimates. Our date estimate
for the Hylobatidae-Hominidae split (21.5 MYA) is in
broad agreement with those of Hasegawa et al. [31] (21.7
MYA) and Matsui et al. [32] (19.9 MYA), but somewhat
older than those proposed by Goodman et al. [25] at
18MYA, Yoder and Yang [27] at 11-17 MYA and Raaum et
al. [29] at 16.8 MYA. Estimated dates for other splits
within the Hominidae are consistent with those proposed
by Yoder and Yang [27], Hasegawa et al. [31], Raaum et al.
[29], Steiper and Young [26] and Matsui et al. [32]. One
explanation for this disparity could be the use of multiple
calibration points employed here. Previous studies have
tended to employ a small number of calibration points
based on interval age ranges for fossils. Raaum et al. [29],
for example, employed three calibration points deter-
mined by combining fossil dates within an age range
interval and assuming a median within that range. Their
Cercopithecoid-Hominoid date estimate of 23 MYA is an
estimate based on several hominoid fossils including Pro-
consul (dated to 19-20 MYA) and Kamoyapithecus (dated to
24-28 MYA), plus the earliest specimen of the stem cerco-
pithecoid Victoriapithecus (dated to 19 MYA). Whilst relia-
ble paleontological specimens have been invoked to
produce the lineage divergence estimates, some important
integral dating information has inevitably been lost. Here
we have attempted to circumvent this issue by using cali-
bration bounds based on multiple fossil data across the
whole phylogeny.

MrBayes Analysis of Mitochondrial Sequence Data
Comparison of the BEAST results against those produced
by MrBayes shows that there is considerable congruence
between the two forms of Bayesian phylogenetic analysis,

at a number of taxonomic levels (Additional files 2 and
3). The trees estimated from the mitochondrial data are in
general agreement, although inconsistencies can be seen
at species-level within Lemuriformes, Platyrrhini and Cer-
copithecidae. However, these relate to nodes with rela-
tively low support.

Maximum-likelihood Analysis of Mitochondrial Sequence 
Data
Maximum-likelihood support for the Bayesian maxi-
mum-clade-credibility trees was estimated using 1,000
bootstrap replicates. For most nodes in the mitochondrial
trees, the level of maximum-likelihood bootstrap support
was lower than the posterior probability obtained using
Bayesian analysis. For a small number of nodes, notably
within Pitheciidae, there was no maximum-likelihood
support for the nodes estimated using Bayesian analysis.
However, these conflicts were limited to nodes with low
posterior probabilities. Within Strepsirrhines, the inferred
phylogenetic relationships received strong support under
both methodological frameworks.

Analyses of Nuclear Sequence Data
Taxonomic coverage of nuclear genes across the order was
very poor, with almost no nuclear sequence data for strep-
sirrhines. Consequently it would not have been possible
to combine the mitochondrial and nuclear sequences into
a single supermatrix. Instead, a separate analysis of a
nuclear data supermatrix, comprising three genes, was
performed for haplorrhines. As indicated by the limited
availability of nuclear sequence data on GenBank, there
have been relatively few studies assessing primate phylo-
genetic interrelationships using nuclear DNA sequences
and no large scale cross-taxic studies, as attempted here.
The results of our study (Figure 6) agree with the mito-
chondrial analysis presented here, with the main inter-
generic relationships remaining the same in both trees.
Likewise the MrBayes analysis of the nuclear data (Addi-
tional file 4) is congruent with the BEAST nuclear and
mitochondrial genus-level analyses, whereas maximum-
likelihood bootstrap support was relatively low for most
nodes. We conclude that, at the level of analysis we have
been able to achieve, there has been little or no indication
of the sort of discrepancy between mitochondrial and
nuclear DNA that might imply the origin of any clade by
hybridisation.

Substitution Rate Heterogeneity
Analysis using the uncorrelated relaxed-clock model in
BEAST provided insights into several characteristics of
substitution rate heterogeneity among lineages. In the
species-level analysis of mitochondrial data, the coeffi-
cient of variation of rates was 0.265 with a 95% highest
posterior density (HPD) interval of 0.233 - 0.303. This
excludes 0, which is the expected value under the assump-
tion of a global molecular clock. In the genus-level mito-
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Nuclear tree of haplorrhine generaFigure 6
Nuclear tree of haplorrhine genera. Maximum-clade-credibility tree of Haplorrhini, inferred from a genus-level nuclear 
DNA supermatrix using the Bayesian phylogenetic software BEAST. Nodes are labelled with a/b, where a represents the Baye-
sian posterior probability expressed as a percentage and b represents the percentage of 1,000 maximum-likelihood bootstrap 
replicates that support the node. Asterisks indicate 100% support; nodes with 100% support in both Bayesian and maximum-
likelihood frameworks are labelled with single asterisks. The tree is drawn to an arbitrary timescale, obtained using a fixed sub-
stitution rate of 1.0 substitution/site/time-unit. Node heights represent mean posterior estimates.
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chondrial analysis, the coefficient of variation of rates was
0.297 (95% HPD interval: 0.245 - 0.353), again rejecting
the assumption of a strict molecular clock. In contrast, a
strict clock could not be rejected for the nuclear data.

Divergence Date Estimates
Estimates of divergence dates across the main splits and
nodes were similar using the strict- and relaxed-clock
models in BEAST. The framework provided by this pro-
gram was the most appealing because of its ability to
incorporate various sources of error, due to the co-estima-
tion of phylogeny and divergence times using a relaxed-
clock. Estimating the tree topology in the presence of sig-
nificant rate heterogeneity among lineages can be prob-
lematic, because the assumed model of rate variation can
change the posterior probabilities of different trees [41].
The aforementioned characteristics of BEAST, along with
its ability to assign separate substitution models to differ-
ent data partitions, offer a substantial advantage over
alternative dating methods such as those available in the
software r8s [88]. Additional file 1 provides divergence
date estimates obtained using the Bayesian relaxed clock
in BEAST, with a sample of comparative estimates derived
from previous studies, chosen on the basis that they
present the widest coverage of species and splits, shown in
Additional file 5.

Conclusion
We present a comprehensive estimate of primate phylog-
eny using mitochondrial data; a similar nuclear analysis is
not possible at present due to lack of sequence data. The
multi-gene approach adopted in this study has afforded
the opportunity to investigate phylogenetic inter-relation-
ships amongst primates at a variety of taxonomic levels
from species through to infraorders. Furthermore, the
combined data and methods employed have provided a
novel opportunity to tackle phylogenetic reconstruction,
divergence date estimation and substitution rate heteroge-
neity.

This study offers a novel reconstruction of phylogenetic
relationships across the whole of the Order Primates
down to species level and significantly builds upon previ-
ous whole-order phylogenies. It provides substantial sup-
port for previous studies in a number of key areas
including: the primary divergence of Lorisiformes within
Strepsirrhini, the primary divergence of Pitheciidae in Pla-
tyrrhini, a sister grouping of African and non-African colo-
bines within Colobinae and of Cercopithecini and
Papionini within Cercopthecinae. Other advances include
a better understanding of species-level relationships
within the lemurs, macaques and gibbons, and estimates
of divergence dates across the whole tree.

In contrast to many molecular studies, but in support of
others, our analysis has grouped Tarsius with the Strepsir-

rhini. Whilst the majority of evidence supports a haplor-
rhine grouping for these taxa, the incongruence of some
data demonstrates the uniqueness of these primates and
the value of continued efforts to reassess phylogeny as
new evidence and novel techniques become available.
There are still significant gaps in our understanding of
phylogenetic relationships within Lorisiformes and Pla-
tyrrhini; crucially a range of molecular sequence data is
required for various species within these groups before a
convincing resolution can be reached.

The use of data supermatrices in the present study offers
several advantages over a supertree approach. Chief
among these is the ability to co-estimate the phylogeny
and divergence times. In a supertree framework, the esti-
mation of divergence times is performed indirectly. In
contrast, in a Bayesian relaxed-clock framework, all diver-
gence dates are estimated from the primary sequence data.
This leads to a more realistic assessment of the uncertainty
associated with date estimates, particularly when the anal-
ysis is performed using a relaxed-clock model with multi-
ple calibrations. In turn, knowledge of branch-specific
substitution rates and calibration bounds can inform phy-
logenetic reconstruction [41]. Other disadvantages of
supertree methods, as discussed by Bininda-Emonds [46],
also apply to the present study.

A few apparent inconsistencies are present in the inferred
tree, including the failure to achieve reciprocal mono-
phyly for some recently diverged clades. In the case of the
mitochondrial sequence data, this could be due to the use
of an effectively single locus, which heightens the risk of
incomplete lineage sorting, a situation in which a gene
tree is incongruent with the species phylogeny. The pau-
city of nuclear sequence data should be surmounted in the
near future, with the increasing availability of sequences
for multiple loci and even complete genomes [7]. Nuclear
sequences, which evolve more slowly than the mitochon-
drial genome, could also increase the signal to noise ratio,
leading to an improvement in the resolution of deeper
primate relationships including final agreement regarding
the placement of tarsiers.

Methods
Data Set
Published nucleotide sequences for seven mitochondrial
genes (12s rRNA, 16s rRNA, COII, CYTB, NADH3,
NADH4L, and NDH4) and three nuclear genes (CXCR4,
SRY, and TSPY) were obtained from GenBank. These loci
were chosen on the basis of taxonomic coverage; other
candidate loci were discarded because of poor representa-
tion. In instances where a subspecies had recently been
elevated to species level (such as within Hylobatidae) the
most recent names were adopted and for the most part the
taxonomy presented by Groves [9] was followed. The
choice of outgroup, a flying lemur (Cynocephalus variega-
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tus), was made in reference to previous studies into the
placental mammal phylogeny [1,4].

Two approaches were employed to minimize the presence
of nuclear copies of mitochondrial genes (numts) in the
data. First, all of the protein-coding mitochondrial genes
were translated into amino acids to check for the presence
of stop codons. This measure has the potential to identify
pseudogenes, but might not detect younger numts that
have accumulated few mutations. Second, a neighbor-
joining tree was constructed from each of the mitochon-
drial genes to identify any sequences that displayed unu-
sual phylogenetic placements (e.g. sequences placed
outside their expected infraorders). Despite their com-
plete linkage, different mitochondrial genes can support
mutually incompatible trees (for recent mammalian
examples, see [89,90]), making it difficult to infer the
presence of numts from phylogenetic incongruence. Thus,
we cannot entirely discount the possibility that undetec-
ted numts have been included in the mitochondrial
supermatrix.

Three data sets were assembled from the sequences avail-
able in GenBank: (i) species-level mitochondrial super-
matrix; (ii) genus-level mitochondrial supermatrix; and
(iii) genus-level nuclear supermatrix. These supermatrices
are described below, and further details are given in Sup-
plementary Information.

Sequences of each mitochondrial gene were first aligned
using ClustalW 2.0.0 [91], then manually revised to
remove poorly aligned regions of ambiguous homology.
On average, the sequences of 3.95 mitochondrial genes
were available for each species, with only 42 species being
represented by all 7 mitochondrial genes analysed in this
study. The gene alignments were concatenated to form a
data matrix of 6,138 sites from 219 species (Additional
file 6). The alignment was divided into four partitions: (i)
first and second codon sites of protein-coding genes; (ii)
third codon sites of protein-coding genes; (iii) stem
regions of RNA genes; and (iv) loop regions of RNA genes.
The stem and loop regions were determined with refer-
ence to the secondary structural models for Homo sapiens
on the SILVA RNA database [92]. Substitution model
selection was conducted for each of the four data parti-
tions by comparison of Bayesian information criterion
scores.

A second mitochondrial supermatrix was constructed, in
which there was only a single representative of each genus.
For some genera, a chimaeric sequence was formed by
concatenating sequences from two congeneric species
(Additional file 6). The purpose of this was to increase the
completeness of the data supermatrix, and was only done
for genera with unambiguous monophyly (based on the

analysis of the species-level data supermatrix). Genera
with uncertain monophyly were omitted from the analy-
sis. In the resulting supermatrix, each genus was repre-
sented by an average of 5.43 mitochondrial genes. Data
partitions were the same as for the mitochondrial species-
level supermatrix.

The nuclear sequences were aligned manually and con-
catenated to form a data supermatrix of 2,157 sites from
26 genera. For some genera, a chimaeric sequence was
formed by concatenating sequences from two congeneric
species (Additional file 6). On average, each genus was
represented by 2.23 nuclear genes. The alignment was
divided into four partitions: (i) first codon sites of pro-
tein-coding genes; (ii) second codon sites of protein-cod-
ing genes; (iii) third codon sites of protein-coding genes;
and (iv) introns. Substitution model selection was con-
ducted for each partition by comparison of Bayesian
information criterion scores.

Phylogenetic Analysis
Bayesian phylogenetic analysis was performed on the
mitochondrial species-level supermatrix using two differ-
ent approaches. In the first approach, the phylogeny was
estimated using the unconstrained Felsenstein model
implemented by MrBayes 3.1 [93]. In the second
approach, the phylogeny and divergence times were co-
estimated using the software BEAST 1.4.7 [47].

In the MrBayes analysis, substitution model parameters
were unlinked across the four data partitions. Posterior
distributions of parameters, including the tree, were
approximated using Markov chain Monte Carlo (MCMC)
sampling. Two independent MCMC analyses were run,
each with one cold chain and three heated chains. Sam-
ples from the posterior were drawn every 10,000 steps
over a total of 10,000,000 steps per MCMC run, following
a discarded burn-in of 1,000,000 steps. The results of the
two analyses were combined and checked using Tracer 1.4
[94]. Convergence was assessed by comparison of the two
runs, while the adequacy of mixing was investigated by
checking whether the effective sample sizes of parameters
exceeded 200. The maximum-clade-credibility tree was
identified using TreeLogAnalyser in the BEAST software
package.

In the BEAST analysis, a separate substitution model was
assumed for each of the four data partitions. By using the
uncorrelated lognormal relaxed-clock model [41], rates
were allowed to vary among branches without the a priori
assumption of autocorrelation between adjacent branches
[95]. This model allows sampling of the coefficient of var-
iation of rates, which reflects the degree of departure from
a global clock. For the sake of comparison, the analysis
was repeated with the assumption of a global molecular
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clock. In both cases, a Yule (pure-birth process) prior was
placed on the tree. Posterior distributions of parameters,
including the tree, were approximated by sampling from
two independent MCMC analyses. Samples from the pos-
terior were drawn every 10,000 steps over a total of
10,000,000 steps per MCMC run, following a discarded
burn-in of 1,000,000 steps. The results of the two analyses
were combined, with acceptable mixing and convergence
to the stationary distribution checked using Tracer. Using
TreeLogAnalyser in the BEAST software package, the maxi-
mum-clade-credibility tree topology identified and given
mean node heights calculated from the posterior distribu-
tion of trees.

In order to calibrate the age estimates of evolutionary
divergence events, it is necessary to import some form of
information about absolute times. This can come in the
form of paleontological or biogeographic information,
independent molecular date estimates, or known ages of
ancient DNA sequences (for a recent review, see [96]). In
the present analysis, the fossil record was used to inform
the specification of 11 minimum age constraints. Two fur-
ther constraints were placed on the age of the root, which
was given a minimum bound of 64 MYA and a maximum
bound of 110 MYA. In addition, two calibrations were
given as exponential priors on nodal ages, which appear
to represent an appropriate reflection of paleontological
uncertainty [35,96,97]. Fossil ages were taken from
Hartwig [98]. Details of these calibrations and associated
fossil evidence are given in Additional file 7.

The mitochondrial and nuclear genus-level supermatrices
were also analyzed using the two Bayesian methods
described above. The details of the analyses are the same
as for the mitochondrial supermatrix, but divergence time
estimation was not attempted using the nuclear data
because of poor taxonomic representation and phyloge-
netic resolution.

Maximum-likelihood support was calculated for the trees
inferred from the three data supermatrices. To estimate
the level of support, 1,000 bootstrap replicates were ana-
lysed using RaXML [99]. The alignment was partitioned as
for Bayesian analyses described above, but a GTR+I+G
substitution model was applied to each partition. This
model was found to provide a significantly better fit to the
data than a GTR+G model. Levels of bootstrap support
were mapped on to the maximum-clade-credibility trees
obtained using the Bayesian approach implemented in
BEAST.
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Additional file 1
Table S1. Bayesian divergence time estimates for primates. Estimates 
were made using strict- and relaxed-clock models from a mitochondrial 
DNA supermatrix of 219 species.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-9-259-S1.DOC]

Additional file 2
Figure S1. Maximum-clade-credibility tree of Order Primates, 
inferred from a genus-level mitochondrial DNA supermatrix using the 
Bayesian phylogenetic software MrBayes. Internal nodes are labeled 
with posterior probabilities given as percentages, with asterisks indicating 
100% support. Branch lengths are measured in substitutions per site.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-9-259-S2.EPS]

Additional file 3
Figure S2. Maximum-clade-credibility tree of Order Primates, 
inferred from a species-level mitochondrial DNA supermatrix using 
the Bayesian phylogenetic software MrBayes. Internal nodes are labeled 
with posterior probabilities given as percentages, with asterisks indicating 
100% support. Branch lengths are measured in substitutions per site.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-9-259-S3.EPS]

Additional file 4
Figure S3. Maximum-clade-credibility tree of Order Primates, 
inferred from a genus-level nuclear DNA supermatrix using the Baye-
sian phylogenetic software MrBayes. Internal nodes are labeled with 
posterior probabilities given as percentages, with asterisks indicating 
100% support. Branch lengths are measured in substitutions per site.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-9-259-S4.EPS]

Additional file 5
Table S2. Primate divergence times estimated in previous studies. 
From left to right, the columns present dates from Purvis (1995) [11], 
Goodman et al. (1998) [25], Hasegawa et al. (2003) [31], Poux and 
Douzery (2004) [4], Yoder and Yang (2000† [27], 2004‡ [21]) and 
Yoder et al. (1996*) [28], Eizirik et al. (2004) [18], Raaum et al. 
(2005) [29], Steiper and Young (2006) [26], Schrago (2007) [24], 
Bininda-Emonds et al. (2007) [30], Janeèka et al. (2007) [48], and 
Matsui et al. (2009) [32].
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-9-259-S5.DOC]
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