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Abstract

Background: Inteins and introns are genetic elements that are removed from proteins and RNA
after translation or transcription, respectively. Previous studies have suggested that these genetic
elements are found in conserved parts of the host protein. To our knowledge this type of analysis
has not been done for group Il introns residing within a gene. Here we provide quantitative
statistical support from an analyses of proteins that host inteins, group | introns, group Il introns
and spliceosomal introns across all three domains of life.

Results: To determine whether or not inteins, group |, group Il, and spliceosomal introns are
found preferentially in conserved regions of their respective host protein, conservation profiles
were generated and intein and intron positions were mapped to the profiles. Fisher's combined
probability test was used to determine the significance of the distribution of insertion sites across
the conservation profile for each protein. For a subset of studied proteins, the conservation profile
and insertion positions were mapped to protein structures to determine if the insertion sites
correlate to regions of functional activity. All inteins and most group | introns were found to be
preferentially located within conserved regions; in contrast, a bacterial intein-like protein, group I
and spliceosomal introns did not show a preference for conserved sites.

Conclusions: These findings demonstrate that inteins and group | introns are found preferentially
in conserved regions of their respective host proteins. Homing endonucleases are often located
within inteins and group | introns and these may facilitate mobility to conserved regions. Insertion
at these conserved positions decreases the chance of elimination, and slows deletion of the
elements, since removal of the elements has to be precise as not to disrupt the function of the
protein. Furthermore, functional constrains on the targeted site make it more difficult for hosts to
evolve immunity to the homing endonuclease. Therefore, these elements will better survive and
propagate as molecular parasites in conserved sites. In contrast, spliccosomal introns and group |l
introns do not show significant preference for conserved sites and appear to have adopted a
different strategy to evade loss.
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Background

Inteins are intervening polypeptide sequences that are
translated as part of a protein [1-4], and are removed in
the maturation of the final protein product. Some inteins
contain a homing endonuclease [5] that has a large spe-
cific recognition site (12-40 base pairs). The intein-encod-
ing DNA is inserted in frame within a host gene; after
translation the intein catalyzes its own excision resulting
in removal of the intein (internal protein) and splicing of
the extein (external protein, the mature active host pro-
tein) (see [6] for detailed review) [2,7,8]. Comparative
analyses have shown that all inteins are homologs; how-
ever, their sequences are so divergent that phylogenetic
analyses of inteins inserted into different host proteins
remains largely unresolved [4,9]. Inteins that are found in
different insertion sites of the same host protein are not
necessarily closely related to each other, and often highly
divergent. However, inteins inserted into the same site in
orthologous proteins are closely related to each other and
share a common ancestor, but their molecular phylogeny
does not always reflect the history of the host protein or of
the host organism [4,10,11], indicating transfer of the
intein between divergent hosts.

Introns are defined as non-coding regions of a gene that
are excised during post-transcriptional processing. Since
their discovery in 1977 [12] three major groups of introns
have been identified: group I, group II, and spliceosomal
introns. Group I and group II introns have distinct struc-
tures that facilitate their self-splicing activity (see [13,14]
for detailed review), and they often encode an open read-
ing frame (ORF) or contain an internal ORF [15-17]. The
internal ORF of the group I introns encodes a homing
endonuclease and the ORF of the group II introns encodes
proteins with one to four of the following functionally
defined domains: reverse transcriptase (RT), maturase,
DNA-binding protein, and endonuclease [17,18]. These
proteins serve two functions for the intron: assisting in
splicing and folding, and allowing the intron to act as a
mobile element and invade intron-free alleles via retro-
homing or retrotransposition [13,17-19].

Endonucleases [4] provide mobility to some inteins and
introns, through a process called "homing" [15,16,20].
These endonucleases are known as homing endonucle-
ases (HE). The HEs initiate homing by cleaving the HE
free allele. Similar to traditional restriction endonucle-
ases, the HE makes a double strand break, and the HE con-
taining element is copied during repair into the intein/
intron free allele [15]. The HE recognition site is accessible
in the host gene when flanking regions of the intron or
intein integration sites are joined. Presence of the HE con-
taining element makes the allele resistant to HE digestion.
Free-standing HE genes also function as molecular para-
sites/symbionts [21-24], and can provide mobility for
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neighbouring HE-less group I introns through a collabo-
rative homing mechanism [23].

Previous work found inteins and group I introns in con-
served parts of their host genes [4,25-27], while group 1I
introns were shown not to target conserved genes [28,29].
Here we provide quantitative support and extend previous
analyses to other proteins that host inteins, group I, group
IT and spliceosomal introns across all three domains of
life.

Results

Where are inteins and spliceosomal introns located in their
host sequence and structure?

Our earlier analyses of three host proteins, ATPase cata-
lytic subunit, replication factor C (RFC), and cell division
control protein 21 (CDC21), confirmed the notion that
inteins appear at highly conserved sites within their host
proteins [4]. Since publication of [4] the number of
inteins discovered in these three proteins has increased
substantially, including some found in new insertion
sites.

The vacuolar ATPase catalytic subunit hosts both inteins
and spliceosomal introns in two intein insertion sites, "a"
and "b". We find that these insertion sites are among the
most conserved sites in the protein (p = 0.0099). The
intein database InBase [30] lists 27 inteins in insertion site
"a" and seven in insertion site "b" (Figure 1). Inteins in
insertion site "a" are found in members of the Saccharo-
mycetales and inteins in insertion site "b" are found in
two orders of euryarchaeotes (Thermoplasmatales and
Thermococcales) (Figure 1). The archaeal inteins are
located 20 amino acids downstream of where the yeast
inteins are located. The spliceosomal introns in this pro-
tein are not restricted to conserved sites (p = 0.3909).
Inteins in positions "a" and "b" are mapped to the struc-
ture of the ATPase catalytic subunit of Pyrococcus horikoshii
OT3 (Figure 1B). This mapping shows that both inteins
are located in the conserved catalytic binding site of the
subunit [31], suggesting that the presence of the intein
prior to removal would disrupt catalytic activity of the
subunit.

The replication factor C (RFC) is less than 300 amino
acids long, but accommodates inteins in three different
sites (a-c) and spliceosomal introns in 10 different sites
(Figure 2). InBase [30] reports 10 inteins located in these
insertion sites; six in insertion site "a", two in insertion
site "b" and two in insertion site "c" (Figure 2). The three
insertions sites are among the most conserved parts of the
host protein (p = 0.0209); and mapping of these sites on
the structure of a RFC confirms that these sites are in con-
served and centrally located regions of the protein. The 10
spliceosomal introns are not found to be in conserved
sites of the protein (p = 0.2404).
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Figure |

Positions of inteins and introns along the protein sequence (panel A) and in the structure of vacuolar/archaeal
ATPase catalytic subunit (panel B). Panel A shows the conservation profiles of subunit A of the V/A ATPase and the beta
subunit of the F-type ATPase. The abscissa shows the amino acid position along the alignment; the ordinate designates the
number of different amino acids present in that position averaged over a window of size | I. The dark grey line is the conserva-
tion profile of all three domains. The medium gray line is the conservation profile of Eukaryotes and Archaea. The light gray
line is the conservation profile of the Archaea. The positions of inteins are indicated as blue dots with arrows. Positions of spli-
ceosomal introns from are indicated as green dots without arrows. Panel B shows the structure of ATPase catalytic subunit A
structure from Pyrococcus horikoshii OT3 (PDB ID: 1VDZ[68]) colored according to sequence conservation. The arrows indi-

cate "a" and "b" intein insertion sites. "b" is the archaeal intein insertion site between Lys240 and Thr24| (both amino acids are
shown with space-filled model) and "a" is the eukaryotic intein insertion site between Gly260 and Cys261 (space-filled model).

The intein database currently list 16 inteins located in the
CDC21 protein from nine various archaeal species. These
inteins are found in three different sites: six are found in
location "a", five in location "b", and three in location "c".
Similar to the inteins found in the ATPase catalytic subu-
nit and RFC, these inteins are found in highly conserved
sites of the CDC21 protein (p = 0.0022) (Figure 3).

In addition, we analyzed all proteins that were reported in
InBase [30] as containing an intein for conservation of the
insertion site. With one exception all of these additional
30 proteins harbor their inteins in conserved regions of
the respective host protein. The fillamentous hemmagglu-
tinin protein was annotated by InBase as being an allele
for an intein; however, this element has been shown to be
a bacterial intein-like protein domain (BIL) [32]. BILs are
found in non-conserved regions of hypervariable proteins
and our analysis supports this notion as the BIL was not
found to be in a conserved site. (See additional file 1 for
profiles and p-values.) Using Fisher's combined probabil-
ity method to calculate the overall significance level for
inteins (omitting the BIL) inserting into conserved sites is
p < 0.0001 (in calculating the combined probability, p-
values for individual proteins p < 0.01 were considered as
equal to 0.01).

Where are group | and group Il introns located in their host
sequence and structure?

We analyzed intron insertion positions for DNA polymer-
ase I and cytochrome C oxidase subunit I. Analysis of
group I introns containing HE ORFs indicated that, simi-
lar to inteins, these elements tend to target conserved sites
of their host protein. The DNA polymerase I of Bacillus
phage SPO1 contains a group I intron [33], which is
found in a conserved site of the host protein (p = 0.022)

(Figure 4).

The cytochrome C oxidase subunit I (cox1) gene found in
the mitochondria of eukaryotes accommodates self-splic-
ing group I and group II introns in more than forty differ-
ent sites (See additional file 2 for intron insertion sites.).
The number of introns found in different species varies.
The cox1 gene of Podospora anserine, an ascomycete fungus,
is more than 24 kb long and harbours 14 group I and two
group II introns [34]. In Saccharomyces cerevisiae different
strains host a total of six group I and three group II introns
[18,35,36]. Similar to inteins, group I introns appear to
target more conserved sites (p = 0.0003), and similar to
spliceosomal introns, group II introns were found not to
have a significant preference for conserved sites (p =
0.4176).
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Positions of inteins and spliceosomal introns along the protein sequence (panel A) and in the structure of the
replication factor C (panel B). Panel A shows the conservation profile of the RFC protein (see figure | for details). The
positions of inteins are indicated as blue dots with arrows and positions of spliceosomal introns are green dots without arrows.
Panel B shows the structure of the Archaeoglobus fulgidus replication factor C (PDB ID: 2CHV[69]) colored according to
sequence conservation. The arrows indicate intein insertion site "a" between Lys5| and THR52, "b" between Ala76 and Ser77,
and "c" between Ser138 and Cys 139 (all of these six amino acids are shown as space-filled model). All three intein insertion

sites are conserved within the host protein.

A linear regression analysis was performed to determine if
there is a correlation between the number of fungal spe-
cies that harbour the introns in a particular site and the
conservation of the intron insertion site. A weak negative
correlation between site conservation and number of spe-
cies with group I introns is found at each site (p = 0.0609),
while there is no correlation between site conservation
and number of species with group II introns at each site (p
= 0.2907). These findings suggest that for fungi, either
group I introns tend to target conserved DNA sites more
frequently, or group I introns survive in conserved sites for
longer periods of time, while group II intron targeting is
not strongly influenced by site conservation.

An additional eight proteins which host group I and
group Il introns were analyzed. These represent all protein
families reported in the comparative RNA web site data-
base [37] as containing group I and group II introns.
These proteins followed a similar pattern where the group
I introns showed a strong preference for conserved sites
and the group II introns did not. Two exceptions were
Chlorophyll alpha apoprotein A2 and NADH dehydroge-
nase subunit 3 where neither intron type showed a prefer-
ence for conserved sites (See additional file 1 for p-values
and profiles.).

One of the group I introns in the cox1 gene is present in
mitochondrial genomes of several vascular plants [38,39].

This intron, which encodes a homing endonuclease,
seems to have been recently acquired via horizontal trans-
fer from a fungal donor [38]. Our analyses showed that
this intron is found in the most conserved site of the host
protein (figure 5). The conservation of this site likely has
played a crucial role in the successful transfer, allowing for
HE target site recognition thereby facilitating the transfer
of the intron between these distantly related organisms. In
addition to vascular plants and fungi, many other eukary-
otes host this intron, including the green algae Marchan-
tia, Chara, and Prototheca, the liverworts Pellia, the soil-
living amoeba Dictyostelium, and the single-celled protist
Monosiga (see additional File 2).

The combined significance levels for group I and group II
introns targeting conserved sites is p < 0.0001 and p =
0.49, respectively.

Discussion

Introns have played a role in gene and genome evolution
[40]; most or all of them may be later invaders of the
genes in which they are currently located [41]. Interesting
questions remain regarding the origin and evolution of
introns, including: (1) How often did they arise? (2) How
are they transmitted between divergent species? (3) How
has their activity been maintained by natural selection?
[16,17,20,42-44].
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Positions of inteins along the protein sequence of cell division control protein 21. Dark gray indicates the conserva-
tion profile of all domains. Light gray indicates the conservation profile of Eukaryotes only. Inteins are found in three sites "a-c",

shown with arrows pointing at blue dots.

Regardless of their origin, many of the extant introns and
inteins, especially the ones utilizing homing for survival,
can be considered molecular parasites [20,45,46]. Some
of these molecular parasites have acquired additional
roles that are adaptive to the host [20,45,46]. While we
discuss HE genes and self-splicing elements as molecular
parasites that have their own life-cycles, this does not
negate the fact that many of these elements adapted to
play a beneficial or at least a necessary role for their host
[47], and these roles may play a role in the long term sur-
vival of these elements [20].

In accordance with other studies [4,25,26], we find that
inteins and group I introns are found in conserved regions
of their respective host proteins. This same trend was also
seen for 37 other protein families that host inteins and
group I introns (see additional file 1). We also find that
group I introns within highly conserved positions are

more likely to be found in a broader range of species of
fungi. Group II introns, BILs and spliceosomal introns do
not reveal a significant bias toward conserved sites.

The splicing elements utilize a small portion of the flank-
ing extein/exon region for splicing. Inteins are inserted
before one of the following amino acids in the host pro-
tein: C, S, or T [6]. The amino acid is required to complete
the self-splicing reaction. For the group I intron an inter-
nal guide sequence binds to 6 - 12 nucleotides of the exon.
This internal guide sequence is not conserved between dif-
ferent group I introns and exact base pairing between the
guide sequence and exon is not required [48]. Similarly, in
the case of the group II introns two exon binding sites of
the intron interact with six or more nucleotides each at the
5' and 3' flanking exon [13,49]. For both group I and
group Il introns this base pairing between intron internal
sequence and the flanking exon restricts the possible sites
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1000

Group | intron location along the protein sequence (panel A) and in the structure of the DNA polymerase |
(panel B). Panel A shows conservation profile of DNA polymerase | (see figure one for details). Panel B shows the structure
of the DNA polymerase | (Klenow Fragment) from Escherichia coli (PDB ID: 1KLN[70]) colored according to site conserva-
tion. The arrow indicates intron insertion site, of the intron found in homologous protein in Bacillus subtilis phage SPO 1, which

is between Asn675 and Leu676 (space-filled model).

in which an individual intron can retain its splicing activ-
ity. However, this does not restrict the locations of the
introns as a group, because most mutations in the exon
binding sites change the site specificity without impacting
catalytic activity. Therefore, the splicing mechanism can
be ruled out as a reason group I introns are found in con-
served sites at the amino acid level. Exon splicing
enhancer and silencer nucleotide motifs have been char-
acterized surrounding individual spliceosomal introns
[50,51]. In the case of spliceosomal introns these require-
ments for exon sequence motifs surrounding the intron
have not led to a detectable preference of insertion sites
that are conserved at the amino acid level.

Parasitic elements have likely evolved two different strate-
gies to propagate and survive. Inteins and group I introns
utilize homing endonucleases to target conserved sites.
Conserved sites tend to be in functionally important; con-
sequently, precise excision of the intein or group I intron
is required to maintain functionality of the protein. Fur-
thermore, the functional importance of the residues limits
the range of substitutions that can modify the target
sequence so that it no longer is recognized by the homing
endonuclease. Although group I intron and intein inser-
tions are targeted to a DNA sequence, this is merely a
proxy for sequence conservation at the protein level, upon
which purifying selection can act. Targeting conserved
sites will also facilitate transfer of the intein or group I
intron to new intron-less alleles, as they will likely contain
near identical amino acid sequences in these regions. In
contrast, group Il introns use a more random and less spe-
cific retrohoming or retrotransposition mechanism (see

[52] for review). This suggests an alternative strategy
evolved by these elements, relying on frequent propaga-
tion to outpace more rapid loss. If group II introns are the
ancestor of spliceosomal introns [28,53], it would not be
unexpected to find a similar site preference for group II
and spliceosomal introns.

Both of these strategies have successfully ensured the sur-
vival and propagation of inteins, and group I and group II
introns [15,18,20]. These genetic elements can be consid-
ered molecular parasites that have their own life cycle,
only occasionally evolving functions that contribute to
the fitness of the host organism, or that increase the com-
plexity of the host in an irreversible manner, without nec-
essarily increasing the host's fitness [47,54].

In most eukaryotes the coxI gene (encoding cytochrome C
oxidase subunit I) is found in the mitochondrion, and
hosts many introns representing both group I and group
I introns. Several studies provide evidence for horizontal
gene transfer of this element between distantly related
groups of eukaryotes, confirming an intron homing
model of evolution [38,55,56].

As shown in figure 5, the cox1 gene introns were found in
both conserved and variable regions of the host; however,
introns that are found in numerous species are more often
found in highly conserved sites. The only group I intron
found in the cox1 gene of several vascular plants [39] is
inserted in the most conserved site of the host protein. The
intron present in plants was reportedly acquired from a
fungal donor [38]. As the conservation of the insertion

Page 6 of 11

(page number not for citation purposes)


http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1KLN

BMC Evolutionary Biology 2009, 9:303

http://www.biomedcentral.com/1471-2148/9/303

Az B
c 12
(0]
w0 —
{
(o]
O Hwo
k7]
g ™
—~ .l .
.
I 6
2 ®
g . Il .
g 4 ? . [ ] * L4 & ° ° @ L4
g ;.- I J s L [
QO % y ° F ] ? o
— .. L[]
8 2t y .
) f
5 ) i i . ; .
0 100 200 300 400 500 600
C7 D
. y =-0.0632x + 4.1134 8 . y =-0.3744x +5.0469
6 R*=0.0936 R?=0.0539
5| ¢ p = 0.0609 7 p=0.2901
+ » * 6
; 20 * * *
4 $ . 2 . 5 .
3 . * % 4 é\
* 3 * 3 L ES
2 *
2
1 1
0 0 ‘
0 2 4 6 8 10 12 14 16 0 1 2 3 4 5
Figure 5

Positions of introns along the protein sequence (panel A) and in the structure of the Cytochrome C Oxidase
Subunit I (panel B). Panel A shows the conservation profile of the cytochrome C oxidase subunit | (see figure | for details).
Blue dots indicate group | intron positions and orange dots represent group Il intron positions. Panel B displays the structure
of the Paracoccus denitrificans cytochrome C oxidase subunit | (PDB ID: 1QLE[71]) colored according to site conservation. The
arrow points to the intron insertion site of the intron found in the homologous protein in some vascular plants, protist, fungi,
green algae, liverworts, and amoeba. The insertion site is between Gly275 and His276 (space-filled model). Panel C shows the
relationship between the number of group | introns found at each position and the site conservation. Panel D shows the rela-
tionship between the number of group Il introns found at each position and the site conservation.

site is the key for homing process, the observed preference
for conserved sites may reflect the mode of propagation of
the group I introns.

It is possible that inteins and group I introns target all sites
but only the ones that end up in a conserved site are
retained. The two exceptional proteins in this study,
NADH dehydrogenase subunit 3 and Chlorophyll alpha
apoprotein A2, may be an example of this. This mecha-
nism would result in a preference for conserved sites even
in the absence of a site specific homing mechanism. Such
independent preference for conserved sites may have
caused splicing elements (introns and inteins) and hom-
ing endonucleases to target the same sites, resulting in the
fusion of these elements [57]. Free-standing HE genes are
found in intergenic regions, their survival is dependent on
the homing cycle [23,24] and they might be more easily
eliminated as compared to HE associated with self-splic-
ing elements since their removal does not need to be pre-

cise. Upon fixation of the HE in the population, homing
is no longer possible, because the HE is already present in
all target sites. If the HE has not acquired another function
that can create a selection pressure to maintain the HE
gene, it is likely to decay and be lost [20].

The fact that BILs do not show a conserved site preference
[58] suggests that the conserved site preference is associ-
ated with the life-cycle of the homing endonuclease con-
taining molecular parasite. This life cycle was first
formulated as a homing cycle involving movement of the
molecular parasite across population or species bounda-
ries [4,59], but it has been suggested that this life cycle,
with its succession of empty target sites, sites invaded by a
molecular parasite with functioning homing endonucle-
ase, sites containing a dysfunctional homing endonucle-
ase, can operate within in spatially distributed population
[20], and for some values of fitness reduction of individu-
als carrying molecular parasites may also operate continu-
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ously in homogenous well mixed populations [60]. As
discussed above, both the invasion phase and the deletion
phase of life cycle may cause a conserved site preference.
The targeting of a conserved site will make it more difficult
for the host protein to evolve immunity towards the hom-
ing endonuclease, and it will make deletion of the molec-
ular parasite more difficult.

The rate and tendencies to gain and lose introns vary con-
siderably between lineages of eukaryotes [42,43], with the
number of spliceosomal introns per gene and the degree
of sequence conservation at spliceosomal intron bounda-
ries also varying greatly [61]. Spliceosomal introns can be
gained via homologous recombination with intron-con-
taining genes unrelated to the conservation of the site, and
through retrohoming [42,62,63]. The intron removal
processes also appears to be unrelated to the sequence
conservation at the insertion sites. The best characterized
model for intron loss in multicellular eukaryotes is via
homologous recombination between intron containing
genes and spliced cDNAs produced by reverse transcrip-
tion [42,62,63].

Conclusions

We have provided statistical support for the notion that
inteins and group I introns target conserved protein sites
for survival. This may also provide evidence for the hom-
ing cycle that describes the life cycle of these two molecu-
lar parasites. Furthermore, our findings suggest that group

http://www.biomedcentral.com/1471-2148/9/303

IT and spliceosomal introns persist in their host genes
using a different evolutionary strategy.

Methods

Construction of the Conservation Profiles

To calculate conservation profiles along a protein
sequence, BLASTP [64] was used to detect homologous
protein sequences from the NCBI protein database. Each
dataset was aligned using the CLUSTALW program ver-
sion 1.83 [65], and inspected for alignment accuracy.

To construct archaeal/vacuolar-type ATPase catalytic sub-
unit A protein sequence alignments sequences from 29
Eukaryotic species, 13 Archaeal species, and four Bacterial
species were aligned. Ten Archaeal species and fifteen
Eukaryotic species were aligned to construct the Replica-
tion factor C protein sequence alignments. Nine Archaeal
species and 21 Eukaryotic species were aligned to con-
struct the cell division control protein 21 protein
sequence alignment. Sequences from two Eukaryotic spe-
cies, 18 Bacterial species and four phage sequences were
used to construct the DNA polymerase I protein sequence
alignments. 21 Eukaryotic species and nine Archaeal spe-
cies were use for the Cytochrome C Oxidase Subunit I pro-
tein alignment. All other proteins found in the InBase
database [30] (data retrieved November 2009) that host
inteins were also analyzed. And all other proteins found
in the comparative RNA web site database [37] (data
retrieved November 2009) were analyzed for group I

Table I: Statistical Support for Inteins and Introns Targeting Conserved Sequences.

Intein Group | Intron Group Il Intron Spliceosomal Intron
VMC All 0.0099 0.3909
Eukaryote 0.0541 0.3303
Archaea 0.0213 0.599
Bacteria 0.0117 0.1899
RFC All 0.0209 0.2404
Eukaryote 0.0028 0.2024
Archaea 0.0551 0.246
cDcC2l All 0.0022
Eukaryote 0.0036
Archaea 0.002
POL All 0.0011
Bacteria 0.0070
Phage 0.0011
COoX All 0.0003 0.4176
Eukaryote <0.0001 0.4597
Archaea <0.0001 0.7597
Bacteria 0.0048 0.3372

p-values determined by Fisher's combined probability test. The rows giving different taxonomic ranges indicate the origin of the sequences that

were used to calculate the conservation profiles.

Page 8 of 11

(page number not for citation purposes)



BMC Evolutionary Biology 2009, 9:303

introns and group II introns positions. (See additional file
3 for accession numbers.)

The conservation profiles were calculated from the pro-
tein alignments using an in house PERL script (Olga
Zhaxybayeva, Dalhousie University, see additional file 4).
This program calculates the number of substitutions over
a sliding window of 11 aligned positions and the window
is moved through the alignment one position at a time.
Inteins, introns, and sites where more than 50% of the
sequences had a gap inserted into the alignment are omit-
ted in the calculations. The lower the conservation score
the more conserved the position is and the higher the con-
servation score the less conserved the positions is. These
conservation scores for each protein were mapped on the
protein structures using MacPyMOL [66].

Statistical Analysis

For each protein, n individual intron/intein insertions
were given a probability score (p) based on the probability
of a random position within the conservation profile con-
taining an equal or greater conservation score than that at
the position of the intron/intein insertion. If the protein
contained more than one of each parasitic element these
probabilities were then combined for each protein using
Fisher's combined probability test [67], resulting in an
overall probability (p*) of intron/intein insertions being
randomly distributed within each conservation profile. To
show that no one kingdom overwhelmingly contributed
to the significance of p* each kingdom was removed from
the alignment and a new conservation profile was made
and the Fisher's combined probability test was performed
(see Table 1). To test the applicability of Fisher's com-
bined probability test we calculated the combined proba-
bility for the insertion of the two inteins in VMA intein
dataset by calculating the sum of the conservation scores
for all possible window pairs. The probability of the sum
of two randomly chosen windows having a sum conserva-
tion score greater than the two intein sites was p = 0.0063,
compared to p = 0.0099 as determined by the Fisher's
combined test statistic. This shows that the Fisher's com-
bined test provides a conservative measure of significance
for these analyses.

Simple linear regression was used to correlate site conser-
vation with intron/intein penetrance (the number of spe-
cies infected with a specific element). Significance was
then calculated using standard methods based upon the
resulting correlation coefficient (r), and the degrees of
freedom in the sample (n-1).
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tions, and orange dots group Il intron positions.
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Additional file 2

List of Introns found in Cytochrome C oxidase subunit 1. The list con-
tains all introns from species for which at least one of their cox1 gene
introns were BLAST hits when introns from Podospora anserina
(X55026) and Saccharomyces cerevisiae (V00694 ) cox1 genes were
used as query sequences.
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Accession numbers for sequences used in protein alignment. Lists of
accession numbers for each protein used for each conservation profile.
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Additional file 4

Perl scripts used to calculate the conservation profiles. Perl scripts used
to calculate conservation profiles.
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