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Abstract

Background: On rugged fitness landscapes where sign epistasis is common, adaptation can often involve either
individually beneficial “uphill” mutations or more complex mutational trajectories involving fitness valleys or plateaus.
The dynamics of the evolutionary process determine the probability that evolution will take any specific path among
a variety of competing possible trajectories. Understanding this evolutionary choice is essential if we are to
understand the outcomes and predictability of adaptation on rugged landscapes.

Results: We present a simple model to analyze the probability that evolution will eschew immediately uphill paths in
favor of crossing fitness valleys or plateaus that lead to higher fitness but less accessible genotypes. We calculate how
this probability depends on the population size, mutation rates, and relevant selection pressures, and compare our
analytical results to Wright-Fisher simulations.

Conclusion: We find that the probability of valley crossing depends nonmonotonically on population size:
intermediate size populations are most likely to follow a “greedy” strategy of acquiring immediately beneficial
mutations even if they lead to evolutionary dead ends, while larger and smaller populations are more likely to cross
fitness valleys to reach distant advantageous genotypes. We explicitly identify the boundaries between these different
regimes in terms of the relevant evolutionary parameters. Above a certain threshold population size, we show that the
probability that the population finds the more distant peak depends only on a single simple combination of the
relevant parameters.
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Background
In an adapting population, evolution often has the poten-
tial to follow many distinct mutational trajectories. In
order to predict how the population will adapt, we must
understand how evolution chooses among these possi-
bilities. Many experimental and theoretical studies have
analyzed this question, focusing primarily on the simple
case where epistasis is absent, so that each mutation has
some fixed fitness effect [1-6]. This work can explain the
probability that a given mutation will fix as a population
adapts, as a function of its fitness effect, the popula-
tion size, mutation rate, distribution of fitness effects of
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othermutations, and other parameters of the evolutionary
process.
However, the fitness effect of a mutation often depends

on the genetic background in which it occurs. A particu-
larly interesting form of this phenomenon, sign epistasis,
occurs when several mutations are individually neutral or
deleterious but their combination is beneficial [7]. Sign
epistasis has been observed repeatedly in experiments
[8-13], and plays a central role in the evolution of complex
phenotypes that involve multiple interacting components.
When sign epistasis is present, adaptation can involve
passing through genotypes of lower fitness — i.e. a popu-
lation may have to cross a fitness valley or plateau. Thus
the fate of a mutation depends not only on its fitness, but
also on its adaptive potential [14].
Several recent theoretical studies have analyzed the evo-

lutionary dynamics of fitness valley crossing [15-20]. This
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work has focused on calculating the rate at which adapting
populations cross a valley or plateau, in the absence of any
other possible mutational trajectories. However, individ-
ually beneficial mutations may often compete with more
complex evolutionary trajectories. We must then ask how
likely evolution is to eschew the immediately uphill paths,
and instead cross valleys or plateaus to reach better but
less accessible genotypes. In other words, when the fitness
landscape is rugged, we wish to understand whether evo-
lution will take the more “farsighted” path to reach distant
advantageous genotypes, rather than a “greedy” trajectory
that fixes immediately beneficial mutations regardless of
whether these may lead to evolutionary dead ends.
In this article, we analyze this evolutionary choice

between immediately beneficial mutations andmore com-
plex mutational trajectories that ultimately lead to higher
fitness. We calculate the probability that an adapting pop-
ulation will follow each type of competing trajectory, as a
function of the population size, mutation rates, and selec-
tion pressures. We focus on asexual populations, where
the only way for a population to acquire a complex adap-
tation is for a single lineage to acquire each mutation in
turn. Our analysis is similar in spirit to earlier work which
also considered the tradeoff between short-term and long-
term fitness advantages [21-24]. However, these earlier
studies dealt with competition between different strictly
uphill or neutral paths, and considered the case where
the less beneficial initial mutation led to better long-
term evolutionary opportunities. In contrast, our analysis
describes the competition between uphill mutations and
more complex trajectories. While these two cases can be
qualitatively similar in very small populations, they lead
to very different dynamics in larger populations where the
sign of the effect of the intermediate mutation can play a
crucial role.
Our results show that population size has a crucial

impact on how “farsighted” evolution can be. This depen-
dence is not monotonic: evolution at intermediate popu-
lation sizes is most “greedy”, while both larger and smaller
populations are more likely to eschew uphill paths in favor
of complex trajectories. In large populations, our results
show that a single parameter reliably predicts the extent
of this evolutionary “foresight” across a wide range of
parameters. Finally, we describe how our analysis can be
generalized to predict how evolution will choose among
even more complex trajectories, such as broad fitness
valleys with multiple intermediate genotypes, and we dis-
cuss evolution in genotype spaces with many possible
evolutionary paths.

Methods
We are interested in how a population makes an evo-
lutionary choice when confronted with multiple pos-
sible mutational trajectories. Specifically, we focus on

the extent to which adaptation proceeds by crossing fit-
ness valleys rather than acquiring immediately beneficial
(uphill) mutations. Of course, the relative frequency of
valley crossing will depend on the number of available
fitness valleys, their depth, and the fitness advantage of
the multiple-mutants, as well as the distribution of fitness
effects (DFE) of the uphill mutants. Our goal is to under-
stand how the prevalence of valley crossing depends on
these factors.

Model
Throughout most of this article, we consider the simplest
context in which we can address this question: the choice
between a single uphill path and a single fitness valley.
Specifically, we consider a haploid asexual population of
constant size N which can either acquire an uphill muta-
tion (u) that confers an immediate fitness advantage su,
or alternatively acquire a deleterious fitness valley inter-
mediate (i) with fitness deficit δi on which background a
double-mutant (v) with fitness sv > su can arise. This sce-
nario is illustrated in Figure 1. We also consider the case
of a fitness plateau, where δi = 0.
Because we are interested in the evolutionary choice

between competing mutational trajectories, we assume
that these two trajectories are mutually exclusive (i.e. the
mixed genotypes ui and uv are strongly deleterious), so
that only one genotype (either u or v) can eventually fix in
the population. As a measure of evolutionary foresight, we
analyze the probability that the double-mutant v fixes as
a function of the relevant mutation rates, selection coeffi-
cients, and population size. In some situations, we could
imagine that after either genotype u or v fixes, another set
of competing potential trajectories become available. In
this case, our analysis predicts the long-term relative ratio
of fixed uphill versus valley-crossing mutations. In the
Discussion, we consider how this model can be extended
to the situation where there are many different compet-
ing uphill paths and valleys, and to broader fitness valleys
involving multiple intermediate genotypes.

Simulations
In addition, we compare our analytical predictions for
valley crossing probability to Wright-Fisher simulations.
Each simulated population was evolved until either the
uphill genotype or valley-crossing genotype fixed. Valley
crossing probabilities were then inferred from the number
of trials in which the valley-crossing genotype fixed, out
of 1000 trials per parameter set.

Results
In the absence of the uphill genotype, fitness valley cross-
ing can be modeled as a homogeneous Poisson process
with rates as calculated by [17]. In small populations, the
primary role of the uphill genotype is to introduce an
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Figure 1Model and characteristic trajectories. (a) The model to study fitness valley crossing prevalence. The population starts as wild type (w),
and then acquires uphill mutations (u) at rate μu that confer an immediate fitness advantage su , and acquires deleterious fitness valley
intermediates (i) at rate μi with fitness deficit δi on which background double-mutants (v) with fitness sv > su arise at rate μv . (b)-(e) The four main
forms of fitness valley crossing. (b) Small populations are characterized by low genetic diversity and strong genetic drift, leading sequential fixation
of intermediates to dominate the dynamics. (c) For larger populations, genetic diversity is maintained longer, and double mutants will tend to arise
on transient single-mutant backgrounds, in a process known as stochastic tunneling. (d) If the drift time is small compared to the maximal rate of
change in background fitness, we can approximate the drift time of the intermediate by its expectation, dramatically simplifying the mathematical
analysis. (e) For very large populations, we can treat single-mutants deterministically, in a process dubbed semi-deterministic tunneling.

effective time limit on this process: once an uphill muta-
tion destined to survive drift first occurs, it very quickly
fixes, leading to the extinction of the wild-type. The prob-
ability of valley-crossing can thus be calculated as the
probability that the intermediate i fixes before the uphill
genotype u. An example of this is shown in Figure 1b.
In larger populations, the dynamics are more complex,

as illustrated in Figure 1c. Rather than leading to a single
cutoff time for valley-crossing to occur, the single-mutant
occurs and gradually increases in frequency. This leads to
a decline in the size of the wild-type background on which
intermediate and valley-crossing mutants can arise, and a
corresponding increase in the mean fitness of the popula-
tion (Figure 1c). These effects gradually reduce the rate at
which intermediates are produced, and make these inter-
mediates effectively more deleterious relative to the mean
fitness. These factors reduce the rate of the valley-crossing
process. Thus valley-crossing becomes an inhomogenous
Poisson process, with a rate that depends on the random
appearance time Tu of the uphill mutant.
In general, these effects of interference and tunneling

are complex. However, the analysis becomes simpler in

two specific regimes. When the expected drift time of
the intermediate genotype is short, we can neglect the
changing background fitness due to the uphill mutant
during this drift time (Figure 1d). Alternatively, for very
large populations (Nμ > 1), the Poisson process approx-
imation breaks down and both uphill and intermediate
mutations can be treated deterministically (Figure 1e), and
only the valley-crossing genotypemust be treated stochas-
tically.
These various regimes are illustrated in Figure 2. We

now analyze each in turn, assuming weak selection (sj <

1) for all genotypes throughout. Taken together, this pro-
vides a complete picture of the probability that evolution
will eschew the immediately uphill path in favor of the
more complex adaptation.

Small populations
When the population size is small enough that the proba-
bility of stochastic tunneling is very low, the population is
generally clonal or nearly clonal, and moves in Markovian
jumps between neighboring genotypes. The transition
between genotypes i and j occurs at rate
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Figure 2 Regimes of valley crossing. Phase plot summarizing the different regimes of fitness valley crossing. (a) The regime boundaries in terms
of population size N and uphill fitness su . (b) The boundaries in terms of population size N and intermediate deleteriousness δi .

rij = Nμijπij, (1)

where πij is the probability that a single j mutant will give
rise to a lineage that fixes, given by the standard formula,

πij = 1 − e−2(sj−si)

1 − e−2N(sj−si)
. (2)

We refer to this as the sequential fixation regime.
Because we are considering neutral and weakly dele-
terious intermediates, we account for the possibility of
back-mutation to the wild type if the intermediate fixes.
Therefore, the process can be modeled as an absorb-
ing states Markov chain, where the wild type and inter-
mediates act as transient states, and the uphill and
double-mutant genotypes act as absorbing states. From
elementary Markov chain theory, we find

Pcross= rwiriv
rwiriv+ rwu(riw+ riv)

=
[
1+

(
πwu
πwi

)(
μu
μi

)(
1+ μiπiw

μvπiv

)]−1
.

(3)

As the population size increases, πwu → 2su and πwi →
0, so πwu

πwi
→ ∞, and Pcross → 0. Thus we find that within

the sequential fixation regime, larger population sizes are
less likely to cross fitness valleys.

Stochastic tunneling
For large populations, the probability that deleterious
intermediates will fix declines drastically, and successful
double mutants will instead arise on the unfixed single-
mutant background in a process known as stochastic
tunneling [16]. This transition occurs when

N >
1
2δi

log
[
1 + exp(2δi) − 1

pv

]
, (4)

where pv is the probability that the intermediate lineage
survives drift long enough to give rise to an ultimately suc-
cessful double mutant lineage (we will explicitly calculate
this probability below). We can then model the appear-
ance of an intermediate mutant lineage destined to give
rise to a double mutant lineage as a Poisson process. The
rate λv at which these lineages appear is given by the rate
at which intermediate mutations arise times the probabil-
ity of success of the lineage, integrated over the drift time
td after appearance of the single-mutant intermediate:

λv = Nwtμi

∫ ∞

0

∂pi(td)
∂td

dtd. (5)

Here Nwt is the wild-type population size, and pi(td)
is the cumulative probability that a single-mutant lineage
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will give rise to a successful double-mutant lineage by time
td after it appears. This probability is given by [17]:

pi(td)=2
(

(a+− 1)(1 − a−)(1 − exp[−(1 − δi,eff)(a+ − a−)td])
a+ − 1 + (1 − a−)(1 − exp[−(1 − δi,eff)(a+ − a−)td])

)
,

(6)

where

a± = 2 − δi,eff − μvsv,eff ±
√

(δi,eff + μvsv,eff)2 + 4μvsv,eff
2(1 − δi,eff)

,

(7)

and δi,eff and sv,eff are the fitnesses of the intermediate and
valley-crossing genotypes relative to the (time-dependent)
mean population fitness. These effective fitnesses andNwt
depend on the background at time td in a way we must
now consider. The background in turn is determined by
the frequency fu(Tv + td) of the uphill genotype at time
td after the appearance of the first single-mutant interme-
diate lineage destined for success at time Tv (Figure 1c).
Thus the uphill genotype frequency sets the fitness back-
ground on which valley-crossing probabilities are deter-
mined.
To calculate the relevant effective parameters, we note

that the appearance of uphill lineages destined for suc-
cess can be modeled as a Poisson process. Moreover,
because the valley-crossing genotypes make up a tiny
fraction of the population (unless the double-mutant has
already established), we can treat the genetic background
on which these uphill lineages appear as essentially fixed.
Therefore, the first uphill lineage destined to survive
genetic drift will appear at time Tu, distributed exponen-
tially with rate

λu = Nμuπwu ≈ Nμu(2su). (8)

Once a successful uphill lineage appears, we assume it
establishes in time τest = γe/(2su), where γe ≈ .577
is the Euler-Mascheroni constant [25], and then sweeps
deterministically according to

fu(t̂) = 1 − exp
[−(μu + su)t̂

]
1 + (su/μu) exp

[−(μu + su)t̂
] , (9)

where t̂ ≡ t − Tu − τest is the time after establishment of
the uphill mutant.
Conditioning on the appearance time Tu, we can thus

work out our effective parameters

Nwt(t |Tu) = N(1 − fu(t − Tu − τest)) (10)
δi,eff(t + td |Tu) = −δi+ fu(t+ td− Tu− τest)su (11)
sv,eff(t + td |Tu) = sv− fu(t+ td− Tu − τest)su. (12)

These effective parameters encompass the two main
effects of the sweeping uphill mutation on the valley cross-
ing probability: the first represents the declining wild-type

background on which new mutations can arise, and the
remaining two represent the decreasing relative fitness of
the valley-crossing lineage.
We are interested in the probability that a double-

mutant lineage destined for success appears before the
uphill genotype fixes. Integrating over all possible appear-
ance times Tu, this is given by:

Pcross =
∫ ∞

0
dtu

(
λue−λutu ) × (13)[

1 − exp
[
−

∫ ∞

0
dt

(
Nwt(t, tu)μi

∫ ∞

0
dtd

∂pi(t + td , tu)
∂td

)]]
.

This integral is a complete solution for the probability
of valley-crossing in the stochastic tunneling regime, pro-
vided that the population size is small enough that the
Poisson process approximation above holds. Although it
does not have a simple closed-form solution, we can eas-
ily evaluate the integral numerically. Alternatively, there
is a simple and relevant parameter regime in which back-
ground fitnesses change slowly. We now consider this
case, and show that it allows us to evaluate our expres-
sion for the valley-crossing probability explicitly. In a
later section below, we turn to the alternative case where
the Poisson process approximation breaks down, and we
can instead treat all single-mutants deterministically; the
valley-crossing probability also simplifies considerably in
this very large population regime.

Slowly changing background fitness
One of the main complications of Equation (13) is the
integral over possible drift times td, which reflects the
increasing effective deleteriousness of the intermediate
genotype as the uphill genotype sweeps to fixation and
increases the mean fitness of the background population.
However, when su is small or δi is large, this background
fitness changes slowly compared to the intermediate drift
time. In this case, we can treat the background during
intermediate drift as effectively constant (Figure 1d). This
eliminates the need for an integral over td, since the time-
dependent probability of success of a single-mutant at
time t is fully determined by fu(t + td) ≈ fu(t).
We can further simplify the analysis if we treat the

probability of crossing the valley as a function of two
probabilities: the probability Pv,1 that the first successful
valley-crossing lineage appears before the first successful
uphill lineage establishes, and the probability Pv,2 that a
successful valley-crossing lineage appears after the uphill
mutant establishes:

Pcross = Pv,1 + (
1 − Pv,1

)
Pv,2. (14)

The calculation of Pv,1 takes place on a purely wild-type
background, so we can use

λv = Nμipv, (15)
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where pv, the probability that the intermediate lineage
survives drift long enough to give rise to an ultimately
successful double mutant lineage, is given by [17]:

pv = −δi +
√

δi2 + 4μvsv ≈
{
2√μvsv if δi � 2√μvsv
2μvsv/δi if δi � 2√μvsv.

(16)

Meanwhile, λu is unchanged from the original analysis.
Pv,1 is determined by a race between these two exponen-
tial random variables. Using basic properties of the expo-
nential, the probability that the double-mutant appears
before the uphill genotype establishes is therefore

Pv,1 =
⎧⎨
⎩

(
λv

λv+λu

)
e−λu�τ if �τ > 0

1 −
(

λu
λv+λu

)
e−λv�τ if �τ < 0,

(17)

where �τ represents the difference between the mean
drift time τdrift of the valley-crossing lineage and the mean
establishment time τest of the uphill lineage,

�τ = τdrift − τest. (18)

Here τest is as given above, and from [17], we can approx-
imate the drift time as

τdrift =
{
log 2/√μvsv if δi � 2√μvsv
1/δi if δi � 2√μvsv.

(19)

If the successful uphill lineage establishes, the first suc-
cessful valley-crossing lineage still has a chance to appear
and outcompete it, albeit on a declining wild-type back-
ground. Thus for Pv,2 we get a similar integral as in the
original analysis. However, since we are approximating
pi as constant, the rate of successful lineage generation
simplifies to

λ̂v(t) = μi Nwt pi(δi,eff, sv,eff)

= μi N(1− fu)
(
−(δi+sufu)+

√
(δi+sufu)2+4μv(sv−sufu)

)
.

(20)

Integrating and assuming mutation rates are small com-
pared to selection pressures, we find:∫ ∞

0
dtλ̂v(t) ≈

(
logNsu

su

)
Nμipi =

(
logNsu

su

)
λv.

(21)

Combining these results, we find

Pcross = Pv,1 + (
1 − Pv,1

) (
1 − e−

(
logNsu

su

)
λv

)

= 1 − (
1 − Pv,1

)
e−

(
logNsu

su

)
λv . (22)

We expect this result to be valid provided that δi is effec-
tively constant over the expected drift time. This will hold
when

su �
{
2
√

2
log 2

√
μvsv if δi � 2√μvsv

2δi if δi � 2√μvsv
. (23)

Semi-deterministic tunneling
We now consider the case where Nμi > 1 and Nμu >

1, and hence the Poisson process approximation used to
derive Equation (13) breaks down. Fortunately, in this
regime the number of single-mutant intermediates and
uphill mutants in the population are well approximated
by their deterministic expectation (Figure 1e). Thus the
only random variable is the appearance time of the first
successful double-mutant lineage, which occurs with rate

λv(t) = Nfiμvπiv ≈ 2Nfiμv(sv − sufu). (24)

Because intermediates never make up a large portion
of the population, fu is unaffected by fi, and hence is
still given by Equation (9). We can then approximate
the frequency fi of the single-mutant intermediates using
mutation-selection balance with a declining wild-type
population:

fi = fi∗(1 − fu), (25)

where fi∗ gives the independent deterministic dynam-
ics (mutation-selection balance) of single mutants on the
wild-type background, and (1 − fu) is the size of the wild-
type background. It is useful to transform this into an
integral in the frequency domain:

∫ ∞

0
λv(t)dt =

∫ 1

0
λv(fu)

(
∂fu
∂t

)−1
dfu. (26)

We note from equation 9 that

∂fu
∂t

= μu(1 − fu) + sufu(1 − fu), (27)

t(fu) = 1
μu + su

log
(
1 + (su/μu)fu

1 − fu

)
. (28)

We further approximate

fi∗ =
{

μit if δi � 2√μvsv
μi
δi

(1 − exp(−δit)) if δi � 2√μvsv.
(29)

Combining these expressions and assuming μu � su,
we find∫ ∞

0
λv(t)dt = 2Nμiμvsvγ /su, (30)

where

γ =
{
su−1 ( 1

2 log(su/μu)2−(su/sv
)
log(su/μu)+π2/6) if δi� 2√μusv

δi−1 (
log(su/μu)−(su/δi)(1−(su/μu)−δi/su )

)
if δi� 2√μusv.

(31)
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This gives

Pcross = 1 − exp
[
−

∫
λv(t)dt

]
= 1

− exp
[−2Nμiμvsvγ

su

]
= 1 − exp [−2N	] ,

(32)

where we have defined the useful quantity

	 ≡ μiμvsvγ
su

. (33)

Thus we see that in very large populations, the proba-
bility of valley-crossing depends in a simple way on the
single composite parameter 	. The form of this composite
parameter depends crucially on whether the fitness cost
of the intermediate genotype is large or small, as defined
in Equation (31).

Discussion
Our results have shown that the size of a population
strongly influences how “farsighted” it can be. In small
populations, genetic drift is strong relative to selection,
so the evolutionary dynamics proceeds by sequential fixa-
tion. Since fixation of a deleterious intermediate becomes
less likely in larger populations, this means that increasing
the population size initially decreases the relative influ-
ence of fitness-valley crossing. However, as the population
size increases further, beneficial mutations take longer to
fix, maintaining diversity in the population and allowing
double mutants to stochastically tunnel on the declining
wild-type background [15-17]. Together, these effects lead
to a non-monotonic relationship between population size

and the probability that evolution will favor the complex
adaptation over the directly uphill path, as illustrated in
Figure 3a. This nonmonotonic dependence on population
size is similar in spirit to the results of earlier work ana-
lyzing evolution on epistatic landscapes in the absence of
fitness valleys [21-23].
It is interesting to note that Pcross does not immedi-

ately begin to rise with the onset of tunneling. Instead,
the dependence is more complex, as a consequence of
the tradeoff between increasing mutation rates and fix-
ation times. Nevertheless, for populations in which the
transition to valley-crossing behavior occurs in the semi-
deterministic regime, we can derive a simple expression
for the threshold size at which the population will tend
to cross valleys with probability Pcross. A straightforward
inversion of (32) gives

N = − log [1 − Pcross]
2	

, (34)

valid for large population sizes in the semi-deterministic
regime. Thus in this regime the threshold size above
which a population exhibits a given degree of fore-
sight (i.e. has a particular Pcross) depends only on 	. To
illustrate this, in Figure 3b we show Pcross as a func-
tion of N	 for a variety of simulations across different
values of μu,μi,μv, su, δi and sv. It is clear that even
across a wide parameter range, N	 is a reliable predic-
tor of valley crossing probability in the semi-deterministic
limit.

Figure 3 Valley crossing probability. (a) Simulation results for μu = 5 × 10−6, μi = μv = 5 × 10−5, δi = 0, and sv = .07. The black vertical
dashed lines indicate the boundaries between sequential fixation, stochastic tunneling, and semi-deterministic tunneling. Markers represent
inferred valley-crossing probabilities from 1000 simulations per point. Lines represent theoretical predictions in each regime: in the stochastic
tunneling regime, dashed lines represent the slowly changing background fitness approximation, and solid lines represent the full integral solution
Equation (13). The color of the line indicates the uphill fitness su . (b) Crossing probability for populations in the semi-deterministic regime across a
wide range of parameters, plotted against the predictive parameter N	. Filled markers represent deleterious intermediates (δi = 10

√
μvsv ), while

open markers represent neutral intermediates (δi = 0).
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Multiple intermediates and evolutionary predictability
Recently, Szendro et al. [26] simulated evolution across
a wide range of population sizes on an experimentally-
derived epistatic fitness landscape, finding that “evolu-
tionary entropy” (i.e. unpredictability over all possible
outcomes, given by S = − ∑

pj log pj) varied nonmono-
tonically with population size. Specifically, these authors
found that entropy initially decreased with N above a
characteristic population size N ∝ 1/μ, before increasing
again above a second characteristic size N ∝ 1/μ2; they
argued that these points were related to the supply rate
of single and double mutants respectively. Our analysis is
consistent with these results. For example, the increase in
entropy at N ∝ 1/μ2 found by [26] corresponds to our
result that valley-crossing begins to significantly influence
evolution when N ∼ 1/	: this is approximately propor-
tional to 1/μ2, albeit with an additional log dependence
on μ from the γ factor that would be harder to observe
experimentally.
We find related behavior if we extend our analysis to

valleys with more intermediates. As a simple example,
we consider a fitness landscape where we add deleteri-
ous intermediates u0 and v0 (each occurring at rate μ0
and leading to fitness cost δi) to the uphill and valley-
crossing branches respectively, so that we now have
competition between a single-intermediate valley and a
two-intermediate valley. In a large enough population,
mutation-selection balance will ensure that

Nu0 = Nv0 = Nμ0
δi

. (35)

If we assume that these sub-populations are large
enough that double-mutants behave deterministically,
then we find the crossing probability obeys

− log [1 − Pcross] = 2
(

μ0
δi

)
N	 = 2

(
svγ
suδi

)
Nμ0μiμv.

(36)

Thus our analysis of valleys with multiple intermediates
suggests that the Nμ2 entropy peak is not unique: as the
population grows larger, there should be entropy peaks
corresponding to foresight across valleys with increas-
ing numbers of intermediates. The emergence of such
second peaks has been observed in simulations [23],
and our model offers a quantitative outline of where
such peaks should occur given the relevant evolution-
ary parameters. In the example above, for instance, there
would be an entropy peak approximately proportional
to Nμ3, and in general, we could expect entropy peaks
at points approximately proportional to Nμn for (n −
1)-intermediate valleys. In practice, however, the semi-
deterministic approximation will break down for any
sizable number of intermediates, unless the population
size is unrealistically large.

Many paths
Throughout this paper, we have assumed the presence of
a single uphill mutation and fitness valley. We now con-
sider how our analysis can be extended to predict how
evolution chooses among many such possible mutational
trajectories.
In small populations that are in the sequential fixa-

tion regime, we simply add additional transient transition
matrix elements representing different mutations, with
the uphill mutations transitioning to the uphill absorb-
ing state, and similarly for the valley-crossing mutations.
When stochastic tunneling is important, we must instead
add the rates of single valley-crossing mutants to get a
total rate of


v =
∑
v

λv, (37)

and similarly find the total rate of uphill mutants that are
destined to survive drift,


u =
∑
u

λu =
∑
u

Nμuπ(su) =
∫

NUbπ(su)ρ(su)dsu,

(38)

where in the last equality we have replaced a discrete col-
lection of uphill mutations with a continuous distribution
of uphill fitness effects ρ(s), and a discrete collection of
mutation ratesμu with a total beneficial mutation rateUb.
This is valid as long as 
u � 1. Once an uphill mutation
destined to survive drift occurs, the probability that it has
fitness s is given by the ratio between its partial rate and
the total rate; formally, the probability density is given by:

f (s) = Nμuπ(s)ρ(s)/
u. (39)

Using these expressions, we can integrate our results
from the analysis over all possible trajectories. However,
we note that if there are a large number of weakly benefi-
cial mutations, it is possible the first successful lineage to
appear will be outcompeted by a stronger uphill mutation
that arises later but fixes first. Our analysis applies pro-
vided that we consider only uphill mutations that reach a
significant portion k of the population before a new, more
fit uphill mutant is expected to be produced: i.e.


uτk =
(∫ ∞

scutoff
Nμsπ(s)ρ(s)ds

)
(τk) < 1, (40)

where τk is the expected time for a single-mutant destined
for success to make up frequency k of the population.
This is consistent with our intuition that as the population
size grows larger, we increasingly expect the mutations of
largest effect to dominate the dynamics.
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Conclusions
Using a simple three-locus fitness landscape model
(Figure 1a), we identified several regimes of valley-
crossing with qualitatively different behavior (Figure 2).
By examining the behavior in each of these regimes in
turn, we found that the probability of valley-crossing
has a complex, non-monotonic dependence on popula-
tion size (Figure 3a), and identified a parameter 	 that
reliably predicts the population size at which valley cross-
ing becomes preferred (Figure 3b). Finally, we showed
how these results can be extended to fitness valleys with
more intermediates, and to fitness landscapes with many
possible evolutionary trajectories, as is the case in most
naturally occurring populations.

Abbreviation
DFE: Distribution of fitness effects.
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