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Abstract

Background: In plants, expression of ARGONAUTEI (AGOI), the catalytic subunit of the RNA-Induced Silencing Complex
responsible for post-transcriptional gene silencing, is controlled through a feedback loop involving the miR 168 microRNA. This
complex auto-regulatory loop, composed of miR168-guided AGO |-catalyzed cleavage of AGO/ mRNA and AGO |-mediated
stabilization of miR 168, was shown to ensure the maintenance of AGO| homeostasis that is pivotal for the correct functioning
of the miRNA pathway.

Results: We applied different approaches to studying the genomic organization and the structural and functional evolution of
MIR168 homologs in Brassicacae. A whole genome comparison of Arabidopsis and poplar, phylogenetic footprinting and
phylogenetic reconstruction were used to date the duplication events originating MIR/68 homologs in these genomes. While
orthology was lacking between Arabidopsis and poplar MIR[ 68 genes, we successfully isolated orthologs of both loci present in
Arabidopsis (MIR[68a and MIR168b) from all the Brassicaceae species analyzed, including the basal species Aethionema
grandiflora, thus indicating that (1) independent duplication events took place in Arabidopsis and poplar lineages and (2) the origin
of MIR 168 paralogs predates both the Brassicaceae radiation and the Arabidopsis alpha polyploidization. Different phylogenetic
footprints, corresponding to known functionally relevant regions (transcription starting site and double-stranded structures
responsible for microRNA biogenesis and function) or for which functions could be proposed, were found to be highly
conserved among MIR 168 homologs. Comparative predictions of the identified microRNAs also indicate extreme conservation
of secondary structure and thermodynamic stability.

Conclusion: We used a comparative phylogenetic footprinting approach to identify the structural and functional constraints
that shaped MIR168 evolution in Brassicaceae. Although their duplication happened at least 40 million years ago, we found
evidence that both MIR| 68 paralogs have been maintained throughout the evolution of Brassicaceae, most likely functionally as
indicated by the extremely high conservation of functionally relevant regions, predicted secondary structure and thermodynamic
profile. Interestingly, the expression patterns observed in Arabidopsis indicate that MIRI68b underwent partial
subfunctionalization as determined by the experimental characterization of its expression pattern provided in this study. We
found further evolutionary evidence that pre-miR 168 lower stem (the RNA-duplex structure adjacent to the miR-miR* stem)
is significantly longer than animal lower stems and probably plays a relevant role in multi-step miR 168 biogenesis.
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Background

MicroRNAs (miRNAs) are a large class of recently discov-
ered short non-coding RNAs (19-25 nt long) involved in
post-transcriptional regulation of protein-coding genes.
In plants they repress gene expression by catalytic mRNA
degradation on the basis of sequence homology between
the microRNA itself and a target sequence. Through this
function they act as major players in the regulation of a
series of fundamental processes in plant growth and
development, in response to biotic and abiotic stress and
in the regulation of components of the plant silencing
machinery itself [1-4]. In plants, RNA polymerase II pro-
duces a long primary transcript (pri-miRNA) folded in a
typical stem-loop structure [5,6] that is processed by a
Dicer-like RNAse III ribonuclease (DCL1), first in a
shorter miRNA precursor (pre-miRNA) and then in the
miRNA:miRNA* duplex [7-9]. The miRNA:miRNA*
duplex is transported to the cytoplasm and the mature
miRNA is incorporated in the RNA-Induced Silencing
Complex (RISC) where it drives the slicer ARGONAUTE1
(AGO1) to silence the target mRNA [5,10,11].

Plant miRNAs have been found in a wide variety of species
and several miRNA families are evolutionarily highly con-
served, ranging from mosses and ferns to dicots [1,12-16].
The members of each miRNA family normally retain a
complete or almost complete conservation of miRNA and
miRNA* sequences and of the structure formed by their
pairing. Generally strong conservation constraints charac-
terize the sequences and structure of the pre-miRNA hair-
pin structure, whereas the conservation constraints on
loop and flanking sequences are less tight [1]. This is due
to the fact that in plants miRNA processing depends on
pre-miRNA structure rather than on sequence and in par-
ticular on the structure of the flanking sequences (lower
stem) rather than on the mature miRNA itself [17]. A
detailed analysis of miR163 biogenesis has revealed that
the release of the mature microRNA requires at least three
DCL1 cleavage steps spaced by 21 nucleotide intervals
each, starting from the base of its unusually long lower
stem [9]. Similar studies in animals have shown that struc-
tural features of the lower stem are essential for cleavage
of pri-miRNA by Drosha (which acts in animals as DCL1
does in plants; [18]).

In contrast to the complexity that regulatory cascades of
transcription factors can reach [8,19], plant microRNAs
are organized according to a simple, two-level hierarchy:
only three of them, miR162, miR168 and miR403 [20],
control their own expression and that of the other miR-
NAs by targeting specific proteins involved in the post-
transcriptional gene silencing pathway. In particular,
miR168 regulates the function of all miRNAs by targeting
AGO1 expression, therefore modulating its actual levels
and consequently RISC activity [21,22]. MIR168 is present
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in a low copy number in different plant species [23,24]
and in the Arabidopsis genome two MIR168 paralogs
(MIR168a and MIR168b) are present. Only MIR168a, for
which the primary transcript has been isolated [23], was
shown to be involved in AGO1 post-transcriptional gene
silencing in Arabidopsis. A miR168a-resistant version of
AGO1 showed increased levels of AGO1 mRNA, the over-
accumulation of miR168 and developmental defects par-
tially overlapping with those observed in dcl1, henl and
hyll mutants [25]. A complex feedback loop, involving on
the one hand cleavage of AGO1 transcripts directed by
miR168 and on the other hand stabilization of miR168
through AGO1 association, was shown to maintain AGO1
homeostasis which is pivotal for miRNA-mediated post-
transcriptional gene silencing [26]. The overlapping
expression patterns of MIR168a and AGO1 and the
restored development and fertility in agol mutants
expressing miR168a-promoter:AGO1 fusion support this
model [26].

Despite the relevance of MIR168a in plant development,
up to now no detailed comparative study has been carried
out to characterize its evolution, nor has the function of
its paralog MIR168b been determined. In this study we
applied phylogenetic footprinting to the characterization
of the genomic organization, and structural and func-
tional evolution of MIR168 sets of orthologs in Brassi-
caceae. We found that, despite having originated before
Brassicaceae radiation, MIR168a and MIR168b paralogs
have been maintained, most likely as functional, through-
out Brassicacea evolution, with MIR168b having under-
gone a partial sub-functionalization. We also provide
evolutionary evidence that the lower stem in the pre-
miRNA structure (the RNA-duplex structure adjacent to
the miR-miR* stem) is significantly longer than lower
stems in animals and propose the hypothesis that, simi-
larly to mir163, it may play a relevant role in multi-step
miR168 biogenesis.

Results

Synteny of MIR168a and MIR168b loci in A. thaliana and
P. trichocarpa

In the genomes of both A. thaliana (Ath) and P. trichocarpa
(Ptc) two MIR168 loci have been identified, called
MIR168a and MIR168b, located respectively on chromo-
some 4 and 5 in Arabidopsis and on linkage_group_III
and scaffold_86 in poplar [8,27].

Analyses of synteny conservation were carried out by
searching in poplar for the putative orthologs of the 20
Arabidopsis genes flanking MIR168a and MIR168b by
screening for Reciprocal Best Matches (RBM) in BLASTP
searches [28] (see Methods; Fig. 1A and Additional File 1).
The queries from the former analyses were then used to
identify recent segmental duplications (see Methods).
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Synteny conservation and duplication dating of MIR168 paralogs. A) Synteny conservation of the genomic regions
encompassing MIR168a and MIR168b in A. thaliana and P. trichocarpa. Arrows represent MIR|68a and MIR168b; the squares
represent coding genes with at least one homolog in both genomes; the black lines represent RBMs and the gray lines connect
BLASTP hits with lower homology within the same syntenic regions. Dashed lines connect At4g/ 9410 homologs; diagonal lines
on Ptc_LG_lIl represent a 7 Mbp long region not syntenic to Arabidopsis. B) Phylogenetic reconstruction of At4g/9410
homologs in the Arabidopsis and poplar genomes. The portion of the linearized tree representing the homologs of At4g| 9410
located in the same genomic regions as MIR168a and MIR168b is highlighted in black. Values at the branch roots correspond to
majority rule consensus bootstrap values > 50%. Ath: A. thaliana; Ptc: P. trichocarpa; Ks: number of synonymous nucleotide sub-

stitutions per synonymous site.

Assuming orthology among the Arabidopsis and poplar
genomic regions encompassing the MIR168 loci, the sur-
rounding RBM pairs should be found mainly among the
same pair of chromosomes. The uneven distribution of
loci forming RBM pairs, however, indicated that the
MIR168 loci may have been the result of independent
duplication events.

Dating of duplication events

Only two Arabidopsis paralogs formed RBM pairs in pop-
lar (At4g19410 and Eugene3.00030191; At5g45280 and
EstExt_fgenesh4_pg.C_860138; Fig. 1B). To determine the
chronological order of these duplications, we carried out
a phylogenetic reconstruction of all the genes that are
homologous to the RBM pairs in the two genomes. The
results show that the splitting of the two species predated
two duplication events that took place independently in
the Arabidopsis and poplar lineages. The two Arabidopsis
paralogs, At4¢g19410 and At5¢45280, displayed a rate of
synonymous substitution (Ks) of 0.85, a higher value than
that observed for paralogs resulting from the Arabidopsis
alpha whole genome duplication [29]. The two poplar

paralogs, Eugene3.00030191 and Est Ext _fge nesh 4 _pg.
C_860138, were confirmed to have diverged more
recently (Ks = 0.28). The divergence between poplar and
Arabidopsis homologs ranged between Ks = 1.91 and Ks =
2.33. Based on the estimated divergence time between
Cleomaceae and Brassicaceae (Ks = 0.82, corresponding
to about 41 million years ago [29]), this should corre-
spond to a poplar-Arabidopsis divergence time of about
105 million years, in full agreement with the 100-120
million year range provided by previous reports [30].

This dating agrees with the observation that synteny con-
servation between Arabidopsis and poplar is higher than
between Arabidopsis chromosomes. Taken together, these
results indicate that no orthologous relationship can be
inferred between Arabidopsis and poplar MIR168
homologs.

Genomic characterization of MIR168 loci in Brassicaceae
species

On the basis of these results we focused on analysis of the
evolution and conservation between species of the two
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MIR168 homologs in a group of 16 Brassicaceae species
(Table 1).

MIR168a and MIR168b homologs were amplified through
a gene-to-gene amplification based on their up- and
downstream genes in Arabidopsis. The intergenic region
downstream of MIR168a was amplified from all the spe-
cies with an amplification rate double than that of the
upstream intergenic region (Table 1). In the case of
MIR168b the intergenic regions were fully isolated (from
the upstream to the downstream gene) in most of the spe-
cies. The taxonomic distance of the single species from
Arabidopsis did not significantly affect the isolation of
intergenic regions.

The isolation of intergenic regions and the level of
sequence conservation between species highlighted by
their multiple alignments indicate: (1) general micro-syn-
teny conservation in the regions surrounding MIR168a
and MIR168b and (2) conservation of the orthologous
relationship of all isolated MIR168a and MIR168b genes
at the family level (Table 1).

MIR168a and MIR168b phylogenetic footprinting

A clear phylogenetic footprint was identified in all species
~100-150 bp upstream of the mature miR168a (Addi-
tional File 2A) in correspondence with Arabidopsis
MIR168a transcription start site (TSS; GenBank accession

Table I: Summary of MIR168 homolog isolation from Brassicaeae
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DQ108858.1). On the contrary, the use of different align-
ment programs failed to identify a highly conserved foot-
print corresponding to MIR168b TSS. The location of
MIR168b TSS in Arabidopsis was therefore determined by
sequencing 21 RACE products obtained from
pMIR168b1::GFP-GUS transgenic lines. The 5' end of all
clones mapped in three points of a region ~60-110 bp
upstream of the mature miR168b proximal to a TATA-like
motif (consensus ATTAAATACC) conserved in both para-
logs (Additional File 2B; positions 28-51). The three TSS
conformed in all cases to the TA class of dinucleotides
identified by the YR Rule [31]. This poorly conserved foot-
print could be identified by manual editing of a multiple
sequence alignment performed with clustalw, thus indi-
cating a lower functional constraint on MIR168b as com-
pared to MIR168a transcription.

Detailed analysis of pre-miR168a and pre-miR168b and
flanking sequences revealed a considerable conservation
of the pre-miRNA sequences at both loci (Additional File
2C and 2D). Both miR168 and miR168* were completely
or almost completely conserved between orthologs and
paralogs in all species (Additional File 2C and 2D). The
~20 bp flanking regions preceding the mature miR168
and following the miR168* showed a significant level of
sequence conservation between orthologs and also,
although to a lower extent, between paralogs (Additional
File 2E, 2F and 2G).

MIR168b

MIR168a
Species Code
Aethionema grandiflora Boiss & Agr n.d.
Hohen. b
Alyssum montanum L. Amo n.d.
Arabidopsis lyrata (L.) O'Kane and Aly n.d.
Al-Shehbaz
Arabidopsis thaliana (L.) Heynh. 2t Ath 22
Cardamine alpina Willd. Cal n.d.
Cardamine flexuosa With. b Cfl n.d.
Capsella grandiflora (Fauché & Cgr 35
Chaub.) Boiss. b
Cardamine hirsuta L. b Chi n.d.
Cardamine impatiens L. b Cim n.d.
Calepina irregularis (Asso) Thell. Cir 35
Diplotaxis tenuifolia (L.) DC. b Dte n.d.
Erysimum cheiri L. Crantz 2b Ech 4.0
Malcolmia maritima (L.) Ait. f. b Mma 4.0
Pseudoturritis turrita (L.) Al- Ptu 35
Shehbaz 2
Rorippa austrica (Crantz) Spach b Rau n.d.
Thellungiella halophila (C.A. Mey.) Tha 3.0
O.E. Schulz ab

Upstream IR (Kbp) Downstream IR (Kbp) Upstream IR (Kbp) Downstream IR (Kbp)

2.0 1.3 1.3
4.5 n.d. 1.4
n.d. n.d. n.d.
2.4 0.7 2.2
2.0 n.d. 35
2.5 0.7 1.8
3.0 0.7 1.5
2.3 1.1 1.5
2.3 0.8 2.0
23 1.0 1.3
1.5 0.6 0.8
3.0 0.5 2.0
3.0 0.5 1.5
2.5 0.5 1.8
2.5 0.8 1.5
2.5 0.7 2.7

Amplification of the intergenic regions upstream and downstream of MIR/68a and MIR[68b in Brassicaceae species. IR: intergenic region; Kbp: kilo-

basepair. n.d.: not determined.

a b: whole MIRI168a or MIR168b loci obtained from the upstream to the downstream gene.
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A completely conserved 9 bp long motif (5'-TCAGATCTG-
3') was isolated in both MIR168a and MIR168b just down-
stream of the pre-microRNA (Additional File 2E). Despite
being a palindromic structure, it was not involved in any
predicted secondary structure. Searches for this motif in
the Athamap database [32] showed a high quality match
with the binding site of the tobacco AGP1 transcription
factor [33]. No significant over-representation of the 9 bp
motif downstream of microRNA loci was detected as com-
pared with coding genes (the P-value of a two-tailed G-test
for patterns with a maximum of one mismatch was p =
0.066). An identical pattern was also detected in MIR396a
downstream of, but at a higher distance as compared with
MIR168. To check for over-representation of this motif in
specific groups of microRNAs, 94 microRNA super-
families were defined based on the classification of their
targets. The application of random permutation resam-
pling approach led to the identification of only one super-
family which showed an enrichment in this motif (p =
0.00016, o = 0.0036 at the 0.05 level applying the Bonfer-
roni correction with k = 14 superfamily classes tested; see
Methods). This superfamily encompasses both MIR168
paralogs and MIR403, a microRNA targeting
ARGONAUTE2 (AGO2) that is a member of the ARGO-
NAUTE family of slicers responsible for mRNA cleavage in
PTGS.

A footprint specific to MIR168b was located about 25 bp
downstream of the TSS (Additional File 2B; positions 85-
118). The footprint matched the binding sites of AGA-
MOUS LIKE 1 (AGL1; AT3G58780) and AGAMOUS LIKE
2 (AGL2; AT5G15800), two MADS-box domain transcrip-
tion factors involved in floral organ identity and meristem
determinacy [34-36]. The presence of a 14 bp insertion in
the basal species Aethionema grandiflora prompted us to
separately consider two sub-motifs (consensus TGCCA-
GATAT and GGTAACTGTT). Their occurrence upstream of
Arabidopsis microRNAs was not significantly over-repre-
sented compared to 5'UTRs of all Arabidopsis coding
genes (p = 0.64, p = 0.54, respectively). No statistical sup-
port for their preferential occurrence in the 5' region of
specific microRNA superfamilies was found at the 0.05
level (data not shown).

Phylogenetic reconstruction of MIR168a and MIR168b

Phylogenetic reconstruction with all Brassicaceae MIR168
homologs confirmed the successful isolation of orthologs
of Arabidopsis MIR168a and MIR168b. The limited
amount of parsimony-informative sites, however, could
not provide a phylogenetic reconstruction resolved
enough to compare the evolutionary rates of the single
MIR168 loci (data not shown). Two data partitions were
created by concatenating MIR168a with MIR168b and ITS
with EIF3E [37]. The resulting phylogenetic reconstruc-
tions of MIR168 as compared with the ITS-EIF3E neutral
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markers showed slightly incongruent topologies that are
the consequence of the overall lower resolution provided
by the MIR168 partition (Fig. 2).

Comparative analysis of predicted pre-miR168a and pre-
miR168b structures

Secondary structures for pre-miR168a and pre-miR168b
plus 50 bp of flanking sequences on each side were pre-
dicted based on free energy minimization [38,39]. The
consensus of the most conserved portion of these regions,
including about 20 bp upstream of mature miR168 and
downstream of miR168*, is shown in Figure 3. The
mature microRNA-microRNA*  secondary structure
(upper stem) was completely conserved in the case of
MIR168a and almost completely conserved in the case of
MIR168b (Fig. 3A and 3B). The structure adjacent to the
upper stem (lower stem) was also highly conserved in
MIR168a and MIR168b. In MIR168a it ranged from 18 to
19 bp, with two mismatches and one bulge loop (the two
mismatches typically at positions -4 and -14, the bulge
loop at position -11; Fig. 3A). The lower stem of the pre-
dicted MIR168b structure was 17 to 18 bp long and pre-
sented three mismatches usually at positions -4, -8 and -
12 (Fig. 3B). The lower stem flanking sequences distal to
the upper stem were single stranded.

Thermodynamic profiles and patterns of nucleotide
substitutions

The average thermodynamic profile calculated from the
predicted minimum free energy (MFE) structure of each
species was nearly identical at the level of the upper stem
and more variable for the lower stem of both microRNAs
(Fig. 4A). A common feature of both the upper and lower
stem was that the secondary structure was less stable
(higher free energy value, dG) at the 5' side with an
increase in stability in the central part and at the 3' side.
The level of nucleotidic conservation across species, how-
ever, did not correlate with the dG values, indicating that
the observed footprints could not be explained by a sim-
ple increase in the stability of the corresponding second-
ary structure (see e.g., MIR168a; Fig. 4A). On the contrary,
the comparison of MIR168a and MIR168b thermody-
namic profiles and the classification of their nucleotide
substitutions with respect to base pairing indicated a clear
positional effect concerning the lower stem: the central
region was more variable than the 3-4 bp close to each
end of both stems. In particular the nucleotidic stretch of
5-6 bp connecting upper and lower stems of both micro-
RNAs (position -3, +3) were extremely conserved despite
having an average free energy of -1.6 Kcal/mole, which is
the average free energy of both stems.

The highest number of both structurally conservative (in
yellow and ochre in Figure 4B) and non-conservative
nucleotide substitutions (in blue and red in Figure 4B)
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Phylogenetic reconstruction of MIRI68 in Brassicaeae. Phylogenetic reconstruction of MIR/68a and MIR168b in the
Brassicaceae family compared with a phylogenetic tree drawn using the ITS and EIF3 markers. Values at the branch roots cor-
respond to majority rule consensus bootstrap values > 50%. A) ITS-EIF3 phylogenetic tree; B) MIRI68a-MIR[68b phylogenetic

tree.

was found in the central portion of MIR168a lower stem.
This was in stark contrast with the whole upper stem and
the neighboring 6 bp of the lower stem in miR168a,
where no nucleotide substitutions were observed, indicat-
ing the effect of a strong purifying selection. On the con-
trary, an overall lower number of substitutions (mostly
conservative) were spread all along the stem of MIR168b,
with a clear depletion towards the ends of both upper and
lower stems.

Expression pattern of MIR168a and MIR168b

The high conservation of MIR168b suggests that it could
be expressed and functional, even though, up to now, no
experimental evidence has been reported. The Arabidop-
sis intergenic region upstream of the mature miR168b is
only approximately 500 bp long. Therefore, we used two
genomic regions including the whole intergenic region
plus 255 or 1038 bp upstream to functionally characterize
the MIR168b promoter and ascertain if some regulatory
elements may be present in the upstream gene. These two
regions were used to drive the expression of a reporter

eGFP-uidA fusion gene (pMIR168b1::GFP-GUS and
pMIR168b2::GFP-GUS; Fig. 5B. See Methods) in stably
transformed Arabidopsis transgenic lines. A construct
encompassing the MIR168a promoter was used as a con-
trol (Fig. 5A). Both pMIR168b1::GFP-GUS and
pPMIR168b2::GFP-GUS constructs produced the same
expression pattern (data not shown). This result indicates
that the intergenic region used in the shortest construct
contains all the regulatory information to drive MIR168b
expression. Similarly to what was observed for MIR168a,
the expression of MIR168b was localized in emerging
leaves and in a region underneath the shoot apical meris-
tem corresponding to leaf primordia (Fig. 5C). None of
the MIR168b transgenic lines, in contrast to MIR168a, dis-
played expression in correspondence with vascular tis-
sues.

Discussion

Since the first reports about the presence of microRNAs in
plants [8] a number of miRNA families have been identi-
fied. While attention has been devoted mostly to their dis-

Page 6 of 14

(page number not for citation purposes)



BMC Evolutionary Biology 2009, 9:62

A)
G G C

http://www.biomedcentral.com/1471-2148/9/62

U A

UCACCS UC GGGCUC GAUUCG UUGGUGCAGG CGGGA C’AAU!
AGUGG AG CCCGAG CUAAGU AACUACGUUC GCCCU GGUUA

AA c G C

C | A

pre-miR168a lower stem
B)
AG GG U C

pre-miR168a upper stem

U A G

UUACC CGG CUC GAUUCG UUGGUGCAGG CGGGA CU
AGUGG GCC GAG CUAAGU AACUACGUUC GECCU GA

AA A Sl C

L —

pre-miR168b lower stem

Figure 3

pre-miR168b upper stem

Stem-loop structure and conservation of the pre-miR168 homologs. LOGO representation of the stem-loop struc-
ture of the pre-miR 168 homologs in Brassicaceae species. The base composition is indicated at each position. Gray lines corre-
spond to the pre-microRNA processing sites. A) pre-miR168a; B) pre-miR168b.

covery, both in silico and experimentally, relatively little is
as yet known about plant microRNA evolution and bio-
genesis. In this study we applied a phylogenetic footprint-
ing approach to the comparative study of the evolutionary
patterns of two paralogous microRNA loci, MIR168a and
MIR168b, in the Brassicaceae family. The presence of
highly conserved phylogenetic footprints, in fact, is an
indication of selective constraints acting on specific
sequences [40]. If, as in the case of MIR168, the divergence
time among genes can be demonstrated to be sufficiently
high, parallel phylogenetic footprinting of paralogs pro-
vides a powerful tool to yield evolutionary evidence for
the functionality of a locus as a whole or of its parts.

Evolution of MIR168 in Brassicaceae

Based on the analysis of synteny conservation and on the
phylogenetic reconstruction of a set of closely linked
homologs, we dated the origin of Arabidopsis MIR168
paralogs to shortly before the divergence between the sis-
ter families Brassicaceae and Cleomaceae, about 41 mil-
lion years ago [29]. Applying a genome walking method
based on microsyntenic conservation, we were able to
ascertain reliably the presence of and isolate both
MIR168a and MIR168b paralogs in all analyzed species.
The successful isolation of both MIR168a and MIR168b
from the most basal crucifer, Aethionema grandiflora, pro-
vides demonstration that the origin of MIR168 paralogs
predates both Arabidopsis alpha polyploidization, which
took place approximately 34 million years ago (Mya)
[41,42], and Brassicaceae radiation which took place

between 40 and 50 Mya [43]. The limited synteny conser-
vation observed in Arabidopsis further suggests that the
MIR168a and MIR168b paralogs escaped the extensive
diploidization resulting in the maintenance of only one
homeolog per locus in the surrounding regions.

Similarly to MIR319a [44], we identified phylogenetic
footprints that corresponded to functionally relevant
regions, such as the TSS and the mature miR and miR*
sequences, that indicate a functional conservation of both
MIR168a and MIR168b throughout the Brassicacea fam-
ily. Additionally, in the present study a novel 9 nt highly
conserved region has been identified immediately down-
stream of the lower stem. The palindromic structure of
this phylogenetic footprint and its pattern nearly perfectly
matched the consensus-binding site of APG1, the tobacco
putative ortholog of A. thaliana BME3. This would suggest
its function as a homodimeric transcription factor binding
site [45]. The functional complementation with MIR168a
promoter, however, indicates that this motif is not neces-
sary for normal MIR168 expression [26]. It may, instead,
have a functional relevance for RNA processing or stability
even while not being involved in any of the predicted pre-
miR168 secondary structures. The lack of a significant
over-representation downstream of other microRNA gene
families in Arabidopsis indicates that this motif is not
involved in a general mechanism of microRNA biogenesis
or regulation. However, the occurrence of the same motif
dowstream of MIR403, a microRNA predicted to target
AGO2 (another member of the AGO family) raises the
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Figure 4

Thermodynamic stability and nucleotide substitution profiles of pre-miR168a and pre-miR168b. A) Thermody-
namic stability profile of pre-miR168a and pre-miR168b in the Brassicaceae family. Free energy values are given in kcal/mole.
Vertical bars: between-species variability calculated as double standard error. B) Distribution of nucleotide substitutions with
respect to base pairing in the pre-miR168a and pre-miR168b secondary structures. Yellow: structurally conservative base sub-
stitution; ochre: base substitution comporting a change in length of a bulge loop; blue: base substitution comporting a change
from unpaired to paired bases; red: base substitution comporting a change from paired to unpaired bases. The rate of nucle-

otide substitution is given in percentages.

interesting possibility that it may be specifically involved
in the regulation of AGO genes by microRNAs. Further
studies are, therefore, required to clarify the functional rel-
evance of this phylogenetic footprint.

Role of the lower stem in miR 168 biogenesis

Based on the combination of phylogenetic footprinting
and secondary structure predictions, the only secondary
structures conserved in MIR168 during the approximately
40 million years of Brassicaceae evolution were the stem
containing the miR-miR* pairing (upper stem) and its dis-

tal extension (lower stem). Recently it has been demon-
strated that correct animal pri-miRNA processing depends
on the length of the lower stem [18]. In agreement with
this, our results indicate that the lower stem is particularly
conserved in MIR168, with the difference that the phylo-
genetic footprint identified in plants (ranging from 17 to
19 base pairs) is significantly longer than the 11 base pair
lower stem reported for animals [18]. In animals, the Dro-
sha-Pasha (Microprocessor) complex required for pre-
miR processing is responsible for conversion of pri-
miRNA to pre-miRNA [46]. In plants, this function is car-
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Figure 5

Expression pattern of MIR168 paralogs in Arabidop-
sis. A) Genomic region encompassing MIR/68a; B) genomic
region encompassing MIR/68b. Black box: mature miR|68;
dashed box: miR168*; white boxes: 20 bp sequences forming
the basal stem; light gray box: miR 168 loop region; dark gray
boxes: nearest exons in the genes upstream and downstream
of MIRI68, arrows indicate gene orientation. Distances are
drawn to scale, with the exception of pre-miR168 (to a
larger scale for clarity); +1 is the first nucleotide of the
mature miR168. The pMIR|68a::GFP-GUS, pMIR168b | ::GFP-
GUS and pMIR168b2::GFP-GUS constructs are represented
underneath the genomic regions. C) GUS-staining of Arabi-
dopsis transformant lines carrying the pMIR168a::GFP-GUS
and pMIR168b1::GFP-GUS constructs.

ried out by a functionally analogous complex involving
DCL1, HYL1 and SE [47]. The observed difference in
length of the lower stems may, therefore, indicate a gen-
eral difference in the mechanisms of miRNA biogenesis in
plants and animals.

The phylogenetic footprints identified in this study are
consistent with two step pri-miRNA processing analogous
to that described for MIR163 in Arabidopsis [9]. The
recent origin of MIR163 and the extensive base comple-
mentarity of its inverted repeats [48] may indicate that the
multi-step processing of this microRNA could be more an
exception than the rule. Our finding that a clearly detect-
able selective pressure has been acting on MIR168 lower
stem throughout Brassicaceae radiation indicates that
multi-step pri-miRNA processing is not peculiar to
MIR163 or to newly formed microRNAs. HYL1 has been
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recently shown to interact with DCL1 for the correct
processing of MIR163. Assuming a common processing
mechanism, it is possible that the highly conserved
regions we identified in MIR168 at the ends of both lower
and upper stems may be the footprints of the DCL1/HYL1
complex [49]. The phylogenetic reconstruction carried out
on concatenated MIR168a and MIR168b sequences indi-
cates that MIR168 evolution did not depart from that of
the analyzed species. Interestingly, however, while a large
difference in purifying selection is evident in MIR168a,
the distribution of nucleotide substitutions turns out to be
much more uniform in the case of MIR168b, as also
reflected by their thermodynamic profiles. This may indi-
cate that the lower stem has a function in fine-tuning the
pri-MIR168 precursor processing efficiency.

Function of MIR168 paralogs in Arabidopsis

The high conservation of MIR168a and MIR168b
sequences, RNA predicted secondary structures and ther-
modynamic profiles observed in all the species we ana-
lyzed indicates that constant selective pressure has been
acting on both loci throughout the Brassicaceae evolution.
Interestingly, these results point to the fact that MIR168b
has most likely been functionally conserved in all of the
tested species. Former attempts to confirm MIR168b
expression by RACE were not successful, possibly due to
tissue specific expression [23,50]. In contrast to the
extreme conservation observed in both MIR168a and
MIR319a [44], MIR168b TSS identified in A. thaliana by
RACE mapped to a phylogenetic footprint only partly
conserved in the examined species, thus leaving open the
possibility that the second footprint identified may func-
tion as a primary or alternative TSS in other species. This
lower conservation indicates a lower selective pressure act-
ing on the expression of MIR168b as compared with
MIR168a, consistent with an accessory function of this
locus [25]. However, the clear staining we observed in A.
thaliana transformed with a uidA reporter gene driven by
the whole intergenic regions of MIR168b and part of its
upstream gene confirms MIR168b expression. Taken
together, these results and the presence in the MIR168b
stem-loop structure of the sequence information neces-
sary for processing the mature microRNA [50], provide
evidence for the functionality of this locus.

The similar but more circumscribed expression pattern of
MIR168b as compared with MIR168a is consistent with
either neo- or sub-functionalization of duplicated genes
previously reported for other microRNA loci [51]-[52]. In
light of the nearly overlapping expression patterns of
MIR168a and AGO1 [26], the difference in expression in
the leaf vasculature observed between MIR168 paralogs is
most likely due to sub-functionalization of MIR168b than
to neo-functionalization of MIR168a.
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Conclusion

Phylogenetic footprinting is a powerful technique for the
identification of regions that, being functionally relevant,
have been maintained under selective constraint during
evolution [53]. We used a comparative phylogenetic foot-
printing approach to identify the structural and functional
constraints that shaped the evolution of MIR168 paralogs
in Brassicaceae. Previous studies in Arabidopsis demon-
strated the functionality of MIR168a [25], but left open
the possibility that MIR168b may be either non-functional
or functionally redundant with respect to its paralog.
Although their duplication happened at least 40 million
years ago, we found evidence that both MIR168 paralogs
have been maintained throughout Brassicaceae evolution.
The extremely high conservation of regions functionally
relevant for microRNA expression and biogenesis, pre-
dicted secondary structure and thermodynamic profile
also provide evolutionary evidence of functionality of
both loci, as further supported by the expression of
MIR168b in Arabidopsis. Interestingly, the expression pat-
tern of MIR168b indicates partial sub-functionalization
based on the expression patterns of both MIR168a and
AGOI1. The identification of a highly conserved MIR168b-
specific footprint downstream of the TSS matching the
binding sites for the AGL1 and AGL2 transcription factors
[34,35]-[36], provides the indication for a first candidate
motif possibly involved in the regulation of MIR168b at
specific developmental stages.

The phylogenetic footprinting carried out on the MIR168
paralogs finally points to the fact that the MIR168 lower
stem (the RNA-duplex structure adjacent to the miR-miR*
stem) is significantly longer than animal lower stems and
possibly indicates a multistep miR168 biogenesis process
analogous to the one for miR163 maturation.

The application of phylogenetic footprinting to more
microRNA and plant families holds the promise of fur-
thering our understanding of the regulation of biogenesis,
the function and evolution of these intriguing regulators
of both animal and plant gene expression. The design of
artificial microRNAs [54,55] and its application to both
basic and applied research may also greatly benefit from a
more detailed identification of the determinants for effi-
cient miRNA biogenesis.

Methods

Plant material

Brassicaceae species for tissue collection were grown in the
greenhouse from seeds collected in Trentino Alto Adige
(Italy) from wild populations or purchased from Chiltern
Seeds (Bortree Stile, Ulverston, Cumbria, LA12 7PB, Eng-
land. Table 1).

http://www.biomedcentral.com/1471-2148/9/62

Genomic isolation of MIR168 loci in Brassicaceae species
Genomic DNA was extracted from leaves using the CTAB
method [56]. Intergenic regions encompassing MIR168a
and MIR168b were obtained through gene to gene ampli-
fication by Long-Range PCR using Advantage® 2 Polymer-
ase Mix (Clontech; Fig. 5A and 5B). Primers were designed
either on conserved regions of the A. thaliana genes
upstream and downstream of MIR168a and MIR168b or
on the highly conserved sequences of the mature miR168
and miR168* (Additional File 3). For species where no
PCR amplification was obtained, additional primers were
designed on conserved sequences in the intergenic regions
amplified from the other Brassicaceae species.

Amplification products were cloned in pGEM-T
(Promega) or in pCR-XL-TOPO (Invitrogen) vectors. At
least three clones corresponding to each product were
sequenced bi-directionally to confirm their identity. Ara-
bidopsis lyrata sequences were assembled from the NCBI
Trace Archives http://www.ncbi.nlm.nih.gov/Traces/.
GenBank accession numbers corresponding to the
sequences used in this study are provided in Additional
File 4. Multiple sequence alignments were performed with
M-Coffee [57] and manually edited in Bioedit [58]. Addi-
tional alignments performed with Mulan [59] were used
to identify the most conserved phylogenetic footprints by
using a sliding window of 5 bp and a similarity cutoff of
90%. The TSS of MIR168b could not be detected by means
of Mulan. The results of the RACE experiments (see
below) were in this case used to identify the homologous
regions from the different species and the corresponding
phylogenetic footprint was obtained by manual editing of
multiple sequence alignments performed with ClustalW
[60].

Analysis of synteny conservation in poplar

The aminoacidic sequences corresponding to 20 Arabi-
dopsis genes surrounding MIR168a and MIR168b (10
upstream and 10 downstream) were used for local
BLASTP searches with an e-value cutoff of 1E-5 against the
Populus trichocarpa genome annotation v1.1 (DoE Joint
Genome Institute and Poplar Genome Consortium, http:/
/genome.jgi-psf.org/Poptrl 1/Poptrl 1.download.html.

All poplar peptide homologs were used for a second
BLASTP search against the Arabidopsis genome annota-
tion v5.0 (TIGR, ftp://ftp.tigr.org/pub/data/a thaliana/
ath1/SEQUENCES/). Reciprocal Best Matches (RBM,
[28]) were obtained as the gene pairs with the highest E-
value scores in the two analyses. To detect recent segmen-
tal duplications, an additional BLASTP search was run
against a joint database containing all Arabidopsis and
poplar genes using all the queries from the former analy-
ses. The hits in the genomic regions of interest were con-
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sidered if their score was better than that of any other gene
from the species used as query.

Phylogenetic reconstruction

Fast evolving nuclear loci (ITS [61] and EIF3E [37]) were
used for phylogenetic reconstruction of the species used in
this study. Primers used are listed in Additional File 3.

Multiple sequence alignments for the single genes
obtained with M-Coffee [57] were manually refined using
BioEdit [58]. PAUP* vers. 4.0 b10 [62] was used for phyl-
ogenetic analysis and tree-building using maximum like-
lihood (ML) with best substitution determined by
Modeltest 3.7 [63]. Trees were calculated with swap = TBR,
addition = random, hsearch replicates = 1000, trees hold
at each step = 1, collapse = MaxBrLen, gaps were treated as
missing. Bootstrapping was carried out with 100 re-sam-
pling replicates, each performed with 100 heuristic search
replicates. Phylogenetic reconstructions were carried out
first on the single data partitions to assess the level of pol-
ymorphism and data congruence. Due to the low level of
polymorphism in the single datasets, the partitions used
for the final analyses were: 1) ITS + EIF3E, 2) MIR168a +
MIR168b.

Phylogenetic reconstruction for the At4¢19410 peptide
homologs present in both Arabidopsis and poplar
genomes was carried out with Mega 4.0 [64], using the
neighbor-joining method with a variable rate among ami-
noacidic sites (Gamma = 1.0) and 1000 bootstrap repli-
cates. The cladogram representing the 50% majority-rule
consensus tree was used to depict the lineage divergence
and duplication events. Rates of synonymous substitution
(Ks) were calculated with DnaSP v4.0 [65].

A. thaliana whole genome motif search

To analyze the representation of the conserved TCA-
GATCTG motif and of the MIR168b-specific footprint, the
average length of the 24016 A. thaliana 3' and 22998 5'
untranslated regions (UTRs) TAIR7 blastset was calculated
(233 bp and 146 bp, respectively; ftp://ftp.arabidop
sis.org/home/tair/Sequences/blast datasets/

TAIR7 blastsets/). A second dataset (miRNA dataset) was
obtained by extracting from the TIGR v5.0 pseudochro-
mosomes the 233 bases downstream or the 146 bases
upstream of the 184 Arabidopsis microRNA hairpins
annotated in miRBase v.10.1 [66]. The presence of the
TCAGATCTG motif (with a stringency of 1 mismatch) or
of the two MIR168b-specific sub-motifs identified by the
point of a 14 bp insertion in Aethionema grandiflora (strin-
gency of 2 mismatches; Additional File 2B) in the miRNA
and the TAIR7 3' and 5' UTR datasets was calculated with
the EMBOSS fuzznuc application. A two-tailed G-test was
used to test the goodness of fit for the distribution in the
miRNA dataset compared with the distribution obtained
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from the whole genome TAIR7 UTR datasets. To check for
over-representation of these motifs in specific groups of
microRNAs, 94 microRNA superfamilies were defined
based on classification of their targets. The number of
microRNAs in each family with an occurrence of the
motifs in the 233 bases downstream or the 146 bases
upstream of the pre-microRNA (from now on indicated
for brevity as a "hit") was further used to define 14 classes
of superfamilies charcaterized by the same number of
members and the same number of hits. A random permu-
tation resampling approach was used to model the prob-
ability of each superfamily class to originate by chance in
the whole complement of Arabidopsis microRNAs: a set
of 1000000 random boolean strings, each 184 characters
long and containing a number of "1" corresponding to the
number of microRNA genes with at least one occurrence
of each motif, were generated with the Mersenne Twister
algorithm [67]. The probability of random occurrence of
each superfamily class was given by the frequency of
boolean strings matching exactly the number of hits for
that class in a number of randomly selected positions cor-
responding to the number of its members. A Bonferroni
correction was applied to keep into account multiple test-
ing of classes.

The analysis of similarity of the conserved footprints to
known binding sites was carried out by means of
AthaMap database [32] and of the MultiTF program [68].

Secondary structure prediction and thermodynamic
profiles

The predicted secondary structures were generated using
the RNAstructure program [38]. The LOGO representa-
tion of these structures was obtained with the WebLogo
software [69].

The species-specific thermodynamic stability profiles of
the predicted secondary structures were calculated for pre-
miR168a or pre-miR168b according to the nearest neigh-
bour method [39], and summarized in a single profile by
averaging the free energy values at each position.

Expression analysis of MIR168a and MIR168b

The intergenic regions upstream of miR168a and
miR168b were used to drive the expression of an
enhanced green fluorescent protein-beta glucuronidase
(eGFP-uidA) fusion reporter construct (pKGWES7; [70]).
The MIR168a promoter region encompassed 1491 bp
from -1497 to -6 upstream of the mature microRNA (Fig.
5A). For MIR168b two regions upstream of the mature
miR, from -1520 to -3 and from -737 to -3 (including 255
and 1038 bp of the upstream gene coding sequences,
respectively) were used to prepare two constructs
(pMIR168b1::GFP-GUS and pMIR168b2::GFP-GUS; Fig.
5B). 4-week-old Arabidopsis plants were transformed by
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floral dip [71]. 15 transformed plants from each of 13 T2
lines were selected on MS medium and subjected to GUS
staining [72]. Mapping of MIR168b TSS was carried out
with the GeneRacer™ Kit (Invitrogen). Gene-specific prim-
ers are listed in Additional File 3.
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