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Abstract

two-population models.

the analysis, and complexity of the simulated models.

parameter estimation for more recent demographic events.

Background: The allele frequency spectrum (AFS) consists of counts of the number of single nucleotide polymorphism
(SNP) loci with derived variants present at each given frequency in a sample. Multiple approaches have recently been
developed for parameter estimation and calculation of model likelihoods based on the joint AFS from two or more
populations. We conducted a simulation study of one of these approaches, implemented in the Python module
0adi, to compare parameter estimation and model selection accuracy given different sample sizes under one- and

Results: Our simulations included a variety of demographic models and two parameterizations that differed in the
timing of events (divergence or size change). Using a number of SNPs reasonably obtained through next-generation
sequencing approaches (10,000 - 50,000), accurate parameter estimates and model selection were possible for models
with more ancient demographic events, even given relatively small numbers of sampled individuals. However,
for recent events, larger numbers of individuals were required to achieve accuracy and precision in parameter
estimates similar to that seen for models with older divergence or population size changes. We quantify i) the
uncertainty in model selection, using tools from information theory, and ii) the accuracy and precision of parameter
estimates, using the root mean squared error, as a function of the timing of demographic events, sample sizes used in

Conclusions: Here, we illustrate the utility of the genome-wide AFS for estimating demographic history and provide
recommendations to guide sampling in population genomics studies that seek to draw inference from the AFS. Our
results indicate that larger samples of individuals (and thus larger AFS) provide greater power for model selection and

Keywords: Allele frequency spectrum, Demographic history, SNP, Model selection, Parameter uncertainty

Background

Population genetic data can be useful for comparing al-
ternative representations of demographic history and
for estimating parameter values under potentially com-
plex models. The declining costs associated with next-
generation sequencing, along with recent developments
allowing multiple individual genomes to be simultaneously
sequenced [1,2], have led to increases in the number of re-
searchers generating genomic-scale datasets that include
population-level samples of individuals. These datasets
have the potential to provide unprecedented insight into
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the demographic history of populations and the evolution-
ary history of divergence among species [3]. Analyses
based on the allele frequency spectrum (AFS) have be-
come increasingly popular when considering population
genomic datasets, in part due to the development of ana-
lytical software packages that consider the joint AFS be-
tween two or more populations [4-7].

The AFS is a P-dimensional array, where P is the num-
ber of populations considered, that gives the number of
single nucleotide polymorphism (SNP) loci with derived
alleles present at a given joint frequency in the sampled
populations. Each dimension contains 2#; + 1 elements,
where #; is the number of diploid individuals sampled from
population i. These elements are ordered [0, 1, ... , 2]
along each dimension, and each value in the body of the
array is the number of derived variants across the sample
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that are present at a given joint frequency. For instance,
considering two populations, each SNP locus contributes
one unit to the value in the AFS located at [x;, x,], where
x; is the number of derived allele copies (indexed on 0) in
samples from population i. The joint AFS is based on these
data, summed across the set of SNPs genotyped in two or
more populations.

For datasets composed of biallelic, unlinked SNPs, the
AFS is a complete summary of the data [4], and many
commonly used statistics, such as the number of segre-
gating sites, Fs;; and Tajima’s D [8], can be calculated
directly from the frequency spectrum. Additionally,
patterns in the AFS can be indicative of demographic
and/or selective events in the evolutionary history of
the population or populations under consideration. For
instance, gene flow between populations increases the
correlation in allele frequencies, increasing the propor-
tion of variable sites that fall along the diagonal of the
AFS (Figure 1). The AFS is therefore well suited for
the analysis of population genomic data, which are in-
creasingly feasible to collect due to the rapid pace of
development in sequencing technologies. Estimates of
historical demography from the AFS can also be used
to provide a baseline against which tests for the signa-
tures of selection can be carried out [9-11]. However,
the utility of parameter estimates obtained from ana-
lysis of the AFS will depend on their accuracy and pre-
cision, as well as the power of the analytical framework
for model selection.

Several related computer programs have recently been
introduced to analyze joint frequency spectra from two
or more populations [4-7]. These programs differ in the
specifics of their approach to modeling the AFS, using
either diffusion approximation [4,6] or coalescent simu-
lations [5,7] to model the density of SNPs in cells of the
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AFS. For comparisons between models and observed
data, all of these methods employ composite likelihoods,
which estimate the overall likelihood using combinations
of likelihoods calculated from independent subsets of
the data. For instance, in the context of the AFS, the
composite likelihood is the product of the likelihoods
calculated for individual cells of the spectrum. The simi-
larities between software packages have resulted in similar
performance of the different analytical methods in cases
where they are directly compared [5-7], although some
minor differences have also been noted [6]. Of these alter-
natives, 8adi [4] has been most widely applied, with appli-
cations to genomic data collected from humans [12-14],
cattle [15], rice [16], and bees [17], among others.

Here, we use a simulation study to investigate the in-
fluences of sample size on the power for model selection
and the accuracy of parameter estimates obtained from
dadi [4]. Because we employ an information-theoretic
model selection approach, our use of the term power
does not follow the standard statistical definition (the
probability of rejecting the null hypothesis). Instead we
define power as the probability of selecting the true
(simulated) model from a set of competing candidates.
Given the similarities between the AFS-based software
packages discussed above, we expect that the results from
our simulations will apply broadly to AFS-based methods
for demographic inference. Several previous studies have
investigated the accuracy of AFS-based parameter esti-
mates and the power to detect historical demographic
events using simulated data [4-7,18,19]. However, our ana-
lysis is differentiated from these assessments in that previ-
ous studies typically have not specifically explored the
influences of the number of individuals sampled on the
accuracy of estimates [4-7], or have simulated substantially
smaller datasets [19]. Our analysis considers a broad range
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Figure 1 Information in the allele frequency spectrum. A comparison between two spectra of similar size (n =10 diploid individuals sampled
from each of two populations) that differ in the rate of migration between populations. Migration between populations increases the correlation
in allele frequencies, thus increasing the density of SNPs falling along the diagonal of the AFS.
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of one- and two-population models, and we investigate
the influences of sample size on both the power for model
selection and the accuracy of parameter estimates ob-
tained from analysis of the AFS. We focus on the import-
ance of the number of sampled individuals rather than the
number of SNPs, as the former can be directly controlled
during experimental design, while the latter is the result of
a combination of the underlying history of the population
under consideration, the size of the genome, and the
sequencing effort expended. In the following, we therefore
use the term sample size to refer to the number of individ-
uals genotyped, rather than the size of the genomic region
surveyed. Our results show that i) model selection and
parameter estimation improve with larger sample sizes
and ii) consistent with previous work [19,20], recent
demographic events are more challenging and require
substantially larger sample sizes for accurate inference.

Results and discussion

Our simulation study was designed to assess the influ-
ence of sample size (and thus the overall size of the
AFS) on the power for model selection and the accuracy
of parameter estimates obtained using diffusion approxi-
mations of the AFS for one- (Figure 2) and two-population
models (Figure 3). We were also interested in the
power of approaches based on the AFS to detect par-
ticular events or ongoing demographic processes. Thus,
the candidate models included evolutionary processes
or events that might be of interest in empirical studies
[constant size (SNM) vs. population growth (POSG) vs.
population decline (negative growth; NEGQ) vs. a bottle-
neck followed by growth (BG); single population (SNM)
vs. divergence in isolation (ISO) vs. divergence with gene
flow (IM)]. We devised two parameterizations for each
configuration, one where we expected the AFS to contain
adequate information for likelihood evaluations (A; more
ancient demographic events with strong patterns of
population growth/decline) and another that was de-
signed to be more difficult for parameter estimation
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and model comparison (B; more recent events with
moderate growth/decline). We simulated 100 replicate
datasets per sample size under each model considered,
for each of these two parameterizations (Tables 1 and 2).
The Akaike Information Criterion (AIC) [21], which in-
cludes a penalty for more highly parameterized models,
and Akaike weights [22] were used to compare the relative
fit of all candidate models to the simulated data (four
models for single-population datasets, three models for
two-population datasets). To assess the influences of sam-
ple size on the accuracy and precision of parameter esti-
mates, we calculated the root mean squared error (RMSE)
for each parameter in each model and examined estimates
of uncertainty in individual parameter estimates obtained
from the Hessian matrix (the matrix of second order
partial derivatives of a function with respect to its pa-
rameters). We discuss our results for one- and two-
population settings separately below, and conclude with
sampling recommendations for future empirical studies
and a consideration of the limitations of our simulation-
based assessment of statistical power for demographic in-
ference from the AFS.

One-population models

Model selection

For simulations of a single population, Akaike weights,
which give the proportional support for each of the
candidate models (summing to one), favoring the true
(simulated) model increased with increasing sample
size across most models and parameterizations consid-
ered, with some exceptions (Figure 4). These exceptions
included the constant size model (SNM), the positive
growth model (POSG) with ancient growth, and the
bottleneck model (BG) with ancient growth. In these
cases, median Akaike weights in favor of the simulated
model were consistently high regardless of sample size
(Figure 4). Interestingly, for the bottleneck (BG) model
with recent growth (B parameterization), the true model
typically was not strongly supported with sample sizes
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Figure 2 Single-population demographic models. Simulated models included a constant size model (SNM), a model of population growth
(POSG), a model of population decline (NEGG), and a model involving a bottleneck followed by exponential growth (BG). Time moves from left
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Figure 3 Two-population demographic models. Simulated models included a model of no divergence (SNM), a model of divergence in
isolation (ISO), and a model of divergence with gene flow (IM). The width of the bar is proportional to population size through time, with time

IM

smaller than 20 diploid individuals. At these smaller sam-
ple sizes, the SNM model (#z =2 and 3 individuals) or the
NEGG model (n =3, 5, and 10 individuals) often received
more support. However, there was very little separation in
the log-likelihoods of the candidate models. In fact, the
mean log-likelihood value of the BG model was the highest
(by a narrow margin) of the candidate set across all sim-
ulated sample sizes. Thus, much of the support for the
simpler models (SNM and NEGG) at smaller sample
sizes resulted from the penalty imposed by AIC on the
more complex BG model.

The improvement associated with increases in sample
size was realized at smaller numbers of individuals for
models with ancient demographic events. For instance,
data simulated under the NEGG model were easily identi-
fied across sample sizes and parameterizations (Figure 4).
Both recent and ancient declines were confidently identi-
fied (100% of Akaike weights wxggs > 0.85 in favor of
the true model) in the largest sample sizes considered
(n = 50). However, no replicate datasets with 10 or
more individuals sampled had wyzgg < 0.9 in the ancient
population decline model, compared to 59 replicates (out
of 400 datasets) with a more recent population decline.

Table 1 Parameter values used in single-population
model simulations

Parameter Constant Bottleneck Growth Decline
& 10,000 10,000 6000 29,000

Np - 0.1/0.25 - 0.1/0.25
Ne - 5/25 5/2.5 -

T - 0.25/0.025 0.25/0.025 0.25/0.025

Values are given for both A (ancient) and B (recent) parameterizations.
Parameters are ancestral 6, the magnitude of population decline (np) and growth
(n6), and the time of the demographic event (T, in units of 2N, generations,
where N, is the ancestral population size).

set to produce roughly equal numbers of SNPs across models for a given
sample size under the A parameterization (~50,000 SNPs for samples of

100 chromosomes).

This illustrates the challenge posed for accurate model se-
lection when considering recent demographic events.

Our results were encouraging for model selection based
on the AFS, even for small samples in terms of the num-
ber of individuals genotyped. However, if demographic
changes are very recent, the power for model selection is
reduced, and large samples, in terms of both the number
of individuals and the number of SNPs, may be required
to confidently choose among competing demographic
models [19,20]. Additionally, with extremely small sample
sizes, the log-likelihood values calculated from the AFS
are relatively small in magnitude (with the product of like-
lihoods across the AFS calculated from fewer cells). Our
results raise caution for application of penalized AIC in
these cases, as the penalty imposed on more complex
models may be sufficient to obscure substantial support
from spectra with few total cells.

Parameter estimation
Median parameter estimates from &adi [4] converged
to their true values (across all models and both param-
eterizations) as sample size increased, indicating that
the parameter estimates were unbiased (Additional file 1:
Table S1). Across simulated models and sample sizes, the
parameter estimates for most models, when fit to their
simulated datasets, converged by our criterion (i.e., three
model fits within 5 log-likelihood units of the best fit) in
fewer than 10 iterations. However, the more parameter-
rich BG model with recent population growth and large
samples (n = 50) required an average of more than 26
fits to converge. Interestingly, fits of the “wrong” models
(e.g. fitting a model of population growth to data simu-
lated under a decline) also required additional iterations
for convergence.

We used the root mean squared error (RMSE) to assess
the accuracy and precision of parameter estimates for the
simulated datasets. Parameter estimates for single-population
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Table 2 Parameter values used in two-population model
simulations

Parameter No Divergence Isolation IM
o° 10,000 7250 7250
s - 05 0.5
n - 1 1
- 0.25/0.025 0.25/0.025
mis - - 1710
my; - - 1

Values are given for both A (ancient) and B (recent) parameterizations.
Parameters are ancestral 6, the proportion of the ancestral population founding
population 1 (s), the ratio of current to ancestral size in each population (), the
time of the population split (), and migration rates into population 1 from
population 2 and vice versa (m;, and my;).

@set to produce roughly equal numbers of SNPs across models for a given
sample size (A ~ 50,000 SNPs for samples of 100 chromosomes).
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models generally improved (RMSE declined) with larger
samples across the models and sample sizes simulated
(Figure 5). As expected, RMSE for parameters in simu-
lations with recent demographic events were often lar-
ger than for data simulated under the same model with
more ancient demographic events (Figure 5). Overall,
the gain in precision and accuracy associated with sam-
pling more individuals was subject to diminishing returns
with the RMSE tending to level off above n = 5 to 10 for
ancient events and above n = 10 to 20 for more recent
demographic events (Figure 5). Nonetheless, some im-
provement in parameter estimates (e.g., ) could be seen
as sample size increased to 50 diploid individuals under
the more complex models (e.g., the BG model; Figure 5).
In most cases, our results suggest that samples of 10 to 20
diploid individuals may be sufficient for AFS-based demo-
graphic analysis of single-population genomic datasets.
However, substantially larger sample sizes may lead to
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Figure 4 Confidence in model selection for single-population models. The distributions of Akaike weights in favor of the true model are
shown as boxplots versus sample size. Both ancient (A, filled circles to the left) and recent (B, open circles to the right) parameterizations are shown.
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additional improvements in the accuracy and precision of
parameter estimates from the AFS (see Extreme Cases
below).

As a second way to quantify parameter estimation per-
formance, we used the Hessian matrix, which is the
matrix of second-order partial derivatives of a function
with respect to its parameters, to construct 95% confi-
dence intervals (CI) around the maximum-likelihood
point estimates for the parameters of our models. In
agreement with trends in the RMSE, analyses of the
Hessian matrix demonstrated that uncertainty declined
(producing narrower confidence intervals) for larger sam-
ple sizes, with the improvement in CI widths subject to
diminishing returns as sample size increased (Additional
file 1: Table S1). For ancient demographic events, much of
the improvement in the width of 95% CI was seen in sam-
ples as small as # = 20. In contrast, Hessian uncertainties
for parameters of models with recent events declined up
to the largest population sizes simulated (Additional file 1:
Table S1), suggesting that further increases in sample size
might lead to additional improvements in the widths of
95% CL

We further quantified the accuracy of inferences
drawn from the AFS by examining the coverage property
of CI calculated from our parameter estimates and their

associated uncertainties. Coverage often increased with
sample size, with three of the four models showing ad-
equate coverage for all parameters at the largest sample
sizes simulated (Additional file 1: Table S1). However,
there were some cases of poor performance of confi-
dence intervals. For instance, coverage of 95% CI for 6
in the BG model with an ancient bottleneck was lowest
at the largest sample size simulated (67% at n = 50).
With more ancient events and excluding the BG model,
95% CI performed well, containing the true parameter
value for all model parameters in more than 90% of
replicates for datasets composed of 10 or more diploid
individuals (Additional file 1: Table S1). For the BG
model, both recent and ancient bottlenecks led to poor
performance, and 95% CI contained the simulated value
in far fewer replicates than expected. The poor per-
formance of the CI for the BG model parameters may
be the result of a combination of estimated CI that
were too narrow and imprecision in parameter esti-
mates that was exacerbated with more recent demo-
graphic events. All statistics associated with parameter
estimates obtained for single-population models (median
parameter estimates, median uncertainties, RMSE, and
proportionate coverage of 95% CI) are given in Additional
file 1: Table S1.
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Two-population models

Model selection

Similar to the pattern observed for simulations of single-
population models, Akaike weights in favor of the true
model generally increased with increasing sample sizes
across the simulated two-population models (Figure 6).
An exception to this trend was seen for the ISO model
with recent divergence, which had median Akaike
weights > 0.75 across all sample sizes considered. For
both the ISO and IM models, Akaike weights in favor
of the true model at any given sample size were typic-
ally higher for models with ancient population diver-
gence than for those with recent divergence. For
example, under the IM model, the median Akaike
weight reached 1.0 (100% support for the true model)
at a sample size of n = 3 per population for models
with more ancient divergence. Similar performance was
not realized for recent divergence until sample sizes of
n = 20 per population (Figure 6). Furthermore, the dis-
tribution of Akaike weights under the more recent
models of divergence (with or without migration) indi-
cated that there was substantial support in favor of al-
ternative models, even at relatively large sample sizes
(Figure 6). For example, the interquartile range (25th —
75th percentile) of Akaike weights for the ISO model
with recent divergence included values less than 0.5
with # = 10 per population (Figure 6). The very recent
nature of divergence in the B parameterizations was
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likely responsible for this trend, as models with moder-
ate gene flow and strict isolation may not be identifi-
able at recent divergence. More generally, the ability to
differentiate between divergence models with and with-
out gene flow will decrease as the divergence time (7)
and/or the migration rate () go to zero. Due to prob-
lems achieving convergence of ML estimates for the IM
and ISO models fit to some simulated datasets under
our criterion (i.e., three optimizations within five log-
likelihood units of one another), our assessment of
model selection performance was limited to a slightly
smaller number of total replicate datasets to which all
models were successfully fit (see Methods for additional
details).

Parameter estimation

As in the single-population simulations, the accuracy
and precision of parameter estimates improved with lar-
ger sample sizes, for both recent and ancient population
divergence models (Figure 7). Two-population models
also converged more slowly to their maximum likelihood
estimates when fit to data simulated under alternative
models. For instance, fitting the IM model to data simu-
lated under the ISO model with ancient divergence re-
quired, on average, more than 14 iterations for samples
of 10 diploid individuals per population. Parameter esti-
mates were largely unbiased for the parameters and models
considered and, in most cases, they converged to their
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Figure 6 Confidence in model selection for two-population models. The distributions of Akaike weights in favor of the true model are
shown as boxplots versus sample size. Both ancient (A, filled circles to the left) and recent (B, open circles to the right) parameterizations are
shown. Boxplots are constructed as in Figure 4.
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Figure 7 Accuracy of parameter estimates for two-population models. Plots show RMSE versus sample size for each of the three two-population
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simulated values in the larger sample sizes (Additional
file 1: Table S2).

One exception was seen in the estimates of parameters
associated with population size changes during diver-
gence (s, 775, and 7,) in datasets simulated under the ISO
model with recent divergence. In these cases, s was sub-
ject to a downward bias for all but the largest sample
sizes, while #; and 7, were biased high and low, respect-
ively (Additional file 1: Table S2). These biases are likely

related to the starting points used for optimization, the
perturbation settings for the s parameter, and a flat like-
lihood surface. More specifically, the combination of the
starting point for s (0.25) and the perturbation setting
(within 1-fold of starting point) caused the optimizer to
only be initialized with s between 0.125 and 0.5. Moreover,
the optimizer was not driven to explore larger values of s
because the likelihood surface is very flat with respect to s
for data simulated under very recent divergence. We refit
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these data using a starting point of s = 0.5 and allowing
perturbation within 2-fold around this point. These re-
vised settings eliminated the downward bias originally
seen in s estimates for these datasets (Additional file 1:
Figure S1). Median estimates of s were between 0.46 and
0.53 for all sample sizes. In practice, we suggest that per-
turbation settings be chosen to ensure that the starting
points for optimization of model parameters extend be-
yond the range of values that the data constrain the model
to. For empirical datasets, if optimization end points result
in very similar likelihood values, even with very different
parameter estimates, the likelihood surface may be flat
over the region explored during optimization. In these
cases, a broader range of starting points may help to cor-
rect potential biases in optimized parameter estimates.

For datasets with small sample sizes and thus large
parameter uncertainties, inferred values of s, #;, and 7,
were correlated, suggesting that an acceptable “ridge” of
parameter space exists, along which the parameter esti-
mates associated with the proportion of the ancestral
population that founded a derived population and the
magnitude of expansion in that new population were
correlated. For example, there were strong correlations
in opposite directions between the estimated values of s
and both #; (Pearson’s r = -0.56; p << 0.001) and 7,
(Pearson’s r = 0.57; p << 0.001) for datasets with 10 dip-
loid individuals per population. This pattern is consist-
ent with a range of possible divergence/growth scenarios
that are each able to fit the data approximately equally
well. This issue is not unique to dadi [4], as previous au-
thors have noted problems distinguishing alternative
demographic histories with data from the AFS [23]. An
additional (downward) bias was noted for estimates of
my; for the largest datasets simulated (z = 20 and 30 per
population) under the IM model with recent population
divergence (Additional file 1: Table S2). Aside from these
instances, median estimated parameter values approached
their true values for sample sizes as small as n = 3 per
population (Additional file 1: Table S2).

RMSE for parameter estimates under models with re-
cent divergence indicated that substantially larger sam-
ple sizes were needed for accurate parameter estimation
in cases of recent isolation (Figure 7). For instance, for
models that included ancient population divergence,
much of the gain in accuracy and precision was achieved
at relatively small sample sizes (n = 2 to 3 per popula-
tion). However, with recent divergence RMSE values for
some parameters declined steadily across the sample
sizes simulated (e.g., s and 1 for the IM model; Figure 7).
Thus, it seems likely that parameter estimation for recent
divergence models would continue to improve beyond the
largest sample sizes simulated in our study.

In the IM model with recent divergence (B param-
eterization), we included asymmetric migration between
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populations, which is known to result in bias when
employing approaches that assume symmetry in migra-
tion rates [24-26]. Interestingly, the direction of gene
flow asymmetry (with point estimates of m1;, > m,;) was
recovered in more than 80% of the replicates across sim-
ulated sample sizes. Given no useful information for
estimation of these parameters, we would expect that
approximately 50% of replicates would have estimated
myy larger than my;. Thus, it would seem that even
when the parameter estimates and model likelihoods
were largely unreliable (i.e., for very small sample sizes),
useful inference could still be gained for the direction of
gene flow asymmetry. Nonetheless, the CI for the two mi-
gration parameters overlapped in almost all instances for
smaller sample sizes, indicating that the power of the
method to confidently infer asymmetric migration was lim-
ited, particularly with recent divergence and small samples.
By contrast, with # = 20 or 30 per population, confidence
intervals for these two parameters often did not overlap,
and the direction of asymmetry could be confidently in-
ferred (in 88% and 96% of simulated datasets, respectively).

Hessian estimates of uncertainty declined precipitously
with increasing sample size across models for two-
population simulations with ancient divergence (Additional
file 1: Table S2). As was the case for RMSE, much of the
improvement in the uncertainty occurred as sample size
reached three to five individuals per population. The more
parameter-rich IM model tended to have larger uncertainty
estimates for a given parameter at each sample size than
did the ISO model (Additional file 1: Table S2), as might
be expected given the difference in the number of parame-
ters estimated from the data for these two models (seven
for IM, five for ISO). As seen for the single-population
models, coverage rates of 95% CI, based on Hessian esti-
mates of uncertainty, were often lower for parameteriza-
tions involving recent population divergence than for those
with ancient divergence (Additional file 1: Table S2). For
models involving older divergence, 95% CI performed rela-
tively well, with true parameter values covered by CI at
least 84% of the time for sample sizes of two diploid indi-
viduals or more per population. Similar performance was
noted for data simulated under recent divergence models,
for at least some parameters (6, T), while 95% CI for others
(s, n, m) displayed markedly lower coverage rates, resulting
from a combination of parameter estimation bias (as men-
tioned above) and underestimation of the width of CI. All
statistics associated with parameter estimates obtained for
two-population models (median parameter estimates, me-
dian uncertainties, RMSE, and percent coverage of 95% CI)
are given in Additional file 1: Table S2.

Extreme cases
In order to more fully explore the influence of sample
size and the timing of demographic events on inferences
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drawn from the AFS, we conduced three sets of add-
itional simulations with parameter values and sample
sizes more extreme than those considered in our full
simulation study. For the single-population models ex-
plored, we included simulations under the A model
parameterization but with substantially older demographic
events (7=1.5; events occurring 3N, generations ago,
where N, is the ancestral effective population size). We
expected that these datasets would be more difficult for
parameter estimation and model selection, due to the sub-
stantially more ancient timing of the simulated events. We
also further explored the influence of sample size in
single-population models by simulating samples of 1351
diploid individuals, as in the joint AFS analyzed by [27].
Finally, we tested the performance of AFS-based inference
for two-population models with extremely recent diver-
gence (7' =0.005). Parameters for these additional simula-
tions closely followed the A parameterization (Table 1),
but 6 was altered to produce similar numbers of SNPs
(Additional file 1: Tables S3-S5).

To verify that the AFS from the diffusion approxima-
tion implemented in 8adi matched expectations, we
compared the AFS from 8adi with those obtained using
the coalescent simulator ms [28] for the extreme cases
we considered. For the single-population models, the
AFS simulated in 8adi matched that from ms [28] quite
closely across the range of frequency categories for both
ancient growth with moderate sample size (T = 1.5; n = 30;
Additional file 1: Figure S2) and more recent growth
with extremely large sample size (T = 0.25; n = 1351;
Additional file 1: Figure S3). Furthermore, Anscombe
Poisson residuals indicated no systematic bias across
entries in the AFS for 30 individuals (Additional file 1:
Figure S2). For the simulations involving large sample
size, 8adi overestimates the number of SNPs in low fre-
quency categories (Additional file 1: Figure S3). As a
post hoc assessment of the influence of this overesti-
mation on parameter estimates from 8adi, we generated
100 replicate frequency spectra in ms [28] under the
same model (population growth), parameter values, and
sample size (n = 1351). Each replicate dataset simulated
in ms was generated by combining 2300 simulated loci
(without recombination within a locus) with 8 = 1 (to
match 6 in Additional file 1: Table S4). These datasets
were then analyzed in §adi to obtain maximum likelihood
estimates for the parameters of the growth model. Similar
to the overall pattern observed for single-population spec-
tra, simulated frequency spectra for a model of very recent
population divergence (7" = 0.005) with a moderate sample
size (n = 30 per population) agreed closely between ms
and &adi (Additional file 1: Figure S4), but with slight
overestimation of the number of rare variants falling along
the diagonal of the joint AFS and the opposite pattern for
rare alleles with more divergent frequencies.
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Our simulations of older demographic events resulted
in strong support in favor of the simulated model for
three of the four models compared (Additional file 1:
Figure S5). Median Akaike weights from these datasets
agree with previous results in that the bottleneck and
growth models show substantial overlap in Akaike weights.
In fact, data simulated under the bottleneck model often
showed more support for the exponential growth model
(Additional file 1: Figure S5). Parameter estimates for the
POSG model in these cases suggest that a much older and
larger expansion could produce similar patterns in the
AFS. Median parameter estimates for the POSG model fit
to these datasets were T' = 4.3 and 77 = 19, much larger
than the simulated values of 1.5 and 5, respectively. Param-
eter estimates obtained for fits of the correct model show
substantially larger RMSE for some parameters than simi-
larly sized datasets with more recent divergence (e.g., T, n;
Additional file 1: Table S3). Thus, as expected, the quality
of inferences obtained from the AFS is reduced as demo-
graphic events become much older.

Datasets simulated with larger sample sizes showed
that, while our original simulations exhibited a pattern
of diminishing returns with increasing sample sizes,
there is still substantial room for improvement for all
models if very large samples are collected. For the larger
sample sizes (n = 1351), median Akaike weights in favor
of the true (simulated) model were higher in each case
than for the competing candidate models (Additional file 1:
Figure S6). Some overlap was evident in weights for the
POSG and BG models, when fit to data simulated under
a model of exponential growth (POSG). In these cases,
parameter estimates for the BG model closely matched
those for the POSG model, with #p estimated near 1.0
(median estimate = 0.85). Notably, the POSG model is a
special case of the BG model where 5p = 1, thus the
good fit of the BG model in this case is not unexpected.
RMSE values for parameter estimates, given these large
datasets, show improvement over those from the second
largest datasets simulated in all but two cases (Osap; and
nneGs), and in no cases were RMSE values substantially
larger than in previous simulations (Additional file 1:
Table S4).

The overestimation of SNP densities in rare fre-
quency categories noted in the comparisons of simu-
lated spectra does not appear to bias results from 8adi.
Median parameter estimates for ms-generated datasets
were very close to the simulated values in all cases
(median estimates: 6 =2295, yr=5.015, T=0.246) and
parameter RMSE was only slightly elevated above that
for datasets simulated in dadi (RMSE: 6 = 36.3, r=0.085,
T=0.015; compare with values in Additional file 1:
Table S4). Thus, the minor discrepancies between ms
and 0adi did not seriously impact the estimation of
parameters for ms-generated datasets, suggesting that
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parameter estimates obtained for empirical datasets
should be unbiased.

Finally, we also simulated datasets with much more re-
cent divergence between two populations (7" = 0.005)
under the largest sample sizes considered in our previ-
ous simulations (n = 30 per population). Given the re-
duced performance of our simulations as 7 declined
from 0.25 to 0.025, we expected that these additional
simulations would show more uncertainty in model se-
lection and larger RMSE for parameter estimates. Model
selection results showed that, even at such recent diver-
gence, the SNM and ISO models could be confidently
identified (Additional file 1: Figure S7). However, the
data simulated under the IM model often gave more
support to the ISO model, probably as a result of the
penalty imposed by AIC on the IM model (as in the BG
model with small sample sizes, discussed above). In 76
of the 100 simulated datasets, raw likelihood values were
greater for the IM model, by an average of just over one
log-likelihood unit. Parameter estimates were also more
accurate and precise for the simpler models, with no evi-
dence of severe biases for parameters of the SNM and
ISO models. By contrast, in the IM model, median esti-
mates of parameters associated with population expansion
(s, 71, n2) and migration (m;, and m,;) deviated substan-
tially from their simulated values (Additional file 1:
Table S5). Parameter RMSE calculated for the simpler
models were generally comparable to those for recent
(T = 0.025) divergence models in similarly sized data-
sets (Additional file 1: Table S2). The time of diver-
gence between populations (7" = 0.005) was accurately
estimated for both the IM and ISO models; estimates
for this parameter ranged from 0.0043 to 0.0057 across
the 100 simulated datasets. Thus, while the recent na-
ture of divergence led to inaccuracy in estimates of sev-
eral parameters, the performance of 8adi was better
than expected for these datasets. Given the results pre-
sented above for single-population datasets, it seems
likely that larger sample sizes (beyond 30 diploid indi-
viduals per population) would also improve parameter
estimates in cases of very recent divergence.

Sampling recommendations

Our results show that optimal sampling strategies for AFS-
based inference are very much dependent on whether the
underlying, and inherently unknown, evolutionary history
involves recent or ancient demographic events. For in-
stance, for projects examining patterns of divergence
between populations or species with a long history of
separation relative to their expected effective popula-
tion sizes (e.g., geminate species pairs separated by the
Isthmus of Panama), large numbers of individuals may
not be required. However, if interest lies primarily in esti-
mating migration rates among populations recolonized
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since the last glacial maximum, substantially larger sample
sizes may be necessary. Based on our results, for demo-
graphic events occurring on the order of 0.5N, genera-
tions ago, samples of n = 5 for single-population datasets,
and n = 3 per population for two-population datasets
(as previously noted [29]), would appear to be sufficient
for accurate model selection and parameter estimation.
On the other hand, if the sampled population has been
subject to very recent or very ancient demographic
events, larger samples will be necessary for confidence
in model selection and parameter estimation. The influ-
ence of timing seen here is in agreement with previous
work [19,20]. For instance, thousands of individuals
may be required to detect the history of recent, explo-
sive growth in the global human population [20].
Despite the importance of event timing on the perform-
ance of AFS-based analyses, reasonable results could be
obtained, even for the recent events simulated here, given
moderate sample sizes. For single-population models with
recent demographic events (7" = 0.025), samples of 20
or more diploid individuals resulted in the best per-
formance for parameter estimation and model selection
(Additional file 1: Table S1). Similarly, parameters of
the two-population ISO and IM models were most ac-
curately estimated (with minimal RMSE and reasonable
coverage of 95% CI) at the largest sample size simulated
(n = 30 per population). The IM model did show lower
coverage of confidence intervals, but RMSE for all shared
parameters was comparable between the IM and ISO
models with recent divergence at the largest sample sizes
(Additional file 1: Table S2). Furthermore, simulated data-
sets with 7' = 0.005 produced remarkably accurate estimates
of T, despite bias in estimates of migration and expansion
parameters. Thus, our study shows that useful inferences
can be gained through analysis of the AFS, even for very
recent demographic events and moderate demographic
changes, given population-level samples of individuals.

Caveats

The results presented above may be somewhat conserva-
tive for the ability of the AFS to distinguish between alter-
native models. For instance, by setting the upper bound
for optimization of the parameter #p at 1.0 for the BG
model, our analysis allows the BG model to fit data simu-
lated under the POSG model (exponential growth without
a population bottleneck). Similarly, ISO and IM models
with very recent times of divergence should provide good
fits to data simulated under the SNM model (i.e., without
divergence). In other words, there are inherent model
overlaps and identifiability dynamics that may allow re-
searchers to obtain useful parameter estimates even if one
selects the wrong model. Furthermore, it is likely that
Akaike weights would improve if the bounds for param-
eter optimization were more tightly constrained for key
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parameters. Limiting the estimation of the bottleneck se-
verity parameter (p) in the BG model to smaller values
would likely serve to increase the Akaike weight in favor
of the POSG model, when comparisons are made in data
simulated under the latter history. With this limitation,
the BG model would be forced to include a substantial
bottleneck, rather than allowing the population to main-
tain near constant size before the initiation of exponential
growth.

The use of composite likelihoods in AFS-based infer-
ence assumes that SNP loci in the sample are independ-
ent and unlinked. Strictly speaking, this is an unrealistic
assumption, as physical linkage between sites, particu-
larly those located on the same genomic fragment (e.g., in
short-read datasets produced by RADseq; [1]), is a cer-
tainty. However, composite likelihoods have been shown
to be consistent estimators across a range of population
models [30]. While the expectation of the AFS is accur-
ately recovered using composite likelihoods, ignoring link-
age among sites results in underestimating the variance of
the AFS [4]. Therefore, parameter estimates should be un-
biased, but associated confidence intervals are not reliably
calibrated [3] and the support for the best model may be
overestimated in model comparisons based on composite
likelihoods [7]. This bias should not affect our results, as
our simulated data meet the key assumption of SNP inde-
pendence. For empirical datasets collected from natural
populations, bootstrap replicates can be used to approxi-
mate confidence intervals around parameter estimates [4],
and modifications to AIC can help correct for biases in
model selection [31].

Our simulations ignored the influences of selection on
model selection and parameter estimation from the AFS.
In empirical datasets, the inclusion of SNP loci under se-
lection could bias results in a variety of ways, depending
on the nature of selection acting on the loci. For in-
stance, selective sweeps would remove variation from
the population and leave similar patterns to those ex-
pected after expansion from a bottleneck. In practice, the
underlying demography can be estimated from a puta-
tively neutral subset of the AFS (e.g., third codon positions
or synonymous mutations), assuming that hitchhiking via
linkage to selected regions has not affected SNP frequen-
cies of the subset. Then, demographic parameter estimates
from this analysis can be used to set critical values for
selection scans to identify SNP loci that deviate from
expectations [9-11,18]. However, if the primary goal of
the analysis is to estimate population demography, ig-
noring the influences of selection could result in biased
estimates for demographic parameters. This may be
more of a concern with widespread purifying selection
in the genome than for selective sweeps at a limited
number of loci, as the latter would likely result in less
overall bias.
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Our recent parameterizations were designed to pose
substantial difficulty to inference from the AFS. As such,
the recent parameterizations for single-population models
included more relaxed population size changes, but the
same 6 values used for models with more ancient demo-
graphic events. Thus, the influence of the timing of
events on model selection and parameter estimation is
confounded with the severity of the demographic
changes modeled and the number of SNPs in the sam-
ple (Additional file 1: Table S6). It is likely that the
power for model selection would increase given more
severe bottlenecks or greater population growth, even
in models with very recent demographic events.

It is important to note that the quality and reliability
of demographic parameter estimates from the AFS are
inherently linked to the quality of the genotype calls
resulting from the sequencing technology employed. In
particular, low-coverage genomic data may pose problems
for inference from the AFS. In these datasets, sufficient
coverage may not be available to confidently identify vari-
able sites and exclude sequencing errors. If not properly
accounted for, these errors can lead to inaccurate geno-
type calls and biased allele frequency estimates, reducing
the reliability of demographic inferences drawn from these
data [32]. For instance, simulated datasets (including se-
quencing error) showed a bias toward more recent popu-
lation growth in the AFS from low-coverage (4x) genomic
data [33]. Nonetheless, methods have recently been devel-
oped to directly infer the AFS, without the need for SNP
or genotype calling, from next-generation sequence data
[34]. Such methods may provide a more robust estimate
of the AFS for low-coverage genomic sequencing datasets
and eliminate potential biases in demographic inferences
from these data.

In general, simulation studies are blunt instruments
for the assessment of statistical methods [35]. Thus the
applicability of the results from our simulation study is
fundamentally limited by our range of demographic models
and sample sizes simulated. Furthermore, our analysis is
based on a limited number of replicates per model and
parameter combination (100 replicate datasets), making
our estimate of performance a Monte Carlo approxima-
tion given finite computational resources. Our require-
ment that three parameter optimizations produced model
likelihoods within five log-likelihood units of the max-
imum likelihood (see Methods) greatly increased the com-
putational burden associated with parameter optimization.
When fitting the BG model to datasets simulated with a
recent bottleneck and 50 individuals sampled, this require-
ment led to an average of more than 26 optimizations per
dataset (up to a maximum of 86 separate optimization
steps). The number of parameter optimizations necessary
to achieve convergence under this criterion became even
larger in other cases. For the BG model fit to data
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simulated under an ancient exponential population de-
cline (NEGG model, A parameterization) with n = 50,
convergence required an average of more than 323 opti-
mizations per replicate (up to a maximum of 1011 optimi-
zations). Generally, long convergence times may indicate a
poor fit of the model to the data, as (with the exception
of the BG model mentioned above) convergence for the
simulated model was typically faster. Other approaches,
which coarsen the AFS [5-7] by combining entries, may
converge more reliably, but such coarsening may also
reduce statistical power.

Conclusions

Previous studies have found that large sample sizes are
required for confidence in model selection and param-
eter estimation given recent population growth [19,20].
However, the influence of sample size was model-
dependent. For instance, increasing sample size above 3
diploid individuals per population did not substantially
affect demographic parameter inference in a model of
population divergence in isolation [29]. The results from
our simulation study agreed with previous work focusing
on the impacts of sample size and/or the timing of demo-
graphic events on the accuracy of inferences drawn from
analysis of the AFS [5,18,19], in that more ancient demo-
graphic events (A parameterizations) typically allowed for
increased confidence in model selection and parameter es-
timation. However, very old demographic events (on the
order of 3N, generations ago) also posed difficulty for
inference based on the AFS, as the signal of a past
demographic event is lost as populations approach
mutation-drift equilibrium. Generally, improvements in
both model selection and parameter estimation ana-
lyses were subject to diminishing returns as sample size
increased, but much larger sample sizes still led to
more accurate parameter estimates and model selec-
tion. Thus, when large sample sizes are attainable, more
complex models involving much more recent demo-
graphic events may still be successfully analyzed using
the AFS. While our simulation study is inherently lim-
ited by the range of models and sample sizes consid-
ered, our results illustrate the promise of AFS-based
methods like 8adi [4], Jaatha [5], MultiPop [6], and fas-
tsimcoal2 [7] for demographic inference and highlight
the importance of collecting large population-level gen-
omic samples for analyses of the AFS, particularly when
interest lies in estimating parameter values associated
with recent demographic changes.

Methods

0adi is distributed as a module written in Python [4].
We simulated datasets as Poisson samples from the ex-
pected AFS under the simulated models (using scripts
modified from the dadi user group). Therefore, our datasets
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meet the assumption of unlinked sites, but empirical
data generally will not. For each parameterization and
sample size, we set the grid sizes for the finite differ-
ence approximation of the solution to the partial differ-
ential equation modeling the density of SNPs in each
cell of the AFS to [2n + 10, 2n + 20, and 2n + 30],
where 7 is the number of diploid individuals sampled
per population. We initially simulated 100 datasets for
each of the model x parameterization x sample size
combinations, for a total of 9800 simulations. However,
problems with convergence limited the analysis of these
datasets to slightly smaller subsets for both model se-
lection and parameter estimation analyses. Here we
present parameter estimation results from 9792 simu-
lated datasets and model selection results from a total
of 9757 datasets. Sample sizes, model parameterizations,
and simulated demographic models are given below for
each population configuration.

One-population models

We simulated four single-population demographic models
(Figure 2), including: 1) constant population size (SNM), 2)
exponential population growth (POSG), 3) exponential
population decline (negative growth; NEGG), and 4) a
bottleneck followed by exponential growth (BG). For each
model, we simulated samples of 2, 3, 5, 10, 20, 30, and 50
diploid individuals (4, 6, 10, 20, 40, 60, and 100 chromo-
somes). The alternative parameterizations for each of the
single-population demographic models are given in Table 1.
Briefly, models included up to four parameters: 6, #p, #g,
and 7. 6 is a composite parameter based on the genomic
region surveyed for SNPs and is equal to 4N uL, where N
is the effective size of the ancestral population, y is the
neutral rate of mutation per base pair per generation, and
L is the total number of base pairs surveyed for variation.
Population size changes (decline — #p, growth — 75) are
specified as proportional changes in effective size relative
to Ny. Finally, all times in the models (7) are measured in
units of 2N, generations. Parameter optimization was car-
ried out using the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) method as implemented in the dadi function ‘opti-
mize_log’ [4]. Upper and lower bounds for parameter
optimization steps were set to the following ranges: bottle-
neck proportion or magnitude of population decline (BG
and NEGG models; 0.001-1), magnitude of population
growth (BG and POSG models; 1-100), timing of demo-
graphic events (BG, POSG, NEGG models; 0.01-5). For
some models, we adjusted these ranges for optimization, in
order to achieve more rapid convergence of the estimates.
For instance, we decreased the lower bound on T for the
BG model with a recent bottleneck, for sample sizes of 50
individuals. We used a step size of ¢ = 1 x 107° for all
parameter optimization steps. By using the ‘optimize_log’
function, negative parameter estimates were not allowed.
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Two-population models

We simulated three two-population models in our study
(Figure 3), including: 1) no divergence (SNM), 2) diver-
gence in isolation (ISO), and 3) divergence with gene
flow (IM). For each of these models, we simulated sam-
ple sizes of 1, 2, 3, 5, 10, 20, and 30 diploid individuals
per population (2, 4, 6, 10, 20, 40, and 60 chromosomes).
Issues with convergence of two-population models (ISO
and IM) to data simulated under a single-population his-
tory (SNM) led us to discard some replicates from the
model selection analysis. The ISO model failed to con-
verge (using our criterion) for 20 of the 700 datasets,
while the IM model failed in 15 of 700 datasets. Thus
the total number of SNM datasets considered in model
comparison analyses was reduced to 665 of the 700 sim-
ulated replicates. Additionally, eight of the 700 IM data-
sets with recent divergence (B parameterization) failed
to converge, resulting in 692 total datasets analyzed for
model selection and parameter estimation. Alternative
parameterizations for each model are given in Table 2.
Briefly, two-population models included as many as seven
parameters: 0, s, 175, /2, T, m 5, and m,;. The parameters 6,
W1, M2 and T are defined as in single-population models.
The parameter s gives the fraction of the ancestral popula-
tion founding population 1 (1 - s gives this proportion for
population 2). Migration parameters (m1;, and m,;) were
specified as 2N,M;; where M, was the proportion of
population i derived from migrants from population j each
generation. Parameter optimizations were carried out as
in the one-population models. Upper and lower bounds
for parameter optimization were set as follows: fraction of
ancestral population founding population 1 (IM and ISO
models; 0.01-0.99), magnitude of population expansion
following divergence (IM and ISO models; 0.5-10), timing
of population divergence (IM and ISO models; 0.005-5),
and migration rates between populations (IM model;
0.1-20). Similarly to the one-population models, we de-
creased the lower bounds on some parameters (e.g., T’
and m) in an effort to speed convergence for the IM and
ISO model fits in datasets with larger sample sizes. Add-
itionally, starting parameter values for the optimization
were altered when fitting IM and ISO models to SNM
datasets. In all cases, starting points for the optimization
were perturbed for each parameter optimization.

Statistical analysis

Parameter optimization was carried out for each of the
models compared for each replicate dataset. Then, the
likelihood of the model, given the maximum-likelihood
parameter estimates, was calculated. In order to ensure
convergence of parameter estimates for each replicate
dataset, we iteratively fit each of the models compared
until we obtained three parameter optimizations with
log-likelihood values within five units of the highest
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likelihood. Following this process, we used parameter
estimates associated with the optimization that resulted
in the largest log-likelihood value as our maximum
likelihood estimates for a given replicate dataset. Log-
likelihoods for the competing models were then used to
calculate AIC [21] as

AIC = -2logL + 2K

where 2K is a penalty based on the number of parameters
(K) in a given model. We also calculated Akaike weights,
which show the proportional support for each of a series
of competing models, using the following equation

e -3,

W= —1—

E e*%AAICl'

where Ay, is the difference between the smallest AIC
value and that associated with model i [22]. It is import-
ant to note that, when the assumption of unlinked SNP
loci is violated (as in most empirical datasets), model
comparisons based on AIC may be biased [7]. Varin and
Vidoni [31] introduced a composite likelihood informa-
tion criterion to account for this bias, but this correction
is not necessary in our simulated data, where SNPs were
simulated as unlinked and independent.

We used the median as a measure of central tendency
for the distribution of parameter estimates and the
RMSE to assess the precision and accuracy of estimates
for each model and sample size considered. RMSE for a

parameter estimate (é) was calculated as

where 0 is the simulated parameter value and # is the
number of replicate datasets analyzed. The uncertainty
in parameter estimates for each simulated dataset was
approximated using the Hessian matrix (Fisher Informa-
tion Matrix) using modifications of a script from the
dadi user group. We then compared the median uncer-
tainty in parameter estimates across sample sizes and
parameterizations.

As an additional measure of the accuracy of inferences
drawn from analysis of the AFS, we also assessed the
coverage of 95% CI based on estimates of uncertainty
from the Hessian matrix. Confidence intervals were con-
structed as a symmetrical range, extending to +1.960xzss
around the maximum likelihood parameter estimate,
where oygss is the estimate of the uncertainty in a given
parameter estimate obtained from the Hessian matrix
(see above). Ideally, these intervals would contain the
true (simulated) parameter value in ~95% of the simu-
lated replicates. We were unable to calculate the Hessian
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matrix for all analyzed datasets, so the results we present
for coverage and the median uncertainty for a given
sample size are based on the subset of simulated datasets
where these estimates were obtained. Our inability to
calculate the Hessian matrix appears to be related to the
timing of demographic events in our simulations, based
on the number of datasets that exhibited these difficulties
with recent population size changes (POSGa — 2, POSGb —
25, NEGGa - 1, NEGGb - 9, BGa - 15, BGb — 111) or
divergence (ISOa - 1, ISOb - 152, IMa — 38, IMb — 170).
In many of these cases, our convergence criterion may not
have insured that our model fits were truly the most likely
values. Then, negative entries along the diagonal of the
Hessian matrix led to negative variances in the variance-
covariance matrix, making uncertainty estimation impos-
sible using the present framework.

Availability of supporting data
The Python scripts used to generate and analyze datasets
for this article, the simulated data sets, and the raw par-
ameter estimates and their associated uncertainties are
available online in the LabArchives respository http://dx.
doi.org/10.6070/H4GQ6VQ2.
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