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Abstract

Background: Early methods for estimating divergence times from gene sequence data relied on the assumption of
a molecular clock. More sophisticated methods were created to model rate variation and used auto-correlation of
rates, local clocks, or the so called “uncorrelated relaxed clock” where substitution rates are assumed to be drawn from
a parametric distribution. In the case of Bayesian inference methods the impact of the prior on branching times is not
clearly understood, and if the amount of data is limited the posterior could be strongly influenced by the prior.

Results: We develop a maximum likelihood method — Physher — that uses local or discrete clocks to estimate
evolutionary rates and divergence times from heterochronous sequence data. Using two empirical data sets we show
that our discrete clock estimates are similar to those obtained by other methods, and that Physher outperformed some

when evolution is strongly clock-like.

online at http://code.google.com/p/physher/.

methods in the estimation of the root age of an influenza virus data set. A simulation analysis suggests that Physher
can outperform a Bayesian method when the real topology contains two long branches below the root node, even

Conclusions: These results suggest it is advisable to use a variety of methods to estimate evolutionary rates and
divergence times from heterochronous sequence data. Physher and the associated data sets used here are available

Background

Accurately estimating evolutionary (substitution) rates
and divergence times is central to revealing the timing,
patterns, and processes of molecular evolution. Several
methods have been developed to co-estimate evolution-
ary rates and divergence times along a phylogeny or sets
of phylogenies. The earliest and easiest method was to
assume a strict molecular clock (i.e. homogenous rate
among lineages). Although convenient, the assumption
of a “strict” molecular clock is often violated, such that
more complex models are required that are able to inte-
grate rate variation among lineages. Sanderson [1] ad-
dressed this problem using non-parametric rate smoothing
and by assuming that rates of consecutive lineages are
correlated. Later, he adopted a maximum likelihood
framework and used penalized likelihood to investigate
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different levels of rate correlation, and a penalty multiplier
to achieve a trade-off between rate autocorrelation and
goodness-of-fit [2]. Thorne, Kishino and Painter [3] fur-
ther explored the idea of auto-correlation between rates
using a Bayesian framework and Markov chain Monte
Carlo (MCMC). To accelerate their calculations, the top-
ology is assumed to be known and the likelihood is ap-
proximated using a multivariate normal density. The
MCMC used is based on Metropolis-Hastings algorithms,
which are less efficient than other implementations such
as Gibbs sampling [4]. Hence, Lartillot [4] proposed an ef-
ficient Gibbs sampler using data augmentation and prior
conjugacy, which was extended by Guindon [5] who also
used an approximation to the likelihood function. Yang
[6] employed maximum likelihood and a heuristic rate
smoothing approach to calculate rates and classify lineages
into rate classes. This ad hoc procedure was further im-
proved by Aris-Brosou [7] using more advanced clustering
methods that allow the estimation of the number of rates.
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In practice, however, there is no guarantee that evolu-
tionary rates are autocorrelated. In addition, in the case
of rapidly evolving organisms such as RNA viruses
measurable evolution occurs across the sampling period,
such that ‘heterochronous’ sequences sampled at differ-
ent time-points provide valuable information about evo-
lutionary rates. An alternative approach is therefore to
allow rates to vary freely along a phylogeny, and to expli-
citly incorporate times of sampling. Drummond and col-
leagues [8] presented an ‘uncorrelated’ relaxed clock
model in which rates are drawn independently from an
underlying parametric distribution, such as lognormal or
exponential. Although rates are not necessarily distrib-
uted according to a probability distribution, this approach
greatly reduces the number of parameters. Another way of
modelling uncorrelated rates is to assume clock-like be-
haviour within a particular lineage. The main difficulty
with this approach is to find the number and the distribu-
tion of these local clocks on a phylogeny, although Bayesian
stochastic search variable selection has now been used
in this context [9]. More recently Heath [10] proposed
a model where lineages are assigned a substitution rate
value according to the Dirichlet process prior.

Herein, we propose a simple maximum likelihood-based
approach to infer substitution rates and divergence times
from heterochronous nucleotide sequences. Given a rooted
tree, rate variation among lineages is modelled using either
local (LC) or discrete (DC) clocks. Our definition of a ‘local
clock’ is the same as that used previously [9] and assumes
that while the substitution rate may vary across a phyl-
ogeny, some adjacent lineages evolve at the same rate. In
contrast, the ‘discrete clock’ model assumes that a number
of substitution rate categories are assigned to lineages
without assuming autocorrelation and where lineages that
are not adjacent are able to share a rate category. We de-
vised a heuristic approach using a greedy algorithm to infer
the distribution of local clocks along a phylogeny, referred
to here as the Heuristic Local Clock (HLC) algorithm. The
estimates of the best model can be fed to a genetic algo-
rithm (GA) to re-estimate the rates and local clock posi-
tions, and calculate model-averaged estimates of the
substitution rate and time parameters (i.e. GALC). Simi-
larly, we present a GA to determine the number and allo-
cation of rate categories under a discrete clock model
(GADC). The greedy algorithm and GAs are optimized to
run efficiently on a distributed computing environment
using OpenMP. Finally, we demonstrate the efficiency of
the program using data sets of human influenza viruses
and simulated data sets.

Methods

Models of rate variation among lineages

Given 7 nucleotide sequences and a rooted phylogeny
with N =2n-2 branches, we set out to model rate
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heterogeneity along lineages using local clocks or a
discrete distribution of rates.

We define a local clock on a phylogeny as a monophy-
letic group where every lineage evolves at exactly the
same substitution rate. This definition assumes the exist-
ence of another clock (e.g. ‘global’ clock) for lineages that
are not assigned a local clock. We model each local
clock and the global clock as independent rate classes.
In the absence of local clocks, the model corresponds to
a strict clock; the other extreme is to have one rate per
branch, leading to an over-parameterized model. The
optimization challenge for this problem is two-fold: find-
ing the number and location of the local clocks along a
phylogeny (discrete optimization) and estimating rates
and ages of internal nodes (continuous optimization).
The difficulty in using this type of clock lies in the
discrete optimization component because of the size of
the combinatorial search space. With 2% rate combi-
nations, it is impossible to adopt a brute force approach
and heuristic algorithms must be used instead.

We also consider an alternative and more flexible
parameterization to local clocks by assigning independent
substitution rate classes to lineages to model lineage-
specific rate heterogeneity. Unlike the local clock model,
this discrete clock model allows non-adjacent lineages to
evolve under the same substitution rate. Local clocks are
therefore a special case of discrete clocks. Given a fixed
number of rate categories k, the parameters of the discrete
substitution model is a vector of rates r = (ry, 1y, ..., 1) and
a vector of rate-class assignments for each lineage ¢ = (cy,
€2, ...y €2y o) Where ¢;€ 1 ... k. Using an appropriate order-
ing of the 2n-2 branches, each element of vector c¢ rep-
resents the class assignment of a branch. In our
implementation, the number of rate categories is not
fixed and is co-estimated with node heights and vector
r from the data. The number of combinations for the
discrete clock algorithm is also computationally diffi-
cult and warrants the use of approximation methods.
The number of combinations is described by the Bell

N

number By = ZS(N7 k) where N is the number of
k=0

branches and

k-1
SN = > 0 (4 ) e
gy

is the Stirling number of the second kind. For example,
for a relatively small data set of 20 sequences, there are
approximately 7 x 10>? possible combinations.

Algorithms
One solution to search the high-dimensional parameter
space of the local and discrete clock models without
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using an MCMC is to use a genetic algorithm (GA).
GAs belong to a class of evolutionary algorithms that
simulate natural selection in a population of individuals
to solve an optimization problem. Most algorithms re-
quire encoding solutions in a vector and are therefore
well suited to discrete optimization. Each individual rep-
resents a candidate solution from which a fitness score
can be calculated. Individuals with high fitness, and
therefore a promising solution, are more likely to be se-
lected during a stochastic step (mating or recombin-
ation) to form the next generation. In analogy to biological
processes, candidate solutions randomly mutate to pro-
mote diversity within the population. GAs are therefore
generational processes that stochastically move populations
around a fitness landscape. The simplest form of genetic
algorithm requires a fitness function and three operators:
recombination, selection and mutation.

We implemented the GA as a generational genetic
search algorithm CHC GA [11]; this approach was previ-
ously applied to the detection of both recombination
[12] and natural selection [13]. The population size of
CHC GAs are usually smaller than traditional GAs and
use an elitist selection operator that always allows the
fittest individual to be selected for the next generation.
In our analyses, we used a fixed population size of 30 in-
dividuals. In addition, it uses a highly disruptive recom-
bination operator that generates a new individual with a
solution that contains half the solution from the first
parent and the other half from the second parent. The
mutation step is only triggered when the diversity of the
population is below a fixed threshold by mutating a fixed
number of elements of the solution vector. Given a fixed
number of rate classes, the fitness function is simply the
likelihood score since every model has the same number
of parameters. The mutation and recombination opera-
tors for the local and discrete clocks are different and
will be presented in the next sections.

Finding the number of rate classes is more challenging
and is not easily addressed with GAs, as it requires
jumping between parameter spaces with different di-
mensions. We use an iterative approach, starting with
two rate classes and increment the number of classes
until the addition of a rate class stops improving the fit-
ness of the model. During each iteration, a new popula-
tion is evolved, leading to the fittest model that will be
compared to the next iteration. To test whether the
addition of a rate class improves the fitness of the
model, we assess the goodness of fit of each model using
the Akaike Information Criterion with a correction for
small sample sizes (AICc; the lowest AICc represents the
best model):

2%k (k +1)

AICc = -2Lnl + 2k +
s—k-1
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where Lul is the maximum likelihood estimate under
the model of interest, k is the number of parameters and
s is the sample size. We set the sample size as the num-
ber of site patterns in the alignment.

In the local clock model, each individual of the GA
population is represented as a vector where each elem-
ent maps a local clock to a branch in the phylogenetic
tree. If a branch is assigned a local clock, its descendants
will belong to the same local clock unless they are
assigned a new local clock. The mutation operator ran-
domly changes the location of the local clock. The re-
combination operator selects two individuals from the
population and generates a new individual by randomly
choosing the value of one of the parents for each elem-
ent of the vector state. In the current implementation of
the GA, both operators do not allow a local clock to be
assigned more than once. The most extreme case is
when there is only one local clock: the vector is of size
one and recombination has no effect. For models con-
taining a few local clocks, the diversity of the population
drops under the threshold after the first round of mat-
ing. To escape this problem a mutation rate close to
100% is needed, defeating the purpose of evolutionary al-
gorithms. A solution to this problem would be to start
the GA with several local clocks, but determining an ap-
propriate number of local clocks is difficult. Alterna-
tively, we could employ exhaustive search on all the
combinations of local clocks but this is only possible for
small data sets. We implemented a greedy algorithm that
starts with one local clock, fits in turn a local clock to
each branch, and retains the location of the local clock
that yields the best likelihood. In each subsequent iter-
ation, another local clock is considered on each branch
that does not have a local clock already assigned. The al-
gorithm stops either when the addition of a parameter
does not improve the fitness of the model based the
AICc or when the number of clocks exceeds a user-
defined threshold T (typically T'<<N-I). Therefore, the

T
algorithm will evaluate a maximum Z T'—i models.
i=1

The best model found by the greedy search will have
enough parameters for a GA to more efficiently sample
the parameter space without the convergence issue dis-
cussed earlier. Hence, we use the fittest model of the
greedy search to seed the GA. This approach allows us
to assess other combinations that were not previously
tested. Since models with different numbers of classes
are not necessarily nested we also compute AICc to
compare models.

Given a fixed number of rate classes, the encoding of
each individual of the GA in the discrete clock model is
represented as vector of size N where each element rep-
resents the class assignment of a branch. The number of
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rate classes can take any value between 1 (strict clock)
and N (one rate per branch), although the number of
classes should be much smaller than N in order to limit
model complexity as mentioned earlier. The recombin-
ation operator for the discrete model simply selects two
individuals from the population and generates a new in-
dividual by randomly choosing the value of one of the
parents for each element of the vector state. During the
mutation step, each element of the vector is subject to
switching to a different class assignment with fixed
probability. As in the GA for local clocks we adopt a for-
ward selection approach, starting with two rate classes
and increment by one the number of rate classes until
the AICc stops decreasing.

Finding the combination of rate classes using the greedy
algorithm described above is substantially more difficult
as the combinatorial complexity increases; therefore, we
employ a CHC-GA to search through the parameter
space.

Model averaging and confidence intervals

Uncertainty is inherent to selecting the best model. As a
consequence it might be desirable to model average esti-
mated parameters across all the models M explored by
the GA. First, we need to compute for each model M;
the AIC difference (A;) between the best model and itself
such as A;=AIC,,;,, — AIC;, where AIC,,, is the AIC of
the best model. Akaike weights are now calculated as:

old:/2)

where the numerator is the relative likelihood of model
M; and the denominator is a normalization term. The
relative likelihood can be interpreted as the relative
probability that the i model minimizes the information
loss. Once the models are sorted in decreasing order, we
can obtain a confidence set of models by summing the
weights from the largest to the lowest until the sum is
(1-a) where « is the significance level. Descriptive statis-
tics such as mean and quantiles can be applied to each
parameter using the models belonging to this set.

To investigate the uncertainty of the point estimates
under a strict clock and a local clock model with the
greedy algorithm, we calculated confidence intervals (CI)
using the non-parametric percentile bootstrap method
[14]. The percentile bootstrap uses the empirical quan-
tiles from the bootstrap distribution of the parameter 6

w; =

to calculate the confidence interval (Oz‘a/z);ﬁz‘l_am)

where a is the significance level and 6, and 6;_,

are the @/2 and 1 - a/2 percentile of the bootstrap coeffi-
cients 6*.
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Program workflow

The first step that is common to the GA and greedy al-
gorithms is to estimate the branch lengths (in term of
expected number of substitution per site) of the phyl-
ogeny and the parameters of the substitution model by
maximum likelihood. The likelihood of this parameter
rich non-clock model will give us an upper-bound for
the likelihood of the global, local and discrete clock
models. The parameters of the substitution rate matrix
are fixed during the rest of the algorithm as we make
the assumption that nucleotide frequencies and relative
rates are not affected by explicitly modelling substitution
rates. Next, we estimate the age of n-1 internal nodes
and the substitution rate under a strict clock model.
This simplistic model, if violated, gives us the lower-
bound in term of likelihood and the starting point for
statistically testing the introduction of rate heterogeneity
in the model. Because we are explicitly dealing with het-
erochronous sequences, every taxon must be assigned a
fixed date.

Implementation

Since the GA and greedy search algorithms presented in
this paper are embarrassingly parallel problems, we im-
plemented the program within the OpenMP framework
to run on distributed systems. The evaluation of the like-
lihood for each configuration of clocks was therefore
computed by a single thread. Finally, the likelihood is
calculated using Felsenstein’s pruning algorithm [15] and
is optimised with SSE-based SIMD vectorization. These
methods are implemented in a C program called
Physher. Simulated data sets were generated with a cus-
tom program that uses a library shared with Physher.

Data sets and analysis

We applied our algorithms to two data sets of hetero-
chronous viral nucleotide sequences. The first data set
comprises an alignment of 69 human influenza A/H3N2
virus haemagglutinin (HA) sequences (987 nt in length)
isolated between 1981 and 1998. The evolutionary rates
and time to the most recent ancestors (tMRCAs) of this
data set was previously investigated using a random local
clock method [9] with a Bayesian MCMC approach im-
plemented in BEAST [16]. As in the original study, the
alignment was analysed using strict, local and discrete
clocks implemented in Physher under the HKY + I'y sub-
stitution model that incorporates gamma-distributed
rate variation among sites (4 rate classes). We reanalysed
the data using BEAST with either an uncorrelated log-
normal relaxed-clock (UCLN) or a random local clock
model (RLC) and calculated the Bayes factor (BF) using
the path sampling method [17] to compare competing
models. We performed a series of simulations to assess
the effect of stochastic noise over the phylogenetic
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signal. Accordingly, data sets of 1000, 2000 and 10,000
nucleotides (nt) in length were simulated along a ladder-
like tree containing 16 taxa that represents a simplified
version of the influenza A data set (Figure 1). The root age
is 25 years, the global rate is set to 5 x 10> subs/site/year
and a local clock is set in the middle of the tree indu-
cing a rate shift with rate equal to 1072 subs/site/year.
50 replicates were simulated under the HKY model with
equal nucleotide frequencies, a transition to transver-
sion rate ratio x = 3, and a gamma shape a = 0.5. These
data sets were analysed using the RLC and UCLN with
a constant size coalescent model and an exponential
prior on the rate with mean 8x 107> subs/site/year
using BEAST. The GADC and HLC models were used
in Physher.

The second data set comprising 265 full-length HA
genes (1382 nt in length) of influenza B virus, containing
sequences from the co-circulating Yamagata and Victoria
lineages isolated between 2002 and 2013. Each taxon
was calibrated using year, month, and day of isolation.
The substitution rate and tMRCA were estimated under
a GTR +I'; substitution model using strict and discrete
clocks with Physher. The data was also analysed using
BEAST [16] under a strict clock and an uncorrelated
lognormal relaxed clock and with both constant popula-
tion size and Bayesian skyride tree priors. As previous
analyses [18] estimated the substitution rate for influ-
enza B virus to be 1 — 3 x 107> nucleotide substitutions
per site per year (subs/site/year), we used an exponential
prior with mean 3 x 10~ subs/site/year on the mean of
the lognormal distribution and strict rate parameter. We
did not use any prior assumption on the age of the root.

nid

Il 5x10° subs/site/year
Il 102 subs/site/year

L
i
Lk

2 20 15 10 5 0

Year
Figure 1 Phylogeny used for simulating data sets under a local
clock model. Lineages are coloured according to their substitution rates.
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Influenza B virus data sets were also simulated under a
strict molecular clock using divergence times, substitution
rates and other substitution parameters estimated by
Physher. These data sets are effectively parametric boot-
straps with a fixed topology. The parameters of import-
ance in this simulation are the substitution rate, for which
the Physher estimate was 1.4 x 10~ subs/site/year and the
age of the root (t=1967) (see Results). In this case we
know that the root predates, or should be close, to 1972
since the two main lineages became antigenically distinct
in the 1970’ [19] and the earliest virus that emerged after
the split was sampled in 1972. We analysed 50 replicates
with Physher and BEAST using a strict clock. The BEAST
analyses were performed using a constant population size,
and both the Bayesian skyride [20] and the constant rate
birth-death methods [21]. To investigate the effect of
allowing rate variation among lineages we also analysed
the replicates using an uncorrelated relaxed lognormal
prior. In this case we used an exponential prior with mean
2 x 1072 subs/site/year on the mean of the lognormal dis-
tribution and strict rate parameter. We performed at least
two analyses of 20 million generations each and used
Tracer [22] to assess the stationarity of the chain and to
discard an appropriate number of generations. Support
for the substitution rate and root age was given by 95%
highest posterior density intervals. Confidence intervals
were derived using the percentile bootstrap method with
200 replicates. We also inferred the rate and root age,
using a fixed topology, by regressing the expected number
of substitution per site from the root to each tip from the
maximum likelihood tree against sampling times with
Physher. To obtain a rooted a tree, a node (the root) needs
to be inserted in the unrooted tree by splitting a branch in
two. We estimate the location of the root as the location
that maximizes the coefficient of correlation between time
and the expected number of substitutions. The rate and
root age are defined as the slope and intercept of the re-
gression line, respectively.

To validate our algorithms we simulated two series of
data sets of 2000 nt in length using a local clock model
with two local clocks and a discrete clock with three rate
classes (Figure 2). The age of the root was 15 years and
the rates were 3 x 1072, 5 x 1072, and 1072 subs/site/year.
We analysed 50 replicates of each scheme using Physher
with a strict, local, and discrete clock and the confidence
intervals of the root were derived for the root age using
the methods described previously.

Results

Influenza A virus

Empirical data

We used our local and discrete clock methods to investi-
gate rate heterogeneity of the influenza A virus data set
(Additional file 1: Figure S1) by comparing the AICc of a
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Figure 2 Phylogenies used for simulating data sets under different clock models. Lineages are coloured according to their substitution
rates. (a) Phylogeny with two local clocks. (b) Phylogeny with three rate classes.
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strict clock to models that allow rate heterogeneity
among lineages. The greedy algorithm found that ten
local clocks were the best-fit to the data, improving the
log-likelihood from -4159.51 (AICc = 8484.73) under the
strict molecular clock to —4118.58 (AICc = 8420.17) under
the local clock. Subsequently, we ran a GA starting with
ten local clocks to check that the greedy search did not
get trapped in local optima, but this approach failed to
find a better model.

We also modelled rate variation with a discrete clock
and allocated the rate categories to each lineage using a
genetic algorithm. We started the algorithm with two
rate classes and incremented the number of classes until
the fit of the model stopped improving based on the
AICc. The algorithm suggested that the maximum likeli-
hood is —4104.59 and that the optimal number of rate
classes is four. The AICc value of the GADC model
(AICc = 8376.4) was smaller than the HLC model. The
relative likelihood of the HLC model is about 1073, sug-
gesting that the GADC model is about 10** times more
likely to be correct than the HLC model.

The mode of the posterior distribution of the number
of local clocks reported by Drummond and Suchard [9]
was significantly lower than our estimate suggesting that
two local clocks were appropriate for this data set. The
important difference between our estimates is probably
due to the specification of the prior that placed 50% of
the mass on a unique clock. Although the root height
estimates inferred using our two methods (HLC: 1974.6,
CL: 1953.2-1979.27; GADC: 1979.7, CI: 1978.5-1980) are
in agreement with their estimate [9] (RLC: 1979, BCL
1977.98-1979.93, UCLN: 1977.8, BCIL: 1975.8-1979.6),
the UCLN and GADC models show no obvious rate

shift (Figure 3), and rates between each branch and its
parent are uncorrelated (r=-5x107% p-value =0.95).
To check whether this shift was caused by the specifica-
tion of the local clock model we reanalysed the same
data set with an uncorrelated lognormal relaxed-clock
model using BEAST. If the viral genomes underwent a
phase of accelerated mutation rate the UCLN model
would be able to recover the same pattern. The distribu-
tion over the rates using UCLN does not show this trend
although the root height estimate is similar (1978.83,
BCI: 1977.06-1980.25). The Bayes factor calculated using
the path sampling method (log BF = -8.4) suggests the
UCLN model (log marginal likelihood = -4384.83) is
strongly preferred to the local clock model (log marginal
likelihood = -4388.25).

Simulations

We simulated 50 data sets of different length with a rate
shift occurring in the middle branch of a completely
asymmetric phylogeny (Figure 1). Each panel of Figure 4
depicts rate variation using a heatmap for 50 replicates
where each row represents a replicate and each column
indexes a branch. Because of the ladder-like nature of
the phylogenies, each tree was linearized using a postor-
der traversal of the tree, allowing visualisation of rate
through time. Starting from the left, the first cell is rep-
resents the rate (mean for BEAST and maximum likeli-
hood estimate for Physher) for the branch leading to the
earliest taxon and the last two cells represent the rates
of the branches leading to the youngest. Between these
cells, rates at branches leading to internal and external
nodes alternate. These plots clearly show a rate shift
when a local clock is used with BEAST and Physher.
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Figure 3 Influenza phylogenies estimated using Bayesian and maximum likelihood methods. Branches are coloured according to their
rates using a gradient from blue (low rate) to red (high rate). (@) Maximum likelihood inference using a local clock model. (b) Maximum
likelihood inference using a discrete clock model. (c) Bayesian inference using a local clock model. (d) Bayesian inference using an uncorrelated

Plots generated with UCLN and discrete clock models
show a more nuanced picture where low and high rates
tend to blend together.

Influenza B virus

Empirical data

We analysed the influenza B virus data set using Physher
under both non-clock (Additional file 2: Figure S2) (log
likelihood LnL = -9503.2) and strict clock (LnL = —-9585.9)
models. To test whether every lineage evolved at the same
rate, we used the likelihood ratio test [15]. The comparison
of twice the log-likelihood difference with a x* distribution
with 262 degrees of freedom suggests the strict clock
model could not be rejected (p-value = 0.99). The estimate

of the substitution rate was 1.42 x 107> subs/site/year
with 95% bootstrap confidence interval [1.2x 1072,
1.49 x 107%]. The divergence time of the two lineages is es-
timated to be 1966 (95% CI: 1959, 1971). The same data
set was reanalysed using BEAST and the mean substitu-
tion rate estimate was 2.1 x 10> subs/site/year (95% BCL:
1.85x 107, 2.36 x 10~°) under a constant population size
coalescent model and 2.72x 107> subs/site/year (95%
Bayesian CI: 2.4 x 1072, 3 x 107%) using the Bayesian sky-
ride tree prior. Similarly the mean root age estimate was
1978 (95% Bayesian CI: 1973,1984) under a constant
population size coalescent model and 1998 (95% Bayesian
CL: 1997,1999) using the Bayesian skyride method and
hence considerably more recent that the ‘true’ estimate.
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Figure 4 Substitution rates for simulated data sets with a rate shift. Substitution rate variation in simulated data sets of length 1000, 2000,
and 10000 nt using random local (RLC) and relaxed lognormal (UCLN) clock models implemented in BEAST and local (HLC) and discrete (GADC)
clock models implemented in Physher. Each row represents a replicate and each column represent a branch where the rightmost cell is a branch
leading to latest taxon and the leftmost cell is a branch near the root. Each cell maps a branch is coloured according to its substitution rate using

a gradient from blue (low rate) to red (high rate).

Simulations

We simulated 50 data set replicates using the parameters
estimated with Physher in the influenza B analysis and
then re-estimated the parameters using Physher and
BEAST. We initially used a strict molecular clock with
BEAST. Using a constant size coalescent model (Figure 5)
none of the Bayesian credible intervals of the substitution
rate contained the true rate, and only one interval con-
tained the true root age. The substitution rate was consist-
ently overestimated while the age of the root was
consistently underestimated. More striking was that the
Bayesian skyride coalescent model underperformed com-
pared to the constant size model, under-estimating the
age of the root by about 20 years, as was seen with the
empirical data (Figure 6). The same pattern of over-

estimation of the rate and underestimation of the root age
was observed using a lognormal relaxed clock. Interest-
ingly, the confidence interval of the standard deviation of
the lognormal distribution and coefficient of variation did
not include 0 using the Bayesian skyride method, suggest-
ing that there was rate variation in the data. Finally,
using a birth-death process prior, the rate and root age
could not be recovered in any of the replicates (Additional
file 3: Figure S3). The bootstrap analysis with Physher
showed that 40 intervals contained the true substitu-
tion rate and 43 intervals contained the true root age
(Figure 7). Finally, the rate and root age estimates using
a simple linear regression in Physher are consistent with
our maximum likelihood estimates (Additional file 4:
Figure S4).
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Additional simulations

Finally, we performed two sets of simulations with two
local clocks and three discrete classes. The phylogeny
and the rate allocation to lineages are shown in Figure 2.
Table 1 shows the number of replicates (out of 50 repli-
cates) for which the true root age lies within the 95%
confidence interval. As expected, the strict clock model
does not perform well in the presence of rate variation.
The local clock model recovered the true root age in
every replicate simulated with a local clock and it recov-
ered the true root age in 49 of 50 replicates simulated
under a discrete clock model. The discrete clock model
recovered the true root age in 48 and 46 replicates in
the local and discrete clock data sets. The distribution of
the estimated number of rates suggests that the discrete
model tends to under-fit the data by assigning two rate
classes to most replicates.

Discussion
We describe local and discrete clock models to estimate nu-
cleotide substitution rates from heterochronous sequence

data sets within a maximum likelihood framework and in
the presence of rate heterogeneity among lineages.

The analysis of influenza A virus shows that the
discrete clock model fits the data better than the local
clock model, as suggested by the Bayes factor calculated
using BEAST and the relative likelihood calculated using
Physher. Although root age estimates under local and
discrete clocks are similar, the relaxed (UCLN) and the
discrete clock failed to recover the rate shift pattern that
Drummond and Suchard [9] first identified using a ran-
dom local clock. We performed a series of simulations
by generating alignments of 1000, 2000, and 10,000 nt
in length with a tree similar to the influenza A virus
data set and with a rate shift in the centre of the tree
(Figure 1). While the local clock algorithms recovered
the location of the rate shift for the shortest align-
ments, the relaxed and discrete clock model failed to
identify the rate shift for data sets of 1000 and 2000 nt.
The rate shift only becomes apparent for the data set
of 10,000 nt under the discrete model. These simulations
therefore confirm that more flexible models cannot
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Table 1 Results of the analysis of simulated data sets
Clock

Two local clocks Three discrete rate classes

Root age Number of rates Root age Number of rates

Strict 29 1 33 1

Local 50 2 (4),3 (34), 49 2(16),3(11),
4(10),5 Q) 4(18),5 (5)

Discrete 49 2 (35),3(15) 46 2(49),3 (1)

The table shows the number of replicates (out of 50) for which the true root
age lies within the 95% confidence interval estimated by Physher for data sets
simulated under two different clock models. The ‘number of rates’ column
shows the distribution of the estimated number of rates with their proportion
between brackets.

recover a single rate shift from 5 x 10~ to 10”2 subs/site/year
for relatively short alignments. A likely explanation for this
discrepancy is that there is not enough data for the UCLN
and DC models to recover the true distribution of rate
and a certain degree of autocorrelation is needed to cor-
rectly identify rate variation.

With limited data, Bayesian-based inference should
perform better than the maximum likelihood method if
one can use an appropriate prior on the branching
times. Unfortunately, it can produce posterior distribu-
tions that are heavily influenced by priors, as is probably
the case in our simulation study where no coalescent
model might be appropriate. The two main classes of
prior that are currently used are coalescent processes
and the birth-death process. The coalescent process is a
function of the effective population size (N,) scaled by
the generation time (z), and since no assumptions are
made about the generation time in our analyses we refer
to this composite parameter (6 = N,1) as the relative gen-
etic diversity. The relative size function can be constant,
distributed according to a parametric distribution (e.g. ex-
ponential distribution) or any function of time. Import-
antly, in data sets that contain several lineages that
evolved concurrently with incomplete sampling of extant
taxa (e.g. influenza B virus data set) these priors can pro-
duce spurious results. Using simulations it was shown that
relaxed clock models can greatly underestimate the age of
the root when lineages exhibit strong rate heterogeneity
[23]. In the influenza B virus example, the two long
branches below the root node (i.e. the ancestors of the
Victoria and Yamagata lineages) suggest an initially large
relative genetic diversity. With a fluctuating relative diver-
sity the constant coalescent appears to be a poor choice of
prior and the Bayesian skyride method should be more ap-
propriate. Indeed, it is striking that the age of the root esti-
mated with BEAST using different priors is significantly
younger than the Physher estimate. Hence, we suggest
that using a relaxed molecular clock with the Bayesian
skyride method should be avoided when a tree contains
long branches at the root. In our analyses, the prior ap-
pears to overpower the likelihood and is in a favour of a
younger root age with a faster rate.
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Genetic algorithms appear to be well suited for opti-
mizing the allocation of discrete clocks but their effi-
ciency in the local clock problem is arguable, probably
due to the different solution encodings. In the discrete
case the individual size is the number of branches (N =
2n-2), whereas in the local clock setting the length of each
individual is equal to the number of local clocks being in-
vestigated. In the influenza A virus data set, we started the
GA with ten local clocks. Discrete optimization is notori-
ously more difficult than its continuous counterpart be-
cause functions are generally not convex and because a
modification of only one of the variables can significantly
change the likelihood of the model.

With respect to performance, the greedy algorithm
finished in about 20 minutes on a Mac Pro 3.33 GHz 6-
core and the discrete clock GA converged in about two
hours for the analysis of the influenza virus A data set.
For 20 million cycles, the random local clock ran for ap-
proximately 4 hours and the relaxed clock ran for about
5 hours. It is important to highlight that although
Physher appears faster than BEAST, Physher optimizes a
single topology while BEAST integrate over topologies.

The algorithms described in this paper rely on some
common assumptions but differ from other methods in
several ways. Several published algorithms [1,3,5,6] use a
normal approximation to the costly likelihood function,
while Sanderson [2] used a Poisson approximation to de-
scribe the mutation process. Some work has also been
done on improving the approximate likelihood calcula-
tion using parameters transform [24]. To speed-up our
inferences we rely instead on parallelization of our algo-
rithms, hence avoiding the assumption that the parame-
ters (product of rate and time) are sufficiently close to
the maximum likelihood estimates of the branch lengths
inferred in the rate-free analysis. Like many methods we
assumed that the rooted tree topology is known; while
this is computationally attractive, this assumption is not
always realistic. Notably, Aris-Brosou [7] investigated
the impact of ignoring topology uncertainty on an em-
pirical data set and revealed no significant differences in
age estimates when topology uncertainty was integrated.

The nearly constant substitution rate of the human influ-
enza B virus phylogeny should provide a set of favourable
conditions for the estimation of these parameters. Import-
antly, our simulations suggest that estimating divergence
times is difficult if the prior overrides the data even when
the substitution rate is constant. Wertheim et al. [25] previ-
ously pointed out how rate variation resulted in major dis-
crepancies in the estimation of the age of HIV-1 M group
subtypes when each subtype was analysed separately or
combined in a total data set of all subtypes. In a similar
way to the influenza B virus simulations undertaken here,
prior information on the topology could also be a reason
for this discrepancy between full phylogeny and sub-tree
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only estimates. Finally, if a data set contains weak or no
temporal signal (i.e. strong rate variation), the estimation
of the evolutionary history will be impossible [26].

Conclusions

We have presented algorithms to estimate evolutionary
rates and divergence times from heterochronous gene
sequence data without making assumptions about the
distribution of rates across a phylogeny. In our analyses
the local clock underperformed compared to the discrete
clock model, and empirical data that show use of local
clock models is only warranted when there is a clear rate
shift among lineages. We also show that current Bayesian
methods can sometimes fail to recover true node ages and
rates due to the specification of the prior.
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Additional file 1: Maximum likelihood phylogeny of the influenza A
virus data. Maximum likelihood tree without the assumption of a
molecular clock. Branch lengths depict the expected number of
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Additional file 2: Maximum likelihood phylogeny of the influenza B
virus data. Maximum likelihood tree without the assumption of a
molecular clock. Branch lengths depict the expected number of
substitution per site.

Additional file 3: 95% Bayesian confidence intervals of substitution
rate and root age using the birth-death model and a strict clock in
50 simulated data sets. Confidence intervals of the nucleotide
substitution rate (a) and root age (a) were inferred using BEAST for 50
replicates using a birth-death model prior on the phylogeny. Intervals
that do not include the true value (blue line) are shown in red.
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