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Abstract
Background: Phylogenetic analyses provide a framework for examining the evolution of
morphological and molecular diversity, interpreting patterns in biogeography, and achieving a stable
classification. The generic and suprageneric relationships within mosquitoes (Diptera: Culicidae)
are poorly resolved, making these subjects difficult to address.

Results: We carried out maximum parsimony and maximum likelihood, including Bayesian,
analyses on a data set consisting of six nuclear genes and 80 morphological characters to assess
their ability to resolve relationships among 25 genera. We also estimated divergence times based
on sequence data and fossil calibration points, using Bayesian relaxed clock methods. Strong
support was recovered for the basal position and monophyly of the subfamily Anophelinae and the
tribes Aedini and Sabethini of subfamily Culicinae. Divergence times for major culicid lineages date
to the early Cretaceous.

Conclusions: Deeper relationships within the family remain poorly resolved, suggesting the need
for additional taxonomic sampling. Our results support the notion of rapid radiations early in the
diversification of mosquitoes.

Background
Mosquitoes (Diptera: Culicidae) are a monophyletic
group of true flies [1-4], recognizable by their elongate
adult mouthparts through which the females of most spe-
cies feed on vertebrate blood. Mosquitoes occur through-
out temperate and tropical regions, and well beyond the
Arctic Circle, but are most diverse in tropical forest envi-
ronments [5]. A bewildering amount of morphological
diversity parallels their spectacular radiation into virtually
every conceivable collection of water, ranging from a few

droplets trapped by plant parts to large bodies of fresh and
brackish surface water, making mosquitoes "as ubiqui-
tous as water" [6]. The relationship between human
health and those species that are medically important
(<200 of 3,524 currently recognized; http://mosquito-tax
onomic-inventory.info/) has driven most mosquito
research. Within this small subset of disease vector spe-
cies, morphological similarities between close relatives
(e.g., cryptic or sibling species complexes) continue to
pose practical and academic challenges to disease control,
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conventional taxonomy, and phylogenetic inference.
Ironically, it is not the morphological similarity but rather
the morphological diversity of mosquitoes that has con-
founded efforts to delimit many supraspecific groups and
reconstruct their evolutionary history.

The Culicidae had an ancient origin, probably in the
Jurassic [7,8], consistent with the fossil record of their sis-
ter group Chaoboridae [9]. Unfortunately, the sparse
mosquito fossil record sheds no light on evolutionary
relationships in the family. Traditional classification of
Culicidae based on the phenetic framework of Edwards
[7] resulted in arbitrary groupings reflecting intuitive
interpretation of morphological similarities. More mod-
ern classifications have incorporated important revisions
of select genera and tribes based on explicit methodology,
but in the absence of a comprehensive application of
quantitative methods across the family, the result still
does not entirely reflect evolutionary history [reviewed in
[2]]. Current classification divides the family into two
subfamilies (Anophelinae and Culicinae), 11 tribes, and a
minimum of 44 genera [2,10-13] (Table 1).

Generic-level relationships across all Culicidae have rarely
been studied. The first attempt [14] was based on compar-
ative bionomics and morphology using intuitive methods
typical of that time. Surprisingly, further attempts using
modern cladistic methods were not made for nearly 50
years. The most comprehensive of these phylogenetic re-
analyses employed 73 morphological characters to exam-
ine the relationships of the 38 genera then recognized [1].
In general, almost none of the hypotheses raised by the
1951 phylogeny were supported in the 1998 reconstruc-
tion, with few exceptions including the monophyletic and
basal position of the subfamily Anophelinae, and the
monophyly of the tribes Sabethini and Culicini. However,
most characters were homoplastic - some extensively - and
many relationships were inadequately resolved. Although
the Harbach and Kitching [1] study challenged traditional
generic groupings and reinforced the need for reappraisal,
it also suggested that robust recovery of generic-level rela-
tionships of Culicidae may be difficult with morphologi-
cal characters alone.

Only four higher-level phylogenies of Culicidae based on
gene sequences have been published, each of which were
very taxon-limited in scope. All were able to show that, in
agreement with the morphological phylogenies, Anopheles
was sister to other sampled genera [4,15-17]. The study by
Miller et al. [4], based on four mosquito species, was
inconclusive and the more comprehensive study of
Shepard et al. [15], based on 18S rDNA sequences of 39
species representing nine genera, was unable to resolve
deeper relationships. Of the four studies, only Besansky
and Fahey [16] employed a single-copy nuclear protein

coding gene to assess relationships. Their study, based on
the white gene, included 13 species representing nine gen-
era. When third codon positions were excluded, Anophe-
linae was recovered as a basal lineage and Sabethini,
Culicini and Aedini were recovered as monophyletic, sug-
gesting the potential of protein-coding sequences for
reconstructing generic-level relationships within Culici-
dae.

The importance of sampling multiple genes when
attempting to reconstruct species phylogenies is well rec-
ognized [18]. Mitochondrial DNA and nuclear ribosomal
DNA are convenient targets, due to conserved primer
binding sequences and ease of amplification based on
their typically high copy number. However, both can be
problematic for resolving deep phylogenetic relation-
ships. Mitochondrial DNA may exhibit a high mutation
rate, skewed base composition, and even symbiont-
induced biases [19,20]. Beyond base compositional bias,
ribosomal DNA also can be exceedingly difficult to align
[21]. Given the increasing availability of completely
sequenced mosquito genomes, protein-coding nuclear
genes represent a viable alternative as well as a rich and
largely untapped resource.

In the study reported here, we explored the phylogenetic
utility of six nuclear protein-coding genes: arginine kinase,
CAD, catalase, enolase, hunchback, and white. As noted
above, only white was used previously in mosquitoes [16].
All except catalase have been used in other insect groups:
CAD in bees, empidoid flies, and lacewings, among others
[22-24]; arginine kinase in hymenopterans [25,26]; enolase
in beetles [27]; and hunchback in Hawaiian drosophilids
[28]. We sequenced these six genes from 26 mosquito spe-
cies representing 25 genera, and two chaoborid outgroup
species. In addition, 80 morphological characters were
scored from these mosquito and outgroup species. Our
goals were twofold: (1) to estimate a generic-level phylog-
eny of Culicidae based on molecular and morphological
evidence, and (2) to use fossils and sequence data to infer
divergence times for major culicid lineages.

Methods
Taxon sampling
Twenty-six species of mosquitoes representing 25 genera
were used as ingroup taxa (Table 1). Two chaoborid
midges, Eucorethra underwoodi and Chaoborus astictopus,
were used as outgroup taxa based on the sister-group rela-
tionship between Chaoboridae and Culicidae [3,29,30].
Specimens were preserved in 70-100% ethanol at -20°C.
Sampling of additional ingroup genera for this study was
precluded by unavailability of specimens adequately pre-
served for molecular analysis; DNA from pinned museum
specimens or specimens stored at room temperature for
prolonged periods was found to be excessively degraded.
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Table 1: Species of Culicidae included in the phylogenetic analysis, with reference to their classification and distribution [after 2].

Subfamily Tribe Genus No. Subg. No. spp.1 Distribution Species studied

Anophelinae Anopheles 7 455 Cosmopolitan Anopheles gambiae Giles
Anopheles atroparvus van Thiel

Bironella 3 8 Australasian Bironella gracilis Theobald
Chagasia - 4 Neotropical

Culicinae
Aedeomyiini Aedeomyia 2 6 Afrotropical, Australasian, Oriental, 

Neotropical
Aedeomyia squamipennis Lynch 
Arribálzaga

Aedini2 Aedes 23 363 Old World, Nearctic Aedes aegypti Linnaeus
Armigeres 2 58 Australasian, Oriental Armigeres subalbatus (Coquillett)
Ayurakitia - 2 Oriental
Borichinda - 1 Oriental
Eretmapodites - 48 Afrotropical Eretmapodites quinquevittatus 

Theobald
Haemagogus 2 28 Principally Neotropical Haemagogus equinus Theobald
Heizmannia 2 39 Oriental
Ochlerotatus 22 550 Cosmopolitan Ochlerotatus triseriatus (Say)
Opifex - 1 New Zealand Opifex fuscus Hutton
Psorophora 3 48 New World Psorophora ferox (von Humboldt)
Udaya - 3 Oriental
Verrallina 3 95 Principally Australasian, Oriental
Zeugnomyia - 4 Oriental

Culicini Culex 23 763 Cosmopolitan Culex quinquefasciatus Say
Deinocerites - 18 Principally Neotropical
Galindomyia - 1 Neotropical
Lutzia 3 7 Afrotropical, Australasian, Oriental, 

Neotropical, eastern Palaearctic
Culisetini Culiseta 7 37 Old World, Nearctic Culiseta inornata (Williston)
Ficalbiini Ficalbia - 8 Afrotropical, Oriental

Mimomyia 3 44 Afrotropical, Australasian, Oriental Mimomyia luzonensis (Ludlow)
Hodgesiini Hodgesia - 11 Afrotropical, Australasian, Oriental
Mansoniini Coquillettidia 3 57 Old World, Neotropical Coquillettidia perturbans (Walker)

Mansonia 2 23 Old World, Neotropical
Orthopodomyiini Orthopodomyia - 38 Afrotropical, Nearctic, Neotropical, Oriental, 

Palaearctic
Orthopodomyia alba Baker

Sabethini Isostomyia - 4 Neotropical
Johnbelkinia - 3 Neotropical
Kimia - 5 Oriental
Limatus - 8 Neotropical Limatus durhami Theobald
Malaya - 12 Afrotropical, Australasian, Oriental Malaya genurostris Leicester
Maorigoeldia - 1 New Zealand Maorigoeldia argyropus (Walker)
Onirion - 7 Neotropical
Runchomyia 2 7 Neotropical
Sabethes 5 38 Neotropical Sabethes cyaneus (Fabricius)
Shannoniana - 3 Neotropical Shannoniana fluviatilis Lane and 

Cerquiera
Topomyia 2 54 Principally Oriental
Trichoprosopon - 13 Neotropical Trichoprosopon digitatum (Rondani)
Tripteroides 5 122 Principally Australasian, Oriental Tripteroides bambusa (Yamada)
Wyeomyia 15 140 Principally Neotropical Wyeomyia smithii (Coquillett)

Toxorhynchitini Toxorhynchites 4 88 Afrotropical, Australasian, Neotropical, 
eastern Palaearctic, Oriental

Toxorhynchites amboinensis 
(Doleschall)

Uranotaeniini Uranotaenia 2 265 Afrotropical, Australasian, Oriental, 
Neotropical

Uranotaenia sapphirinia 
(Osten Sacken)

1For the current number of valid species recognized in generic level taxa of the family, consult http://mosquito-taxonomic-inventory.info/
2Generic-level classification of Aedini predates Reinert et al. [10], except for Borichinda.
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DNA extraction, PCR, and sequencing
Sequences were obtained from six nuclear protein-coding
genes (arginine kinase, CAD, catalase, enolase, hunchback,
and white) from VectorBase http://www.vectorbase.org for
the three mosquito species with completely sequenced
genomes (Anopheles gambiae, Culex quinquefasciatus, and
Aedes aegypti), from GenBank for available white
sequences (GenBank accession numbers U73829,
AF318199, AF318200, U73834, U73827, AF318206,
U73835, U73837, AY055811, AF318193, AF318209), or
by PCR amplification and direct sequencing. Genes were
amplified and sequenced using degenerate primers previ-
ously reported in the literature, or designed based on
amino acid alignments of respective genes from the three
sequenced mosquito species. Primer sequences and their
sources are provided in Table 2. Primers were located in
regions that would allow amplification within a single
large exon, or across exons separated by small introns, to
facilitate amplification from genomic DNA templates.
Primers were hemi-nested, whereby the first round of
amplification based on the outermost pair was followed
by alternative second round PCR from which two inter-
nal, overlapping fragments were amplified (Figure 1).

Genomic DNA was extracted from whole mosquitoes
using the DNeasy kit (Qiagen, Valencia, CA). PCR reac-
tions (50 μl) contained 20 mM Tris-HCl (pH 8.4), 50 mM
KCl, 1.5 mM MgCl2, 200 μM each dNTP, 2.5 U Taq
polymerase, 2.4% DMSO, 0.5% BSA, 25 pmol each
primer, and 1 μl template DNA (~1/50th-1/500th of the
amount extracted from a single mosquito). Amplifica-
tions consisted of 1 cycle at 93°C for 1 min; 35 cycles of
94°C for 20 sec, 45°C for 20 sec, and 72°C for 2 min; and
a final extension cycle of 72°C for 5 min. After inspection
of an aliquot by electrophoresis through a 1.5% agarose
gel, products of the expected size were excised from the gel
and purified using GeneClean Kit (MP Biomedicals,
Irvine, CA), or sequenced directly if only one band was
observed. Excess primers and dNTPs were removed by
adding 2 U of exonuclease 1, 1 U of shrimp alkaline phos-
phatase, and 1.8 μl of H2O to 8 μl of PCR product, incu-
bating at 37°C for 15 min, and inactivating at 80°C for 15
min before sequencing. Sequencing was carried out using
an Applied Biosystems 3730 × l DNA Analyzer and Big
Dye Terminator v3.1 chemistry. Electropherograms were
inspected and trimmed using SeqMan II (DNASTAR,
Madison, WI). Sequences were deposited in GenBank

Table 2: Primers used in this study.

Gene Primer Sequence (5'-3')1 Source, if not this study

arginine kinase akF GCTTCAAGAAGACCGACAAGCAC
akF2 AAGACCTTCCTGGTCTGGTGC
akR ACCCWKCTGCATSGAGATGATG
akR2 GCCATCGTACATCTCCTTGACG

CAD 581F3 AAYCCIAAYATYGCIACIGTICARAC
806F GTNGTNAARATGCCNMGNTGGGA [23]
843R GCYTTYTGRAANGCYTCYTCRAA [23]
1098R2 CAICCIACIGCRCACCARTCRAAYTC

Catalase catF1 ACTTYGACCGKGAGCGIATTCC
catF2 GGTTTCGCYSTSAARTTCTACAC
catF3 GAYGGYTWYCGITTCATGAACG
catR1 GCCYTGRTYIGWYTTGAAGTGGAAC
catR2 GAASGARTTSGGRWAGTAGTTSG
catR3 GRCGKCCRAARTCRGCATCAAC

Enolase enoF ATGCAGGAGTTCATGATCCTG
enoF2 GTACGATCTGGACTTCAAGAAC
enoR TCCTGGTCRAAGGGATCCTC
enoR2 AGRATYTGGTTGTACTTGGC

hunchback hbF ACICCICCIATGGAYGTIACICCICC
hbF2 TGYCCIAARTGYCCITTYGTIACIG
hbR TGRCARTAYTTIGTIGCRTARTTRC
hbR2 GCYTGYTGRTCIGCRAACATYTGRA

white WZ2E (E)AAYTAYAAYCCIGCIGAYTTYTA [65]
WZ2kr AYTAYAAYCCIGCIGAYTTYTAYG
WZ4E (E)GGIGTIATGAAYATHAAYGG [65]
WZ4kr GAYGGIGTIATGAAYATHAAYGG
WZ7X (X)TCRAAIACRTTYTCRAAIGTCATR [53]
WZ7kr GCRAAIACRTTYTGRAAIGTC
WZ11X (X)TTIARRAARAAICCICCRAA [65]
WZ13kr GCYTCRTTIGCRTAICKRAACC

1Degeneracy indicated by the IUB code; I is inosine; linkers (in parentheses) are X, an XbaI linker: CGTCTAGA, and E, an EcoRI linker: GGAATTC.
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under accession numbers: arginine kinase, GQ906806-
GQ906829; CAD, GQ906830-GQ906854; catalase,
GQ906855-GQ906874; enolase, GQ906879-GQ906901;
hunchback GQ906902-GQ906926; white, GQ906927-
GQ906937.

Morphological characters
Morphological structures were examined in the adult,
pupal and larval (fourth-instar) stages. Heads were
removed from adult mosquitoes for comparative studies
of structures not readily visible in intact specimens. Heads
were cleared in 5% sodium hydroxide solution, stained in
acid fuchsin and mounted frontodorsal side uppermost in
Euparal on microscope slides. Pinned adults were exam-
ined under simulated natural light. Dissected genitalia,

larvae, and larval and pupal exuviae were studied with dif-
ferential interference contrast optics. The morphological
terminology follows Harbach and Knight [31,32] and
Harbach and Kitching [1].

The 28 species were coded for 80 characters (see addi-
tional file 1: FileS1) derived from fourth-instar larvae
(24), pupae (12), adults (36), female genitalia (1), and
male genitalia (7). The data matrix is shown in Additional
file 2: TableS2. Characters were coded from direct obser-
vations except in a few cases where structures were missing
from available specimens. Some missing data for the
immature stages of Chaoborus astictopus were coded from
literature sources. Characters that could not be scored due
to missing data or absence of homologous structures (e.g.,

Approximate location and orientation of primers (black arrows) with respect to their target exons, in the context of gene models (or portions thereof) based on the An. gambiae genomeFigure 1
Approximate location and orientation of primers (black arrows) with respect to their target exons, in the con-
text of gene models (or portions thereof) based on the An. gambiae genome. Models were exported from the Tran-
script View available in VectorBase http://www.vectorbase.org; protein-coding exons are indicated by black rectangles with 
Roman numerals; introns by black lines. Gene names and corresponding An. gambiae gene ID (AGAP number) are provided at 
top left. Not to-scale.
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character 20 in three anophelines and two chaoborid spe-
cies that lack a siphon) were denoted by a "?". All multi-
state characters were treated as unordered. Most of the
structures and states of characters are illustrated in Har-
bach & Knight [31] and Harbach & Kitching [1].

Phylogenetic analysis
Nucleotide sequence alignments were guided by the cor-
responding amino acid alignments, using utilities within
the program suite EMBOSS [33]; http://emboss
gui.sourceforge.net/demo/. Inferred amino acid
sequences were aligned using the program "emma,"
which provides an interface to ClustalW [34]. The Gonnet
matrix [35] was chosen and the resulting alignment was
followed by limited manual adjustment. "Tranalign" was
then used to align the nucleotide sequence based on the
previously aligned amino acid sequence. Introns were
removed from aligned gene regions before analysis.

Basic sequence information (pairwise sequence diver-
gence, base composition, statistical tests of homogeneity
of base composition, number of variable and parsimony
informative characters) was obtained using PAUP*
v4.0b10 [36]. In addition, plots of transitions and trans-
versions versus divergence at each codon position were
based on observed (uncorrected) p-distances from
PAUP*.

Maximum parsimony (MP) analyses were implemented
in PAUP* on a phylogenetic data set that included con-
catenated genes with/without morphological characters.
Third codon positions for each gene were removed and
gaps were treated as missing data. Heuristic searches con-
sisted of 1000 random sequence additions with tree bisec-
tion-reconnection (TBR) branch swapping. Bootstrap
support values were based on 500 replicates, each with 10
random additions and TBR branch swapping.

Maximum likelihood (ML) analyses were performed on
molecular data sets only, which included both individual/
concatenated genes, with/without third codon positions.
The ML heuristic searches were performed in PAUP*,
using the model of nucleotide substitution and parameter
values selected via Modeltest [37]. Values for the substitu-
tion matrix, base composition, gamma distribution of
among-site rate variation (G) and the proportion of invar-
iant sites (I) are available from the authors on request.
Bootstrap resampling was conducted using 1000 replicate
neighbour-joining (NJ) trees based on the ML substitu-
tion matrix. The Shimodaira-Hasegawa test [[38]; data not
shown] was used to test for incongruence between phyl-
ogenies suggested by individual genes, or successive com-
binations of congruent genes.

Bayesian (BI) phylogenetic tree searches were performed
in MrBayes 3.1.2 [39] on concatenated gene and gene +
morphology data sets using aligned nucleotides, both
including and excluding third codon positions, and using
concatenated aligned amino acids. For concatenated
genes (nucleotides) and genes (nucleotides) + morphol-
ogy, a mixed model approach was used with model
parameters specified per gene partition according to Mod-
eltest and a Markov K + G model for morphology, with
branch lengths unlinked and estimated for each partition
[40,41]. Bayesian tree searches using aligned amino acids
were carried out in MrBayes 3.1.2 using the WAG model
of amino acid evolution (WAG+I+G) [42]. Each Bayesian
search was carried out for 10,000,000 generations (sam-
pling every 1000) using four chains (default heating
parameters) and a 30% burn-in value. The included Baye-
sian sets of trees were sampled after likelihood scores
reached convergence and the mean split difference values
were below 0.02.

Divergence time estimation
Estimates of divergence times for mosquito lineages were
calculated using the parametric Bayesian-relaxed clock
approach implemented in the programs ESTBRANCHES
and MULTIDIVTIME [43] and using the combined gene
data set (nucleotides) including third codon positions.
Branch lengths and evolutionary rate priors were esti-
mated from the data using the BASEML program in the
PAML software package [44] and ESTBRANCHES. Tree
topology, minimum and maximum root node age, and
fossil-based minimum age constraints are set as user-
defined analysis priors. For the tree topology we used the
tree recovered from the BI search of combined amino
acids (see Phylogenetic Analyses, below). The root max-min
age prior between Culicidae and outgroups was set as 230-
187 Ma corresponding to the hypothesized age of the Dip-
tera [6,8] and a fossil assignable to the Chaoboridae [187
Ma; ref [9]], and three lineages were constrained accord-
ing to fossil-based minimum ages (Toxorhynchites mexica-
nus, 16 Ma; Culex winchesteri, 34 Ma; Anopheles
dominicanus, 34 Ma; http://mosquito-taxonomic-inven
tory.info/category/fossil-culicidae/fossil-culicidae)[45].
We followed the analytical procedure described in Rut-
schmann et al. [46] and in the MULTIDIVTIME readme
files, and ran the Markov chain for 1.1 × 106 cycles with
samples collected every 100 cycles and discarded the first
100,000 cycles as burn-in. We performed the MULTIDIV-
TIME analysis multiple times from different initial condi-
tions to confirm convergence of the Markov chain on
highly similar resulting time estimates and posterior inter-
vals.
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Results and Discussion
Sequence variation
Across six genes, the molecular data matrix consisted of
5352 aligned characters, of which 2839 were variable and
2259 were parsimony informative (Table 3). Not surpris-
ingly, most of the variation was found in the third codon
(nt3) position. Analysis of base composition of the com-
bined genes for each major taxonomic grouping revealed
significant departures from homogeneity at the nt3 posi-
tion, owing to three groups: Anophelinae, Culicini (Cx.
quinquefasciatus) and Ficalbiini (Mimomyia luzonensis)
(Table 4). Moreover, plots of transitions and transversions
against uncorrected pairwise nucleotide divergences at
each codon position suggested saturation of transitions at
the nt3 position (Figure 2). These results prompted us to
perform ML and BI phylogenetic analyses both with and
without the nt3 partition, and to exclude this partition in
MP analyses (see Phylogenetic analyses).

Uncorrected pairwise sequence divergence within the
mosquitoes sampled ranged widely, from 10-27% (sum-
marized by major taxonomic groupings in Table 5). How-
ever, the average distance between tribes and subfamilies
was at the upper end of the range (20% and 23%, respec-
tively), approaching that between mosquitoes and their
sister group, the chaoborid midges (26%).

Phylogenetic analyses
Evidence was found for incongruence among some genes
or gene combinations via the Shimodaira-Hasegawa test
[38]; data not shown. However, examination of phyloge-
nies resulting from individual genes revealed that topo-
logical incongruence was generally limited to certain
poorly supported nodes. It has been suggested that differ-
ent data sets may have a common phylogenetic signal
recoverable only upon combined analysis [47,48], and,
under the hypothesis that combining data from multiple
genes may potentially overcome misleading signal in
individual genes [49], we conducted further analyses to
compare results from a concatenated data set with results
obtained from ML and BI.

Relationships inferred by MP and ML, including BI, are
summarized in Figure 3 and Table 6. All three algorithms,
as applied to various data partitions (± nt3; ± morpholog-
ical characters; nucleotides or amino acids), gave over-
whelming support for the monophyly of Culicidae (node
O), the monophyly and basal position of the subfamily
Anophelinae (node A; gray box), and the monophyly of
the tribe Sabethini (node I; gray box). Less conclusive sup-
port by ML, but reasonable support by MP and BI, was
observed for the monophyly of the tribe Aedini (node C).
These results confirm the conclusions of Harbach [2]
regarding what was already known about the phylogeny
of mosquitoes.

Support varied for relationships within these well-sup-
ported clades. The subfamily Anophelinae was repre-
sented in this study by three species from two genera:
Bironella (Bironella gracilis) and Anopheles (Anopheles
atroparvus, subgenus Anopheles; An. gambiae, subgenus Cel-
lia). Not all analyses supported the monophyly of the
genus Anopheles; an alternative relationship of Bi. gracilis +
An. atroparvus was also recovered. There is precedence for
the paraphyly of Anopheles relative to Bironella in previous
morphological [50,51] and molecular [52] studies. Relia-
ble inference of relationships between these groups may
be problematic due to conflicting signals or contempora-
neous radiations, but the suggestion of Sallum et al. [50]
to redefine Bironella as an informal group within Anopheles
seems premature [2,53].

Within tribe Sabethini, Malaya occupied the most basal
position among the taxa sampled, although this place-
ment was not recovered in a subset of BI analyses. The
genus Maorigoeldia, containing only a single species exclu-
sive to New Zealand, was sister to Tripteroides (Oriental,
Australasian and Palaearctic species), in all cases with

Table 3: Character information for genes used in this study.

Parsimony informative

Aligned Variable All nt1 nt2 nt3

arginine kinase 717 270 203 32 14 157
CAD 1467 767 667 131 68 468
catalase 753 398 350 72 43 235
enolase 699 287 232 33 15 184
hunchback 951 682 444 101 82 261
white 765 435 363 84 47 232
All genes 5352 2839 2259 453 269 1537

Table 4: GC content and compositional heterogeneity of major 
taxonomic groupings based on the species analyzed.

Total nt1 nt2 nt3

Anophelinae 62.1* 57.9 40.8 87.5*
Aedeomyiini 54.2 57.5 39.1 68.1
Aedini 51.6 53.7 38.2 63.2
Culicini 57.5* 54.5 38.7 79.3*
Culisetini 51.5 53.7 38.4 62.9
Ficalbiini 55.1* 52.9 39.0 73.9*
Mansoniini 50.4 52.8 38.8 59.8
Orthopodomyiini 52.6 53.5 38.9 65.6
Sabethini 50.6 52.9 38.7 60.5
Toxorhynchitini 50.8 53.7 38.2 60.7
Uranotaeniini 52.1 53.1 38.6 64.8
Chaoboridae 47.4 50.5 38.4 53.3

χ2 991.37 96.56 31.66 2271.27
P-value 0.00 0.11 1.00 0.00
Page 7 of 14
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100% bootstrap support or posterior probability of 1.0.
These relationships were not recovered in cladistic analy-
ses of morphological data that included representatives of
a larger number of genera. Belkin [54] regarded Maorigoe-
ldia to be sister to all other sabethine species. This was
supported in the studies of Harbach and Kitching [1], Har-
bach and Peyton [55], and Harbach et al. [56], but not in
the study of Judd [57], which placed Maorigoeldia as the
sister group to the New World genera of Sabethini.
Whereas Malaya was recovered as the sister of genus Topo-
myia in the first two of these four studies, it was paired

with Limatus in the most derived clade of Sabethini when
Harbach et al.[56] included the new genus Kimia in the
data set of Harbach and Peyton [55]. Also, Tripteroides
(Old World) was recovered as sister to Trichoprosopon
(New World), which is supported by shared morphologi-
cal characters that are unique to these two genera.

Decisive support for monophyly of the New World genera
(Limatus, Sabethes, Shannoniana, Trichoprosopon, and Wyeo-
myia) was found, in agreement with previous studies
[2,57]. Among these genera, a close relationship between

Numbers of transitions or transversions at each codon position (nt1, nt2 and nt3) plotted against uncorrected nucleotide divergence for pairwise species comparisons across the combined six-gene data setFigure 2
Numbers of transitions or transversions at each codon position (nt1, nt2 and nt3) plotted against uncorrected 
nucleotide divergence for pairwise species comparisons across the combined six-gene data set.
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Limatus, Sabethes and Wyeomyia was strongly supported by
all analyses, but other nodes were unstable. Although not
apparent in Figure 3, Shannoniana and Trichoprosopon
showed a sister relationship in all but the BI amino acid
analysis. However, as indicated in the previous paragraph,
the results of cladistic analyses based on morphological
data and a larger sample of sabethine taxa casts doubt on
these relationships.

The remarkably large tribe Aedini (1255 species, http://
mosquito-taxonomic-inventory.info/taxonomy/term/
6065) has been the subject of recent efforts to infer higher-
level relationships based on morphological characters of
all life stages [10-13]. Although this has resulted in major
changes to classification, phylogenetic resolution has
been limited. In the present study, as in the cladistic anal-
yses of extensive morphological data by Reinert et al. [11-
13], Psorophora was recovered as sister to all other Aedini.

Sister-group relationships strongly supported in most
cases were Aedes (Stegomyia) + Eretmapodites and Haemago-
gus + Ochlerotatus. Other relationships within Aedini were
less clear. Moreover, no consensus could be reached
regarding affinities of any other genera within Culicidae
as a whole, outside of Aedini and Sabethini.

Divergence time estimates
A chronogram for Culicidae is given in Figure 4, and cor-
responding divergence time estimates are provided in
Table 7. Based on the taxa sampled and three fossil con-
straints, earliest divergence within mosquitoes - between
the lineages leading to Culicinae and Anophelinae - dates
to ~226 Ma. This estimate is in reasonable agreement with
Krzywinski et al. [58], who determined the split between
Anopheles and Aedes (Stegomyia) to have occurred ~145-
200 Ma based on mitochondrial DNA sequences.
Although 226 Ma is substantially older than the 118 Ma
divergence between Chaoboridae and Culicidae estimated
by Bertone et al. [8], the 95% credibility ranges overlap
between studies. Because the latter study was aimed at
deeper divergences within lower Diptera, Bertone et al. [8]
only included two mosquitoes and one chaoborid, possi-
bly accounting for the discrepancy. Moreover, Bertone et
al. [8] estimated divergence times from a single gene (28S
rDNA) and used only a few fossil calibration points (none
close to Culicidae), which may also have contributed to
differences in age estimates. We favor the older divergence
estimates, as they are consistent with other evidence sug-
gesting that mosquitoes likely originated in the Jurassic
[7,59]. As early as 1923, Edwards [60] surmized that the
"origin and phylogenetic history of the Culicidae must go
back to well into the Mesozoic Era."

Table 5: Mean pairwise uncorrected p-distances (%) across all six 
genes.

Taxonomic grouping % (min-max)

Between Families
Culicidae-Chaoboridae 26.4 (23.9-30.2)

Between subfamilies
Anophelinae-Culicinae 22.5 (17.8-27.4)

Within Anophelinae 13.1 (12.2-14.2)
Within Culicinae 19.8 (10.0-27.4)

Between Tribes 19.7 (11.9-25.5)
Within Tribes

Aedini 16.6 (10.0-21.1)
Sabethini 16.6 (13.6-18.8)

Table 6: Bootstrap support or posterior probabilities for relationships inferred within Culicidae based on combined gene sequences, 
with or without morphological characters. Nodes refer to Figure 3.

Maximum parsimony Maximum likelihood Bayesian

Node Mol (-nt3) Mor+Mol (-nt3) Mol (+nt3) Mol (-nt3) Mol (+nt3) Mor+Mol (+nt3) Mol (-nt3) Mor+Mol (-nt3) AA

A 100 100 100 100 1.0 1.0 1.0 1.0 1.0
B 71 64 100 83 1.0 1.0 --- --- 0.6
C 58 73 65 51 1.0 1.0 1.0 1.0 1.0
D 62 59 93 51 1.0 1.0 0.74 0.8 1.0
E 100 100 100 100 1.0 1.0 1.0 1.0 1.0
F 54 51 98 64 --- --- 0.51 --- 1.0
G 55 51 92 58 --- --- 0.51 --- 1.0
H 87 89 100 74 1.0 1.0 1.0 1.0 0.99
I 99 97 100 100 1.0 1.0 1.0 1.0 1.0
J 100 100 100 100 1.0 1.0 1.0 1.0 1.0
K 63 60 69 62 --- --- 0.98 0.6 1.0
L 92 90 100 98 1.0 1.0 1.0 1.0 1.0
M 68 81 100 98 1.0 1.0 1.0 1.0 1.0
N --- --- 100 96 1.0 1.0 --- --- 0.96
O 100 100 100 100 1.0 1.0 1.0 1.0 1.0

Mol, molecular characters; Mor, morphological characters; ± nt3, third nucleotide position included or excluded; AA, amino acid sequences.
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Phylogram of relationships among mosquito species, inferred by Bayesian likelihood analysis of combined amino acidsFigure 3
Phylogram of relationships among mosquito species, inferred by Bayesian likelihood analysis of combined 
amino acids. Amount of inferred character change is indicated by the scale bar below. Numbers associated with nodes are 
Bayesian posterior probabilities above 0.5. Letters associated with nodes refer to bootstrap support values and posterior 
probabilities estimated from alternative analyses, provided in Table 6. Gray-shaded boxes enclose (from top to bottom) 
Anophelinae, Aedini and Sabethini.
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Unexpectedly, the split between Anopheles and Bironella
was a remarkably shallow 51 Ma. This estimate contra-
dicts Krzywinski et al. [58], who estimated a substantially
greater (90-106 Ma) divergence between the Anopheles
subgenera, Anopheles and Cellia, represented in this study
by An. atroparvus and An. gambiae, respectively. To what
extent this incongruence can be explained by limited
taxon sampling or biases in the molecules used to infer
divergence dates (e.g., strong base composition bias in
Anophelinae; Table 4), is presently unknown. However,
given the universal agreement that Anopheles occupies an
early-branching position among the Culicidae, it seems
likely that our crown-group estimates do not accurately
reflect the age of this group.

The only well-supported clades of the subfamily Culicinae
in the phylogenetic analyses are the tribes Aedini and
Sabethini, which apparently arose at similar times
(roughly 112 and 115 Ma, respectively) and diversified
more recently. Eight genera of the subfamily Culicinae
(Aedeomyia, Coquillettidia, Culiseta, Culex, Mimomyia,
Orthopodomyia, Toxorhynchites, Uranotaenia), whose rela-
tionships were not strongly or consistently recovered, rep-
resent the deeper internal branches of the tree. The nodes
connecting these branches are not only ancient (exceeding
127 Ma), but also relatively close together in time, occur-
ring within a ~30 million year interval between 127-158
Ma. If these estimates are corroborated in the future by
denser taxon sampling and more fossil-based age con-
straints, they will support the notion of rapid radiations
early in the diversification of mosquitoes, potentially
explaining the difficulty in attaining a stable phylogeny
for these lineages. An early Cretaceous timing for these
rapid radiations is consistent with the appearance of
angiosperms, a group of plants whose nectar is exploited
as an energy source by mosquitoes [61], and whose water-
filled parts are the sole habitats occupied by the immature

stages of many groups of mosquitoes, notably members
of the tribe Sabethini [54].

Conclusion
This study represents one of the few attempts to recon-
struct generic-level relationships within Culicidae as a
whole, and the only attempt to combine morphological
data and molecular characters from multiple genes.
Among molecular phylogenetic studies of the family, it
more than doubled the number of taxa sampled to date.
Yet results were mixed. The ability to recover previously
known clades (Anophelinae, Sabethini, and Aedini) was
encouraging. However, the deeper relationships among
genera could not be resolved unambiguously, potentially
due to ancient and rapid radiation, as hypothesized for
other insect groups [6]. There has been much debate
regarding whether better resolution and support of rela-
tionships is achieved through broader taxonomic sam-
pling [62,63] or sequencing of more loci [64]. The current
explosion of sequencing whole genomes from organisms,
including mosquitoes, promises many potentially
informative genes beyond those included here. On the
other hand, the recent study by Wiegmann et al. [49] suc-
cessfully resolved even deeper divergences and a long-
standing controversy in the phylogeny of holometabolous
insects, using only six single-copy nuclear genes compris-
ing a similar number of base pairs to that compiled for the
present study. Although more molecular, as well as mor-
phological, characters may well prove useful, there is little
doubt that broader taxonomic sampling is now the key
roadblock. Considering that the mosquito diversity
housed in museums is almost invariably preserved in a
fashion that has impeded conventional molecular data
collection, this roadblock may be substantial. There is an
urgent need for fresh museum collections, particularly
from under-sampled yet high-biodiversity regions world-
wide, and their cryo- or ethanol preservation with vouch-

Table 7: Divergence time estimates and credibility intervals (Ma) for nodes in Figure 4.

Node Time (Ma) CI (Ma) Node Time (Ma) CI (Ma)

1 216.86 229.50 - 192.19 14 92.05 123.87 - 61.07
2 204.53 226.22 - 172.28 15 72.31 99.71 - 47.39
3 191.04 218.81 - 154.68 16 66.00 92.37 - 42.28
4 165.31 194.41 - 132.01 17 64.60 94.29 - 38.72
5 157.79 187.17 - 124.13 18 64.44 94.85 - 38.93
6 153.07 191.95 - 110.61 19 56.69 83.49 - 34.25
7 148.94 179.01 - 115.70 20 53.94 75.76 - 37.14
8 138.75 170.62 - 104.19 21 52.59 80.56 - 29.45
9 137.56 168.53 - 104.14 22 50.89 74.61 - 31.19
10 126.38 158.42 - 92.81 23 46.36 72.08 - 25.80
11 123.39 155.71 - 90.18 24 43.11 63.95 - 27.20
12 106.86 137.35 - 76.70 25 42.51 64.85 - 24.73
13 94.20 124.15 - 65.57
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Chronogram of mosquito age divergences with 95% confidence intervals (red bars)Figure 4
Chronogram of mosquito age divergences with 95% confidence intervals (red bars) Numerical node ages and their 
95% confidence intervals are presented in Table 7. Calibration points: Chaoboridae+Culicidae, 230-187 Ma [8,9]; Toxorhynchites 
mexicanus fossil, ≥ 16 Ma [66]; Culex winchesteri fossil, ≥ 34 Ma [67]; Anopheles dominicanus fossil, ≥ 34 Ma [45].
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ers. The present study was limited by what was available
in existing collections. Broader taxon sampling is crucial
not merely because it may help break up long branches.
To the extent that the current generic system of classifica-
tion includes paraphyletic and polyphyletic groups con-
taining numerous species, it is clear that inclusion of only
one or few generic exemplars can be misleading, and that
more representative sampling is needed.
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