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Abstract

Background: The green algae represent one of the most successful groups of photosynthetic eukaryotes, but
compared to their land plant relatives, surprisingly little is known about their evolutionary history. This is in great
part due to the difficulty of recognizing species diversity behind morphologically similar organisms. The
Trebouxiophyceae is a species-rich class of the Chlorophyta that includes symbionts (e.g. lichenized algae) as

well as free-living green algae. Members of this group display remarkable ecological variation, occurring in aquatic,
terrestrial and aeroterrestrial environments. Because a reliable backbone phylogeny is essential to understand

the evolutionary history of the Trebouxiophyceae, we sought to identify the relationships among the major
trebouxiophycean lineages that have been previously recognized in nuclear-encoded 18S rRNA phylogenies. To
this end, we used a chloroplast phylogenomic approach.

Results: We determined the sequences of 29 chlorophyte chloroplast genomes and assembled amino acid and
nucleotide data sets derived from 79 chloroplast genes of 61 chlorophytes, including 35 trebouxiophyceans. The
amino acid- and nucleotide-based phylogenies inferred using maximum likelihood and Bayesian methods and
various models of sequence evolution revealed essentially the same relationships for the trebouxiophyceans. Two
major groups were identified: a strongly supported clade of 29 taxa (core trebouxiophyceans) that is sister to the
Chlorophyceae + Ulvophyceae and a clade comprising the Chlorellales and Pedinophyceae that represents a basal
divergence relative to the former group. The core trebouxiophyceans form a grade of strongly supported clades
that include a novel lineage represented by the desert crust alga Pleurastrosarcina brevispinosa. The assemblage
composed of the Oocystis and Geminella clades is the deepest divergence of the core trebouxiophyceans. Like most
of the chlorellaleans, early-diverging core trebouxiophyceans are predominantly planktonic species, whereas core
trebouxiophyceans occupying more derived lineages are mostly terrestrial or aeroterrestrial algae.

Conclusions: Our phylogenomic study provides a solid foundation for addressing fundamental questions related to
the biology and ecology of the Trebouxiophyceae. The inferred trees reveal that this class is not monophyletic; they
offer new insights not only into the internal structure of the class but also into the lifestyle of its founding
members and subsequent adaptations to changing environments.
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Background

The green algae represent an ancient lineage of photosyn-
thetic eukaryotes; molecular clock analyses estimate their
origin between 700 and 1,500 millions years ago [1]. This
lineage (Viridiplantae) split very early into two major divi-
sions: the Chlorophyta, containing the majority of the de-
scribed green algae, and the Streptophyta, containing the
charophyte green algae and their land plant descendants.
In the last decade, substantial advances have been made in
our understanding of the broad-scale relationships among
the streptophytes, in particular the land plants [2], and ref-
erences therein; however, progress has lagged behind con-
cerning the chlorophytes.

Early hypotheses on green algal phylogeny were based
on morphology and ultrastructural data derived from
the flagellar apparatus and processes of mitosis and cell
division [3,4]. These ultrastructural features, which apply
to most green algae, supported the existence of the Strep-
tophyta and Chlorophyta and revealed four distinct groups
within the Chlorophyta that were recognized as classes:
the predominantly marine, unicellular, Prasinophyceae;
the predominantly marine and morphologically diverse
Ulvophyceae; and the freshwater or terrestrial, morpho-
logically diverse Trebouxiophyceae (=Pleurastrophyceae)
and Chlorophyceae [5,6]. It was hypothesized that the
Prasinophyceae gave rise to the Ulvophyceae, Trebouxio-
phyceae and Chlorophyceae (UTC). Later, phylogenetic
analyses based on the nuclear-encoded small subunit
rRNA gene (18S rDNA) largely corroborated these hy-
potheses [1,5,7]. It was found, however, that the Prasino-
phyceae are paraphyletic, with the nine main lineages of
prasinophytes identified so far representing the earliest
branches of the Chlorophyta [8]. For the Ulvophyceae and
Trebouxiophyceae, the limited resolution of 18S rDNA
trees made it impossible to assess the monophyly of these
classes [1,6,7]. Analyses of 18S rDNA data uncovered a
myriad of lineages within each of the three UTC classes,
but could not resolve their precise branching order. Des-
pite these uncertainties, many taxonomic revisions have
been implemented: new species not distinguished by light
microscopy were described, new genera were erected, the
circumscription of several main lineages was modified,
and existing orders were elevated to the class level (e.g.
Chlorodendrophyceae and Pedinophyceae). A recurrent
theme that emerged from such studies is the finding that
multiple genera containing taxa with reduced morpholo-
gies (such as unicells and filaments) are polyphyletic, with
members often encompassing more than one class e.g. for
Chlorella, [9,10].

For ancient groups of eukaryotes such as the green
algae, a large number of genes from many species need
to be analyzed using reliable models of sequence evolution
to resolve relationships at higher taxonomic levels [11].
Multi-gene data sets can be assembled by concatenating
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the sequences of protein-coding genes that are shared by
the chloroplast or nuclear genomes. The chloroplast phylo-
genomic studies reported so far for green algae have pro-
vided valuable insights into the phylogeny of prasinophytes
[12,13], streptophytes [14-18] and the Chlorophyceae
[19,20], but only limited information is currently available
regarding the relationships within the Trebouxiophyceae.
For the Ulvophyceae, an analysis of ten concatenated gene
sequences from both the nuclear and chloroplast genomes
enabled Cocquyt et al. [21] to resolve the branching pat-
tern of the main lineages of this class. In this context, it is
worth mentioning that datasets of concatenated nuclear
and chloroplast genes have also proved very useful to re-
construct phylogenetic relationships within specific green
algal orders [22].

The present investigation is centered on the Trebou-
xiophyceae as delineated by Frield [23]. This species-rich
class displays remarkable variation in both morphology
(comprising unicells, colonies, filaments and blades) and
ecology (occurring in diverse terrestrial and aquatic en-
vironments) [1,5,7]. No flagellate vegetative form has
been identified in this class. Several species (e.g. Tre-
bouxia, Myrmecia and Prasiola) participate in symbioses
with fungi to form lichens [24,25] and others (e.g. Chlor-
ella, Coccomyxa, and Elliptochloris) occur as photosyn-
thetic symbionts in ciliates, metazoa and plants [26].
The Trebouxiophyceae also comprises species that have
lost photosynthetic capacity and have evolved free-living
or parasitic heterotrophic lifestyles (e.g. Prototheca and
Helicosporodium) [27-29]. Aside from their intrinsic bio-
logical interest, trebouxiophycean algae have drawn the
attention of the scientific community because of their
potential utility in a variety of biotechnological applica-
tions such as the production of biofuels or other mole-
cules of high economic value [30,31].

Phylogenies based on 18S rDNA data have identified
multiple lineages within the Trebouxiophyceae, and
these include the Chlorellales, Trebouxiales, Microtham-
niales, and the Prasiola, Choricystis/Botryococcus, Wata-
nabea, Oocystis and Geminella clades [32-39]. While the
majority of the observed monophyletic groups are com-
posed of several genera, a number of lineages consist of
a single species or genus (e.g. Xylochloris, Leptosira,
Lobosphaera). The interrelationships between most of
the trebouxiophycean lineages are still unresolved. Inter-
estingly, taxa with highly different morphologies (e.g. the
minute unicellular Stichococcus and the macroscopic
filamentous or blade-shaped Prasiola) have been recov-
ered in the same clade, demonstrating that vegetative
morphology can evolve relatively rapidly. Polyphyly has
been reported not only in morphologically simple genera
[5,7,40], but also in those with colonial forms [36,41].

In this study, we have sought to decipher the relation-
ships among the main trebouxiophycean lineages and to
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evaluate the monophyly of the Trebouxiophyceae. Toward
these goals, we have analyzed data sets of 79 chloroplast
DNA (cpDNA)-encoded proteins and genes spanning the
broad range diversity of the Trebouxiophyceae. Twenty-
nine chlorophyte chloroplast genomes were newly se-
quenced to generate these data sets. The trees we inferred
using the maximum likelihood (ML) and Bayesian infer-
ence methods enabled us not only to clarify the internal
structure of the Trebouxiophyceae but also to gain in-
sights into their ancestral status with regards to the type
of environment they first colonized and their subsequent
adaptations to different ecosystems.

Results

In the course of this study, we generated the chloroplast
genome sequences of 27 trebouxiophycean taxa, thus
bringing to 35 the total number of trebouxiophyceans
sampled in our phylogenetic analyses (Table 1). These taxa
represent the variety of trebouxiophycean lineages that
had been recognized prior to January 2013; at least two
representatives were examined for each of the lineages
ncluding multiple genera. The chloroplast genome se-
quences of two flagellates belonging to the Pedinophyceae
(Pedinomonas tuberculata and Marsupiomonas sp. NIES
1824) were also determined because Pedinomonas minor,
the previously sampled taxon from this group had been
found to be related to the Chlorellales and a member of
the Oocystis lineage in an earlier phylogenomic study [42].
Only the results of our phylogenetic analyses are pre-
sented here; in a separate article, we will report the salient
features of the newly sequenced chloroplast genomes and
discuss how these structural data advance understanding
of chloroplast genome evolution in the Chlorophyta.

All data sets analyzed in our study were assembled from
79 cpDNA-encoded proteins and taxon sampling included
up to 63 green algal taxa, i.e. the 38 trebouxiophyceans
and pedinophyceans listed in Table 1, 23 additional chlor-
ophytes (12 prasinophytes, nine chlorophyceans, and two
ulvophyceans) and two streptophyte algae (Mesostigma
viride and Chlorokybus atmophyticus). We favored the use
of amino acid rather than nucleotide sequences in our
phylogenomic study because, in analyses of ancient diver-
gences, amino acid data sets are less prone than nucleotide
data sets to saturation problems, convergent compos-
itional biases and convergent codon-usage biases [49-51].
We initiated our phylogenomic study by analyzing the
amino acid data set comprising all 63 taxa (15,549 sites).
Note that some of the genes coding for the proteins ana-
lyzed are missing from a number of taxa, in particular
from prasinophytes and chlorophyceans (see Figure 1);
however, the proportion of missing data in the analyzed
data sets does not exceed 6%.

Even though amino acid phylogenies are more robust
to compositional effects than nucleotide phylogenies,
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they may still suffer from a general mutational pressure
acting at the nucleotide level [52,53]. For this reason, we
also inferred trees from nucleotide data sets correspond-
ing to the 63-taxon amino acid data set and examined
whether they are congruent with those derived from
amino acid data sets.

Analysis of the amino acid data sets

The amino acid data set comprising all 63 taxa was ana-
lyzed with PhyloBayes using the site-heterogeneous
CATGTR + T4 model and also with RAxML using the
site-homogeneous GTR +I'4 and gcpREV +I'4 models
as well as the LG4X model (Figure 1). gcpREV is an
empirical amino acid substitution model that has been
recently developed for use with green plant chloroplast
protein data [54]; it proved to be the best-scoring empir-
ical model among those we tested using RAXxML (cpREYV,
JTT, gcpREV, LG, WAG, and their + F alternatives). LG4X
is a mixture model based on four substitution matrices [55].
The fits of the gcpREV +I'4, GTR +I'4 and CATGTR +I'4
models to the 63-taxon data set were assessed using cross-
validation (Table 2). CATGTR +I'4 was found to be the
best-fitting model; this finding was expected considering
that site-heterogeneous models are known to provide a bet-
ter fit than site-homogeneous models and minimize the im-
pact of systematic errors arising from the difficulties to
detect and interpret multiple substitutions [56-59]. Because
it was also found that the GTR + I'4 model has a better fit
than the gcpREV + I'4 model (Table 2), it appears that the
size of the 63-taxon data set is sufficiently large to estimate
a GTR amino acid substitution matrix that models more ac-
curately our data than the empirical gcpREV matrix.

The majority-rule consensus trees inferred from the
63-taxon amino acid data set using ML and Bayesian
inference methods displayed essentially the same topology
(Figure 1). As expected, the prasinophyte lineages repre-
sent the first branches and their divergence order is identi-
cal to that reported for a recent phylogenomic tree with
the same sampling of prasinophyte taxa [12]. The treboux-
iophyceans are recovered as a non-monophyletic assem-
blage. The monophyletic group formed by the six members
of the Chlorellales is sister to the Pedinophyceae and the
Chlorellales + Pedinophyceae clade is sister to all other
UTC algae. The rest of the trebouxiophyceans, designated
hereafter as core trebouxiophyceans, form a strongly sup-
ported clade that shares a sister relationship with the Ulvo-
phyceae + Chlorophyceae clade. The deep node of the trees
coinciding with the common ancestor of the UTC and
pedinophycean algae received maximal support in all
analyses, but the following node corresponding to the
divergence of the core trebouxiophyceans from the
Chlorellales + Pedinophyceae received lower support,
especially in the ML analyses as indicated by the BS
values of 73, 57 and 45%.
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Table 1 Pedinophycean and trebouxiophycean taxa used in the chloroplast phylogenomic analyses
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Taxa

Source®

Accession no.P

Sequencing method®

Pedinophyceae

Pedinomonas minor
Pedinomonas tuberculata

Marsupiomonas sp.

Trebouxiophyceae

Chlorellales
Pseudochloris wilhelmii
Chlorella variabilis
Chlorella vulgaris
Dicloster acuatus
Marvania geminata

Parachlorella kessleri

Choricystis/Botryococcus clade

Botryococcus braunii
Choricystis minor
Coccomyxa subellipsoidea
Elliptochloris bilobata
Paradoxia multiseta
Trebouxiophyceae sp.
Geminella clade
Geminella minor
Geminella terricola
Gloeotilopsis sterilis
Microthamniales
Fusochloris perforata
Microthamnion kuetzingianum
Oocystis clade

Oocystis solitaria
Planctonema lauterbornii
Prasiola clade
“Chlorella” mirabilis
Koliella longiseta

Pabia signiensis
Stichococcus bacillaris
Prasiolopsis sp.
Trebouxiales

Myrmecia israelensis
Trebouxia aggregata
Watanabea clade
Dictyochloropsis reticulata
Watanabea reniformis
Other lineages
Pleurastrosarcina brevispinosa®

“Koliella” corcontica

UTEX LB 1350
SAG 42.84
NIES 1824

SAG 1.80
NC64A

27

SAG 4198
SAG 12.88
SAG 211-11 g

SAG 807-1
SAG 1798
NIES 2166
CAUP H7103
SAG 1884
MX-AZ01

SAG 22.88
SAG 2091
UTEX 1704

SAG 28.85
UTEX 318

SAG 83.80
SAG 68.94

SAG 38.88
UTEX 339
SAG 7.90

UTEX 176
SAG 84.81

UTEX 1181
SAG 219-1D

SAG 2150
SAG 211-9b

UTEX 1176
SAG 24.84

[GenBank:NC_016733]
[GenBank:KM462867]*
[GenBank:KM462870]*

[GenBank:KM462886]*
[GenBank:NC_015359]
[GenBank:NC_001865]
[GenBank:KM462885]*
[GenBank:KM462888]*
[GenBank:NC_012978]

[GenBank:KM4628384]*
[GenBankKM462878]*
[GenBank:NC_015084]
[GenBank:KM4628871*
[GenBankKM462879]*
[GenBank:NC_018569]

[GenBank:KM462883]*
[GenBank:KM4628811*
[GenBank:KM4628771*

[GenBank:KM4628821*
[GenBank:KM462876]*

[GenBank:FJ968739]
[GenBank:KM462880]*

[GenBankKM462865]*
[GenBank:KM462868]*
[GenBankKM462866]*
[GenBankKKM462864]*
[GenBank:KM462862]*

[GenBankKKM4628611*
[GenBank:EU123962-EU124002]

[GenBank:KM462860]*
[GenBank:KM462863]*

[GenBank:KM462875]*
[GenBank:KM462874]*

454
454

lllumina

Sanger
454

lllumina

Sanger

454

lllumina

lllumina
454

lllumina

454

Sanger

Sanger

Sanger
454
Sanger
Sanger
454

454

454

lllumina

lllumina

lllumina
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Table 1 Pedinophycean and trebouxiophycean taxa used in the chloroplast phylogenomic analyses (Continued)

Leptosira terrestris UTEX 333
Lobosphaera incisa SAG 2007
Neocystis brevis CAUP D802
Parietochloris pseudoalveolaris UTEX 975
Xylochloris irregularis CAUP H7801

[GenBank:NC_009681]

[GenBank:KM4628711* Sanger
[GenBankKM4628731* 454
[GenBankKM462869]* Sanger
[GenBank:KM462872]* 454

*The taxa originate from the culture collections of algae at the University of Goettingen (SAG, [43]), the University of Texas at Austin (UTEX, [44]), the Provasoli-Guillard
National Center for Marine Algae and Microbiota (CCMP, [45]), the National Institute of Environmental Studies in Tsukuba (NIES, [46]), and Charles University in Prague

(CAUP, [47]).

PThe GenBank accession number of the chloroplast genome is given for each taxon. The asterisks denote the genomes that were sequenced during the course of

this study.

“Sequencing methods are given only for the chloroplast genomes sequenced in this study.
%This taxon, originally classified in the genus Chlorosarcina, was assigned to the new genus Pleurastrosarcina by Sluiman and Blommers [48].

The 32 taxa within the core trebouxiophyceans are re-
solved as a grade of several strongly supported lineages.
Three monophyletic groups containing multiple genera
can be distinguished (i.e. clades A, B and C). Clade A,
which consists of Koliella corcontica and members of
the previously recognized Geminella and Oocystis clades,
represents the earliest-diverging lineage of the core tre-
bouxiophyceans. Clade B includes Neocystis brevis and
representatives of the highly diversified Prasiola clade.
Clade C, the largest of the three identified monophyletic
groups, consists of 15 taxa belonging to the Xylochloris,
Microthamniales, Trebouxiales, Lobosphaera, Watanabea,
Choricystis and Elliptochloris clades. Clades A and B as well
as clades B and C are separated from one another by a
lineage consisting of a single taxon, i.e. the Pleurastrosarcina
brevispinosa and the Parietochloris pseudoalveolaris lineage,
respectively.

Considering that heterogeneity in amino acid compos-
ition may violate the stationarity assumption made by
the evolutionary models in the analyses presented above,
we explored whether the inferred relationships were af-
fected by compositional-related artifacts. As a first ap-
proach, we examined the amino acid composition of the
data set by plotting the first two components of a cor-
respondence analysis of the 20 amino acid frequencies
(Figure 2) but identified no large deviation in compos-
ition of the chloroplast proteins among the taxa exam-
ined. We also used the Dayhoff recoding strategy, which
recodes the 20 amino acids into six groups on the basis
of their physical and chemical properties. We found that
the tree inferred from the Dayhoff-recoded data set under
the CATGTR +I'4 model exhibits the same topology as
that obtained using standard 20 state models, except that
the Chlorellales are not affiliated with the Pedinophyceae
(data not shown). In this Bayesian analysis, which showed
convergence problems (maxdiff=1), the position of the
Chlorellales relative to the core trebouxiophyceans is
unresolved, whereas the Pedinophyceae is sister to the
UTC clade (PP=0.79). These observations together
with the finding that the Chlorellales and Pedinophyceae

are grouped in the correspondence analysis (Figure 2)
suggest a possible compositional attraction between these
two groups.

Given the possibility that the affiliation between the
Chlorellales and Pedinophyceae is caused by systematic er-
rors of tree reconstruction, we tested whether removal of
the three members of the Pedinophyceae affects the pos-
ition of the Chlorellales. As shown in Figure 3A, the
RAXML tree inferred under the GTR+TI4 model still
identifies the Chlorellales as sister to the Chlorophyceae +
Ulvophyceae + core trebouxiophyceans (BS = 89%). To de-
termine whether the two other possible positions occupied
by the Chlorellales (topologies T2 and T3 in Figure 3B)
can be dismissed with statistical confidence, we carried
out the approximately unbiased (AU) test of phylogenetic
tree selection [60]. Both topologies were found to be sig-
nificantly different (P <0.05) from the best tree (T1) and
were thus rejected by the AU test (Figure 3B).

Analysis of the nucleotide data sets

We analyzed two nucleotide data sets corresponding to
the 63-taxon amino acid data set, both of which were
designed to minimize deleterious effects of rapid se-
quence evolution and/or heterogeneous composition.
The degenl data set comprises all three codon positions
(46,404 sites) that were degenerated using the Degenl.pl
script [62], whereas the ntl +2 data set contains only
the first and second codon positions (30,936 sites). The
RAXML trees inferred from these data sets under the
GTR +I'4 model display essentially the same trebouxio-
phycean relationships as in the 63-taxon amino acid tree
(Figure 4), except that the Marvania clade is sister to
the Chlorella + Parachlorella clade (BS =60 and 76%)
and that Parietochloris pseudoalveolaris is recovered as
sister to the Prasiola clade (BS =53 and 43%). As ob-
served for the amino acid phylogenies, the Chlorellales
remained sister to the Chlorophyceae + Ulvophyceae +
core trebouxiophyceans when the three algae belonging
to the Pedinophyceae were excluded from the sampled
taxa (data not shown).
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Missing
genes (%)

Missing
sites (%)

Volvox carteri
Chlamydomonas reinhardltii
Chlamydomonas moewusii
Dunaliella salina

Nephroselmis astigmatica

Nephroselmis olivacea

Micromonas sp. RCC 299

Ostreococcus tauri

Monomastix sp. OKE-1

Pyramimonas parkeae

Prasinoderma coloniale

Prasinophyceae

—+10hlorokybus atmophyticus
Mesostigma viride

f f
30 20 10 0 10 20 30

The tree presented here is the best-scoring ML tree inferred under the
bottom, or from left to right, are shown the posterior probability (PP) v

indicate the proportion of missing data for each taxon. The scale bar d

. i 1.00 1.00 Acutodesmus obliquus Chlorophyceae
| m n ] 99 ~ Schizomeris leibleinii
- o 52 100 Stigeoclonium helveticum
| | ) Floydiella terrestris
Oedogonium cardiacum
Lo | Pseudendoclonium akinetum
P P Oltmannsiellopsis viridis Ulvophyceae
P P 099 Iéaradoxia mult;';se’;a ” Choricystis/ ]
b - 77 occomyxa subellipsoidea oricystis
b b 83™ Trebouxiophyceae sp. MX-AZ01 4
IR Elliptochloris bilobata Botryococcus
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Lo b 99 Botryococcus braunii
b Lo 2 Choricystis minor clade
- b 1008 0.96/95/100/98 WA .
b b 99 ‘atanabea reniformis
Lo - 0.98 B Dictyochloropsis reticulata Watanabea clade c
b b 73 |1.00 \ o
po - % 99 Lobosphaera incisa [72]
Lo [ 97 i h c
. . 2oo97 Myrmecia israelensis A [
b [ 1.99 N Trebouxia aggregata Trebouxiales 8
- [ 1
. Lo 72 Fusochloris perforata H i >
ro Lo \ Mlcrothamnlfc))n kuetzingianum Microthamniales -S_
Do Do 1.00 Xylochloris irregularis Rel
. Lo 96 Leptosira terrestris x
- [ 80| 0.99/98/99/98 5
Lo Lo 9% Parietochloris pseudoalveolaris o
Lo Lo 0.75/01/56/94_ . Q
[ [ 1,gg Pabia signiensis o
[ [ Koliella longiseta
97| g q
AR A % “Chlorella” mirabilis Prasiola clade | B :
P Pl X Prasiolopsis sp. SAG 84.81 =
ro . Stichococcus bacillaris Q
. b Neocystis brevis @)
b b Pleurastrosarcina brevispinosa
i i i i Planctonema lauterbornii i
A I e S Oocystis clade
Lo Lo 7 K 00/98/99/99 Gloeotilopsis sterilis A
[ [ Geminella minor 1
Lo Lo 1.00 90 Geminella terricola Geminella clade
. Lo 74 gg “Koliella” corcontica .
- [ 2
[ b L0 Chlorella variabilis
- b &8 N EChlorella vulgaris
[ [ 1.00 Marvania geminata
- Lo 4 = Pseudochloris wilhelmii Chlorellales
- [ 58 . Parachlorella kessleri
Do b 0.07 gi ‘_:chloster acuatus
- [ 5
[ [ g% 0.84 Pedinomonas minor q
P P 59 n Pedinomonas tuberculata Pedlnophyceae
P b 199 93 Marsupiomonas sp. NIES 1824
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ro - 70\ Prasinophyceae sp. CCMP 1205
|- il 9 Picocystis salinarum
[ - 92 Pycnococcus provasolii
T T

Figure 1 Phylogeny of 61 chlorophytes inferred using a data set of 15,549 positions assembled from 79 cpDNA-encoded proteins.

(BS) values for the RAXML GTR + 4, LG4X and gcpREV + 4 analyses. Black dots indicate that the corresponding branches received BS and PP
values of 100% in all four analyses. Shaded areas identify the clades that are well supported in 185 rDNA phylogenies. The histograms on the left

Prasinophyceae sp MBIC 10622
Prasinococcus sp. CCMP 1194

GTR 44 model. Support values are reported on the nodes: from top to
alues for the PhyloBayes CATGTR + 4 analyses and the bootstrap support

enotes the estimated number of amino acid substitutions per site.

Discussion

Identifying the relationships among the main lineages
of the Trebouxiophyceae is crucial for understanding
the evolutionary history of this morphologically and

ecologically diversified class of chlorophytes. For the first
time, a robust phylogeny of trebouxiophyceans with
sampling of most of the lineages recognized on the basis
of 185 rDNA data is inferred using a phylogenomic
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Table 2 Comparison of evolutionary models using cross
validation and the chloroplast data set of 15,549
positions

Likelihood difference (+SD)
396.52 +48.58
254578 £ 13397

Models compared
GTR+T4 vs gcpREV + T4
CATGTR + 14 vs gcpREV + T4

approach. Our study reveals that the class Trebouxio-
phyceae sensu stricto [23] is not a monophyletic group.
In the chloroplast phylogenies we inferred from both
amino acid and nucleotide data sets, the Chlorellales
and a core group containing all other 29 trebouxiophy-
ceans constitute two distinct, strongly supported mono-
phyletic groups that emerge before the Chlorophyceae and
Ulvophyceae (Figures 1 and 4). Prior to our investigation,
a number of multi-gene trees with sparse sampling of tre-
bouxiophyceans had recovered with little support the Tre-
bouxiophyceae as nonmonophyletic [2,42,63-67], thus
casting doubt on the monophyletic status of this class.

To our knowledge, no morphological features can be
invoked to support or refute the phylogenetic relation-
ship we observed between the Chlorellales and the core
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trebouxiophyceans. Mattox and Stewart [3] defined the
class Pleurastrophyceae (=Trebouxiophyceae) based on
the ultrastructure of the flagellar apparatus (counter-
clockwise orientation of basal bodies) and features re-
lated to cytokinesis and mitosis (phycoplast-mediated
cytokinesis and mitosis with a non-persistent telophase
spindle). Because all members of the Chlorellales lack
motile stages and divide by autosporulation, the ultra-
structural characters used by Mattox and Stewart are
not available for this algal group, thus precluding an
evaluation of the monophyletic status of the Trebouxio-
phyceae sensu stricto [23].

The phylogenetic relationships inferred in this study
provide insights into the type of ecosystems colonized by
the core trebouxiophyceans in their early evolutionary his-
tory (Figure 4). Considering that, like most of the chlorel-
laleans, the earliest-diverging core trebouxiophyceans (i.e.
the Oocystis and Geminella clades) are predominantly
planktonic species and that the core trebouxiophyceans
occupying more derived lineages are mostly terrestrial
algae, it appears that the first core trebouxiophyceans lived
in aquatic ecosystems and that very early during evolution
they evolved strategies to avoid desiccation [68] and con-
quered the land. This early transition from aquatic to

0.10
0.05
A A 4
A
PC2 4 a A
A A A
0 A A ALK -
J PO R SR SR SN R
Al a
P N S 1%
A B o - 'A‘ A
~0.05 — Core trebouxiophyceans A A Prasinophyceae Chlorophyceae
’ A Core trebouxiophyceans B A Chlbrellales A Ulvophyceae
A Core trebouxiophyceans C Peciinophyceae A Outgroups
Other trebouxiophyceans :
T T T T
-0.05 0 0.05 0.10
Figure 2 Correspondence analysis of amino acid usage in the data set of 15,549 positions. The members of the Chlorellales and Pedinophyceae
are found within the circled area.
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Figure 3 Influence of the Pedinophyceae on the placement of the Chlorellales. (A) Phylogeny of chlorophytes inferred under the GTR + 4
model using the amino acid data set of 15,549 positions after exclusion of the Pedinophyceae. The best-scoring RAXML tree is presented and
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terrestrial environments likely occurred just after
emergence of the Oocystis/Geminella clade. In this c
text, it is worth mentioning that a subaerial lifestyle

the  been inferred for the last common ancestor of the early-
on-  diverging clade Prasiola, which comprises terrestrial as
has  well as aquatic species [69]. Therefore, the early evolution
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Figure 4 Phylogeny of 61 chlorophytes inferred using nucleotide data sets assembled from 79 cpDNA-encoded genes. The tree
presented here is the best-scoring ML tree inferred using the degen1 data set under the GTR + 4 model. Support values are reported on the
nodes: from top to bottom, or from left to right, are shown the BS values for the analyses of the degen1 and nt1 + 2 data sets. Black dots indicate
that the corresponding branches received BS values of 100% in the two analyses. Shaded areas identify the trebouxiophycean lineages uncovered
in this study. Open and filled squares denote aquatic and terrestrial/aeroterrestrial habitats, respectively; an open square containing a star indicates
that the taxon is a symbiont. The scale bar denotes the estimated number of nucleotide substitutions per site.

of desiccation tolerance undoubtedly accounts for the suc-
cess of the core trebouxiophyceans in terrestrial/aeroter-
restrial environments, and once this trait was acquired,
reversals to aquatic habitats probably involved only minor
molecular changes, explaining why transitions from terres-
trial to aquatic habitats were frequent during the evolution
of core trebouxiophyceans.

The main lineages of the core trebouxiophyceans

The core trebouxiophyceans form a grade of lineages,
with several containing two or more genera and some
containing a single known genus or taxon. Although the
short internal branches separating the major clades of
core trebouxiophyceans suggest that lineage diversifica-
tion occurred rapidly, it is remarkable that only the
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placement of the single-taxon lineage occupied by
the terrestrial alga Parietochloris pseudoalveolaris is sup-
ported by modest BS values in both the amino acid and
nucleotide analyses (Figures 1 and 4). We highlight
below the main evolutionary relationships uncovered for
the core trebouxiophyceans in our chloroplast phyloge-
nomic study.

The strongly supported assemblage formed by the
Oocystis and Geminella clades represents the deepest
branching trebouxiophycean lineage in both the protein-
and DNA-based phylogenies (Figures 1 and 4). The
placement of the Oocystis clade within the core treboux-
iophyceans contrasts sharply with the sister relationship
of the Oocystaceae and Chlorellales observed in a num-
ber of 18S rDNA studies [32,37-39,70]. With regards to
the Geminella clade, we found that the “Koliella” corcon-
tica taxon is robustly allied with this clade and thus
should be considered to be a bona fide member; this as-
sociation was previously observed in a phylogeny in-
ferred from 18S rDNA, albeit with no support [37].

The sarcinoid green alga Pleurastrosarcina brevispi-
nosa, for which no 18S rDNA sequence is currently
available in public databases, occupies the next branch
after the Oocystis/Geminella lineages. This desert crust
alga, originally designated as Chlorosarcina brevispinosa,
was assigned to the genus Pleurastrosarcina by Sluiman
and Blommers [48]. The phylogenies reported here con-
firm that this taxon belongs to the Trebouxiophyceae
and indicate that it represents a novel lineage of this
class. In a very recent study, Fucikova et al. [71] re-
ported that most major trebouxiophycean lineages con-
tain desert-dwelling taxa and presented evidence for
three new lineages of free-living trebouxiophyceans
found in North American desert soil crusts. While the
Desertella lineage is nested within the Watanabea clade,
the Eremochloris and Xerochlorella lineages represent
independent clades of the Trebouxiophyceae. In future
studies, it will be interesting to investigate whether
the sarcinoid Pleurastrosarcina brevispinosa belongs to
one of the latter lineages. Another lineage that should
examined for a possible affinity with Pleurastrosarcina
is the Leptochlorella clade, which was recently discov-
ered by Neustupa et al. [38] and further delineated by
Fudikovi et al. [71].

The branching order observed for the representatives of
the Prasiola clade is mostly congruent with 185 rDNA
phylogenies [33-35,39], and in agreement with the studies
of Krienitz et al. [72] and Gaysina et al. [70], the
crescent-shaped green alga Neocystis brevis is recovered
as sister to this clade. Given that this affiliation is
supported with maximal BS values in all analyses, the
Neocystis lineage clearly represents a basal branch of
the Prasiola clade. Chlorella mirabilis shares a sister
relationship with the Pabia + Koliella clade in all our
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analyses (Figures 1 and 4); in contrast, 18S rDNA trees
frequently identify C. mirabilis as sister to all other line-
ages of the Prasiola clade [32-35,39].

The coccoid soil alga Parietochloris pseudoalveolaris
forms an independent lineage between the Prasiola clade
and the monophyletic group uniting the Microtham-
niales and the Xylochloris clade in the amino acid-based
phylogeny (Figure 1). Parietochloris is allied with the
Microthamniales in a number of published 18S rDNA
trees [32-34,37,38,73], but this alliance is weakly sup-
ported. The Xylochloris clade is a newly identified assem-
blage of two lineages for which no sister groups were
previously identified; it consists of the coccoid subaerial
alga Xylochloris irregularis and the filamentatous soil
alga Leptosira terrestris. The recent discovery of a coc-
coid soil alga (Chloropyrula uraliensis) belonging to a
lineage related to the genus Leptosira suggests that the
Xylochloris clade likely represents a diversified group of
trebouxiophyceans [70].

The five remaining clades of core trebouxiophyceans
consist of the Trebouxiales and the Lobosphaera, Wata-
nabea, Choricystis and Elliptochloris clades. Members of
all these clades, except the Lobosphaera lineage, include
algae that occur as symbionts; the Trebouxiales, in par-
ticular, are the most common photobionts in lichens.
The branching order reported here for the five clades
of core trebouxiophyceans was not observed in 18S
rDNA trees, even though these clades were often found
as neighboring lineages. Only the most recent diver-
gence of core trebouxiophycean lineages we identified
(i.e. the Choricystis/Elliptochloris + Watanabea assem-
blage) was also recivered in 18S rDNA studies [32,72],
but with no support. In contrast to 18S rDNA trees
where the Trebouxiales and the Lobosphaera clade dis-
play an unsupported sister relationship [32,33,38,72],
the Lobosphaera clade consistently emerges with strong
support as an independent lineage after the Trebouxiales
in all chloroplast trees.

The Chlorellales and their relationship with other core
chlorophytes

Three distinct clades of Chlorellales were recovered in
this study: the Parachlorella, Chlorella and Marvania
clades (Figure 4). As observed by Somogyi et al. [74] in
18S rDNA trees (albeit with no support), we found that
the Parachlorella clade is sister to the other two lineages
in most amino acid-based trees; however, this position
is occupied by the Marvania clade in the phylogenies
inferred from nucleotide data. A recent 18S rDNA
study [75] recovered Pseudochloris wilhelmii and the
Parachlorella and Chlorella clades as part of a large as-
semblage that is sister to Marvania, a topology that con-
trasts with the finding that Marvania and Pseudochloris
are sister taxa in all our analyses.
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The results presented here reveal an affinity between
the Chlorellales and the Pedinophyceae, although sup-
port is weak in the Bayesian analysis under the
CATGTR +I'4 model (PP =0.84, Figure 1). This finding
is consistent with previous chloroplast phylogenomic
studies with scarce sampling of trebouxiophyceans,
wherein the freshwater flagellate Pedinomonas minor
was found to be sister to the clade formed by members
of the Chlorellales [42,66]. But subsequently, Marin [76]
identified no association between the Pedinophyceae
and the Chlorellales using nuclear and chloroplast rRNA
operon data sets, the Pedinophyceae being placed as an
independent lineage that is sister to the Chlorodendro-
phyceae + UTC. Note that the clade formed by the
Chlorellales and other trebouxiophyceans was not sup-
ported with high confidence in these rRNA operon trees
and that the branching order of most trebouxiophycean
lineages was unresolved.

Given the conflicting positions of the Chlorellales and
Pedinophyceae in the aforementioned analyses, the weak
PP support that the Chlorellales + Pedinophyceae clade
received in the PhyloBayes analyses of the amino acid
data set and the basal position occupied by the Pedino-
phyceae in trees inferred from the Dayhoff-recoded data
set, we conclude that the question as to whether the
Chlorellales and Pedinophyceae form a monophyletic
group remains unsettled. It is possible that the Chlorel-
lales + Pedinophyceae affiliation is the result of system-
atic errors of phylogenetic reconstructions. Solving this
issue will require sampling of the Chlorodendrophyceae
and the inclusion of additional taxa from the Ulvophyceae
and the lineage represented by the prasinophyte CCMP
1205. The two ulvophycean taxa used in our study repre-
sent distinct basal lineages of the Ulvophyceae (Oltmann-
siellopsidales and Ulvales/Ulotrichales); taxa from the
BCDT (Bryopsidales, Cladophorales, Dasycladales, and
Trentepohliales) and Ignatius clades will need to be exam-
ined for a more representative sampling of ulvophycean
diversity [21,65]. We expect that resolving the ancient and
rapid radiations of the core chlorophyte lineages (Pedino-
phyceae, Chlorodendrophyceae and UTC lineages) using a
chloroplast phylogenomic approach will be challenging
and will require optimized models of sequence evolution.

Conclusions

The phylogeny reported in this study forms a solid basis
for future studies aimed at advancing knowledge about
the nature of the morphological and ecological diversifi-
cation of the Trebouxiophyceae. It provides important
insights into the origins and adaptations of terrestrial
and symbiotic lifestyles. Members of this group clearly
occupy a pivotal position in the Viridiplantae and display
considerable genetic diversity. A fundamental under-
standing of the molecular mechanisms underlying their
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adaptations to changing environments will require the
analysis of genomes from key trebouxiophycean taxa.

Methods

Strains and culture conditions

The 29 green algal strains that were selected for chloroplast
genome sequencing are listed in Table 1 (those are the
strains whose accession number is associated with an aster-
isk). All strains were grown in K [77] or C [78] medium at
18°C under alternating 12 h-light/12 h-dark periods.

Genome sequencing, assembly and annotation

As indicated in Table 1, three methods were used to deter-
mine the sequences of the 29 green algal chloroplast ge-
nomes. Nine of these genomes were sequenced using the
Sanger method, 12 using the 454 pyrosequencing method,
and the remaining eight using the Illumina method.
Sanger sequencing was carried out from random clone
libraries of A + T-rich DNA fractions as described [79].
Chloroplast genome sequences were assembled using
Sequencher 5.1 (Gene Codes Corporation, Ann Arbor,
MI) and genomic regions not represented in the assem-
blies were sequenced from polymerase chain reaction
(PCR)-amplified fragments using primers specific to the
flanking contigs.

For 454 sequencing, shotgun libraries of A + T-rich
DNA fractions (700-bp fragments) were constructed
using the GS-FLX Titanium Rapid Library Preparation
Kit of Roche 454 Life Sciences (Branford, CT, USA). Li-
brary construction and 454 GS-FLX DNA Titanium
pyrosequencing were carried out by the “Plateforme
d’Analyses Génomiques de 'Université Laval” [80]. Reads
were assembled using Newbler v2.5 [81] with default pa-
rameters, and contigs were visualized, linked and edited
using the CONSED 22 package [82]. Contigs of chloro-
plast origin were identified by BLAST searches against a
local database of organelle genomes. Regions spanning
gaps in the chloroplast assemblies were amplified by
PCR with primers specific to the flanking sequences.
Purified PCR products were sequenced using Sanger
chemistry with the PRISM BigDye Terminator Ready Re-
action Cycle Sequencing Kit (Applied Biosystems, Foster
City, CA, USA).

For Illumina sequencing, total cellular DNA was isolated
using the EZNA HP Plant Mini Kit of Omega Bio-Tek
(Norcross, GA, USA). Libraries of 700-bp fragments were
constructed using the TrueSeq DNA Sample Prep Kit
(lumina, San Diego, CA, USA) and paired-end reads
were generated on the Illumina HiSeq 2000 (100-bp reads)
or the MiSeq (300-bp reads) sequencing platforms by the
Innovation Centre of McGill University and Genome
Quebec [83] and the “Plateforme d’Analyses Génomiques
de I'Université Laval” [80], respectively. Reads were assem-
bled using Ray 2.3.1 [84] and contigs were visualized,
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linked and edited using the CONSED 22 package [82].
Identification of chloroplast contigs and gap filling were
performed as described above for 454 sequence assemblies.
Genes and ORFs were identified on the final assem-
blies using a custom-built suite of bioinformatics tools
[85]. Genes coding for rRNAs and tRNAs were localized
using RNAmmer [86] and tRNAscan-SE [87], respect-
ively. Intron boundaries were determined by modeling
intron secondary structures [88,89] and by comparing
intron-containing genes with intronless homologs.

Phylogenomic analyses of amino acid data sets

The chloroplast genomes of 63 green algal taxa were used
in the phylogenomic analyses. The GenBank accession
numbers of the pedinophycean and trebouxiophycean ge-
nomes are presented in Table 1; those of the remaining
taxa are as follows: Mesostigma viride, [GenBank:NC_00
2186]; Chlorokybus atmophyticus, [GenBank:NC_008822];
Prasinococcus sp. CCMP 1194, [GenBank:K]746597]; Pra-
sinoderma coloniale CCMP 1220, [GenBank:K]J746598];
Prasinophyceae sp. MBIC 106222, [GenBank:K]746602];
Pyramimonas parkeae, [GenBank:NC_012099]; Monomas-
tix sp. OKE-1, [GenBank:NC_012101]; Ostreococcus tauri,
[GenBank:NC_008289]; Micromonas sp. RCC 299, [Gen-
Bank:NC_012575]; Nephroselmis olivacea, [GenBank:NC_
000927]; Nephroselmis astigmatica, [GenBank:K]J746600];
Pycnococcus provasolii, [GenBank:NC_012097]; Picocystis
salinarum, [GenBank:K]746599]; Prasinophyceae sp. CCMP
1205, [GenBank:K]J746601]; Oltmannsiellopsis viridis, [Gen-
Bank:NC_008099]; Pseudendoclonium akinetum, [GenBank:
NC_008114]; Oedogonium cardiacum, [GenBank:NC_011
031]; Floydiella terrestris, [GenBank:NC_014346]; Sti-
geoclonium helveticum, [GenBank:NC_008372]; Schizo-
meris leibleinii, [GenBank:NC_015645]; Scenedesmus
obliquus, [GenBank:NC_008101]; Chlamydomonas moe-
wusii, [GenBank:EF587443-EF587503]; Dunaliella sal-
ina, [GenBank:NC_016732]; Volvox carteri f. nagariensis,
[GenBank:GU084820]; and Chlamydomonas reinhardtii,
[GenBank:NC_005353].

A total of 79 protein-coding genes were used to con-
struct the data sets: accD, atpA, B, E, E H, I, ccsA, cemA,
¢hlB, I, L, N, clpB cysA, T, ftsH, infA, minD, petA, B, D, G,
L, psaA, B, C, I, M, psbA, B,C,D,E,EH, L], K, L, M, N,
T, Z, rbcL, rpl2, 5, 12, 14, 16, 19, 20, 23, 32, 36, rpoA, B,
CL C2 1ps2, 3,4 7,8 9 11, 12, 14, 18, 19, tufA, ycfl, 3, 4
12, 20, 47, 62. Amino acid data sets were prepared as fol-
lows: the deduced amino acid sequences from the 79 indi-
vidual genes were aligned using MUSCLE 3.7 [90], the
ambiguously aligned regions in each alignment were re-
moved using TRIMAL 1.3 [91] with the options block = 6,
gt=0.7, st=0.005 and sw =3, and the protein alignments
were concatenated using Phyutility 2.2.6 [92].

Phylogenies were inferred from the amino acid data
sets using the ML and Bayesian methods. ML analyses
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were carried out using RAxML 8.0.20 [93] and the
gcpREV +T'4 [54], LG4X [55] and GTR +I'4 models of
sequence evolution; in these analyses, the data sets were
partitioned by gene, with the model applied to each par-
tition. Confidence of branch points was estimated by
fast-bootstrap analysis (f=a) with 500 replicates and
confidence assessment of phylogenetic tree selections
under the GTR +I'4 model was carried out by the ap-
proximately unbiased (AU) test [60] as implemented in
CONSEL 0.20 [61]. Bayesian analyses were performed
with PhyloBayes 3.3f [94] using the site-heterogeneous
CATGTR +I'4 model [57]. To establish the appropriate
conditions for these analyses, five independent chains
were run for 2,000 cycles and consensus topologies were
calculated from the saved trees using the BPCOMP pro-
gram of PhyloBayes after a burn-in of 500 cycles. Under
these conditions, the largest discrepancy observed across
all bipartitions in the consensus topologies (maxdiff) was
lower than 0.30, indicating that convergence between the
chains was achieved. Bayesian analysis of the Dayhoft-
recoded version of the amino acid data set was also per-
formed using PhyloBayes and the CATGTR + I'4 model.

Cross-validation tests were conducted to evaluate the
fits of the gcpREV +T14, GTR +T4 and CATGTR +TI'4
models of amino acid substitutions to the data set. They
were carried out with PhyloBayes using ten randomly
generated replicates. Cross-validation is a very general
statistical method for comparing models. The procedure
can be summarized as follows. The data set is randomly
partitioned into two unequal subsets, the learning set
(also called the training set) and the test set. The learn-
ing set serves to estimate the parameters of the model
and these parameters are then used to compute the like-
lihood of the test set. To reduce variability, multiple
rounds of cross-validation are performed using different
partitions and the resulting log likelihood scores (which
measure how well the test sets were predicted by the
model) are averaged over the rounds.

To analyze the amino acid composition of the 63-taxon
data set, we first assembled a 20 x 63 matrix containing
the frequency of each amino acid per species using the
program Pepstats of the EMBOSS package [95]. A corres-
pondence analysis of this data set was then performed
using the R package ca [96].

Phylogenomic analyses of nucleotide data sets

Nucleotide data sets containing the gene sequences rep-
resented in the amino acid data set of 63 taxa were pre-
pared as follows. To obtain the data set with all three
codon positions, the multiple sequence alignment of
each protein was converted into a codon alignment, the
poorly aligned and divergent regions in each codon
alignment were excluded using Gblocks 0.91b [97] with
the -t=¢c, -b3 =5, —-b4 =5 and -b5 = half options, and
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the individual codon alignments were concatenated
using Phyutility 2.2.6 [92]. The ntl + 2 data set was ob-
tained by excluding the third codon positions using
Mesquite 2.75 [98]. The degenl data set was prepared
using the Degenl.pl 1.2 script of Regier et al. [62]. This
script fully degenerates all codons that encode single
amino acids by substituting one of the four standard nu-
cleotides with ambiguity codes that allow for all possible
synonymous change for that amino acid. It operates by de-
generating nucleotides at all sites that can potentially
undergo synonymous change in all pairwise comparisons
of sequences in the data matrix, thereby making synonym-
ous change largely invisible and reducing compositional
heterogeneity but leaving the inference of nonsynonymous
changes largely intact.

ML analyses of nucleotide data sets were carried out
using RAxML 8.0.20 [93] and the GTR + I'4 model of se-
quence evolution; in these analyses, the data sets were
partitioned by gene, with the model applied to each par-
tition. Confidence of branch points was estimated by
fast-bootstrap analysis (f =a) with 500 replicates.

Availability of supporting data

The sequence data generated in this study are available
in GenBank under the accession numbers KM462860-
KM462888 (see Table 1). The data sets supporting the
results of this article are available in the Dryad Digital
Repository (doi: 10.5061/dryad.q4432) [99].
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