Astudillo-Clavijo et al. BMC Evolutionary Biology (2015) 15:77

DOI 10.1186/512862-015-0348-7
BMC

Evolutionary Biology

RESEARCH ARTICLE Open Access

Selection towards different adaptive optima
drove the early diversification of locomotor
phenotypes in the radiation of Neotropical
geophagine cichlids

Viviana Astudillo-Clavijo"”, Jessica H Arbour' and Hernan Lépez-Fernandez'~

Abstract

Background: Simpson envisaged a conceptual model of adaptive radiation in which lineages diversify into
"adaptive zones” within a macroevolutionary adaptive landscape. However, only a handful of studies have
empirically investigated this adaptive landscape and its consequences for our interpretation of the underlying
mechanisms of phenotypic evolution. In fish radiations the evolution of locomotor phenotypes may represent an
important dimension of ecomorphological diversification given the implications of locomotion for feeding and
habitat use. Neotropical geophagine cichlids represent a newly identified adaptive radiation and provide a useful
system for studying patterns of locomotor diversification and the implications of selective constraints on
phenotypic divergence in general.

Results: We use multivariate ordination, models of phenotypic evolution and posterior predictive approaches to
investigate the macroevolutionary adaptive landscape and test for evidence of early divergence of locomotor
phenotypes in Geophagini. The evolution of locomotor phenotypes was characterized by selection towards at
least two distinct adaptive peaks and the early divergence of modern morphological disparity. One adaptive peak
included the benthic and epibenthic invertivores and was characterized by fishes with deep, laterally compressed
bodies that optimize precise, slow-swimming manoeuvres. The second adaptive peak resulted from a shift in
adaptive optima in the species-rich ram-feeding/rheophilic Crenicichla-Teleocichla clade and was characterized by
species with streamlined bodies that optimize fast starts and rapid manoeuvres. Evolutionary models and posterior
predictive approaches favoured an early shift to a new adaptive peak over decreasing rates of evolution as the
underlying process driving the early divergence of locomotor phenotypes.

Conclusions: The influence of multiple adaptive peaks on the divergence of locomotor phenotypes in Geophagini
is compatible with the expectations of an ecologically driven adaptive radiation. This study confirms that the
diversification of locomotor phenotypes represents an important dimension of phenotypic evolution in the
geophagine adaptive radiation. It also suggests that the commonly observed early burst of phenotypic evolution
during adaptive radiations may be better explained by the concentration of shifts to new adaptive peaks deep in
the phylogeny rather than overall decreasing rates of evolution.
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Background

Simpson [1] conceptualized a model of adaptive radi-
ation that includes a macroevolutionary adaptive land-
scape with a series of ecological “adaptive zones” that
become occupied by diversifying lineages. Accordingly,
an expectation that is frequently used to diagnose adap-
tive radiations is an early burst in phenotypic divergence,
in which rates of divergence are predicted to decrease
through time as lineages accumulate and niches associ-
ated with these “adaptive zones” become saturated [2,3].
Though support for an early burst model of phenotypic
divergence is suggestive of adaptive niche filling, it does
not allow us to assess the assumption of ecological selec-
tion or elucidate the “adaptive zones” of an adaptive ra-
diation. Evolutionary models that incorporate selection
along branches of the phylogeny [4-6] make it possible
to investigate the macroevolutionary adaptive landscape
more explicitly. The early burst model of divergence has
been applied widely in comparative analyses of adaptive
radiation (e.g. [7-10]), but a growing body of research is
now also making use of evolutionary models based on a
Simpsonian adaptive landscape (e.g. [11-14]).

Adaptive radiations generally involve phenotypic diver-
sification along one or more ecological dimensions of
specialization [2,4,15,16]. For example, the diversification
of feeding strategies was accompanied by the diversifica-
tion of bill morphology in Darwin’s finches [17], skull
and mandible shape in phyllostomid bats [18], and head
and oral jaw morphology in African [19] and Neotrop-
ical cichlids [20]. Similarly, habitat divergence was ac-
companied by the evolution of limb morphology in
Anolis lizards [21].

In fish radiations the evolution of locomotor pheno-
types (i.e. post-cranial attributes) may represent an im-
portant dimension of ecomorphological diversification.
Fishes exhibit an extraordinary diversity of locomotor
phenotypes that may have allowed them to diversify into
an equally diverse array of ecological roles. Locomotion
has major implications for ecological processes such as
feeding and habitat use in fishes [22-24] because they
live in a dense medium that requires swimming almost
continuously. Different suites of locomotor traits op-
timize swimming performance for different ecological
conditions [25-27] thus much of the observed diversity
of locomotor phenotypes is likely related to ecological
specialization. Relatively few studies have investigated
the evolution of locomotor phenotypes (beyond overall
body shape) in a phylogenetic comparative context
[8,28] and as a result, our understanding of the patterns
and processes of locomotor diversification and their im-
portance in fish radiations remains limited.

Cichlinae (the Neotropical cichlids), and in particular
its largest tribe Geophagini, offer the opportunity to
study the diversification of locomotor phenotypes and to
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identify the underlying evolutionary mechanisms of
phenotypic divergence during an adaptive radiation.
Geophagini is the most diverse tribe of Neotropical cich-
lids with over 250 species in 17 genera that are pheno-
typically, ecologically and behaviourally diverse, with
ecomorphological differentiation among genera exceed-
ing intrageneric variation [9,29-31] (Figure 1). Several
genera (Acarichthys, Biotodoma, Geophagus, ‘Geophagus’
brasiliensis, ‘Geophagus’ steindachneri, Gymnogeophagus,
Mikrogeophagus, and Satanoperca), although distinct in
overall morphology and feeding functional morphology
[20] consist primarily of benthic substrate-sifting species
that feed by extracting invertebrates from ingested sub-
strate using a behaviour known as winnowing [31,32].
The ‘dwarf’ cichlids (Apistogramma, Biotoecus, Crenicara,
some species of Crenicichla, Dicrossus, Mikrogeophagus,
and Taeniacara) are small-bodied species that feed mostly
on benthic and epibenthic invertebrates [21,33], often in
structurally complex habitats, such as the leaf litter or
woody debris [34]. The Crenicichla-Teleocichla clade is
one of the most speciose and ecomorphologically unique
geophagine lineages with at least 90 described species of
primarily elongate-bodied piscivore and insectivore
Crenicichla species and various elongate-bodied rheophi-
lic Teleocichla species [30,31,34-36].

Recent work showed that Geophagini represents an
ancient continent-wide adaptive radiation [9]. Extensive
work on feeding functional morphology [20] and trophic
divergence [29,31-33] identified trophic specialization as
a major source of adaptive diversification in the geo-
phagine radiation with predators, benthic sifters, and in-
vertebrate pickers exhibiting trait complexes associated
with strong biting, suction, and rapid jaw-closing cap-
abilities respectively [20]. A similar detailed investigation
into the evolution of locomotor morphology is currently
lacking. Developing an understanding of diversification
along multiple functional morphological dimensions in
Geophagini will provide us with a clearer picture of the
ecological and evolutionary processes involved in the
adaptive radiation of one of the most diverse groups of
Neotropical fishes.

In this study we used a multivariate analysis of func-
tional traits from a sample of 32 species and a time-cali-
brated phylogeny to look at the evolution of locomotor
morphology in Geophagini. We investigate whether
there is evidence of adaptive divergence and whether the
inclusion of a model that incorporates selective con-
straints akin to the macroevolutionary adaptive land-
scape provides a clearer interpretation of the underlying
mechanisms of locomotor diversification. We use multi-
variate ordination and models of phenotypic divergence
to (1) assess patterns of locomotor morphological diversity
amongst lineages, (2) investigate the adaptive landscape,
and (3) test for an early burst of phenotypic diversification.
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Figure 1 Geophagini Maximum Clade Credibility (MCC) tree. The MCC tree has been pruned to include species used in comparative analyses
and scaled to a length of 1. Crenicichla sveni and Teleocichla gephyrogramma were used to approximate age and phylogenetic position of closely
related C. saxatilis and T. sp. “preta” respectively which were not included in the original phylogeny. Photos are included to illustrate some of the
phenotypic diversity in Geophagini. From the top photos are: Mikrogeophagus altispinosus, Crenicara punctulatum, Geophagus aff. dicrozoster,
Biotoecus dicentrarchus, Crenicichla sp. “Orinoco-wallacii, Teleocichla sp. ‘preta’, Crenicichla lugubris, Mazarunia charadrica, Taeniacra candidi, and
Satanoperca daemon. The coloured branches correspond to the geophagine adaptive peaks identified by the SURFACE model. Green branches:
Crenicichla-Teleocichla adaptive peak. Blue branches: benthivorous/epibenthivorous adaptive peak. The MCC tree is modified from [23]. Photos
were taken by H. Lopez-Fernandez, J.H. Arbour, KM. Alofs, N.K. Lujan and C.G. Montafa.

Our findings confirm that locomotion was an important
dimension of phenotypic divergence during the geopha-
gine adaptive radiation. They further emphasize that a
model that incorporates the macroevolutionary adaptive
landscape provides a better-fitting and perhaps biologic-
ally more informative account of the historical under-
lying mechanisms of phenotypic evolution in adaptive
radiations.

Results

Patterns of morphological diversity

We investigated the diversity of locomotor attributes in
Geophagini by performing a phylogenetically-corrected
Principal Components Analysis (PCA) using a sample of
1000 posterior distribution chronograms for 32 species
that span the crowns of the major ecomorphological
subclades within Geophagini. The PCA recovered two
critical Principal Component (PC) axes, which together
accounted for an average of 61.04 +/- 0.78% of the vari-
ation in swimming morphology across 1000 posterior
distribution trees (Table 1, Figure 2). PC1 explained on

average 43.80 +/- 0.33% of the variation and was most
strongly influenced by variables that describe body
shape, pectoral and caudal fin area, and pelvic and dorsal
fin position. Species near the negative extreme had shal-
low streamlined bodies with a high fineness ratio and a
caudal peduncle almost as deep as the maximum body
depth (elongate body). Crenicichla and Teleocichla had
fineness ratios from 4.5-6.7, which is within the optimal
streamlining range (e.g. [27]; see Additional file 1). The
Crenicichla-Teleocichla clade occupied a large region of
morphospace that excluded all non-Crenicichla-Teleoci-
chla species. In contrast, species near the positive extreme
included most of the benthic and epibenthic species that
were characterized by a deep laterally-compressed body
(discoid body), large frontal area, large pectoral and caudal
fins, and large pelvic and dorsal moment arms. PC2 ex-
plained on average 17.24 +/- 0.66% of the variation and
was most strongly influenced by variables that describe
pectoral fin shape, median fin areas, and the position of
the paired fins relative to the centre of mass. High anal fin
area, a low aspect ratio pectoral fin, and a long pectoral
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Table 1 Mean +/- standard deviation of eigenvectors,
eigenvalues, and variance across the 1000 chronogram set

PC1 PC2

Body depth 0.38 +/- 0.00 —0.08 +/- 0.02
Body width —-0.32 +/- 0.01 —0.10 +/—- 0.05
Pectoral fin moment arm —0.06 +/— 0.02 —-0.47 +/- 0.05
Pelvic fin moment arm 0.25 +/- 0.01 —-0.33 +/- 0.04
Anal fin moment arm 0.09 +/- 0.01 0.21 +/- 0.06
Dorsal fin moment arm 0.29 +/- 0.01 0.13 +/- 004
Pectoral fin area 0.31 +/- 0.00 —0.15 +/- 003
Anal fin area 0.07 +/-0.02 —-0.48 +/- 0.04
Dorsal fin area 0.11 +/- 003 0.42 +/- 0.06
Caudal fin area 0.30 +/- 0.01 —-0.00 +/- 0.02
Pectoral fin aspect ratio 0.09 +/- 0.02 0.36 +/- 0.04
Caudal fin aspect ratio 0.08 +/—- 0.01 0.04 +/- 0.04
Peduncle:Body depth ratio —-0.33 +/- 0.00 —0.13 +/- 0.02
Frontal area 0.36 +/- 0.00 —-0.07 +/-0.02
Fineness ratio -0.38 +/- 0.00 0.08 +/- 0.02
Eigenvalue 6.57 +/-0.10 259 +/-0.10
% variance 43.80 +/— 0.66 17.24 +/— 0.66

Bolded values correspond to eigenvectors whose confidence intervals do not
overlap with those of the eigenvectors for the 1000 permuted datasets.
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fin moment arm characterized species near the negative
extreme of PC2, while those at the positive extreme had a
high dorsal fin area and a high pectoral fin aspect ratio.

Macroevolutionary adaptive landscape

SURFACE models [37] were fit for PC1 and PC2 to
investigate the macroevolutionary adaptive landscape
of Geophagini. The best supported SURFACE model
for PC1 included a single regime shift at the base of
the Crenicichla-Teleocichla clade, which produced a
model with 2 non-convergent adaptive peaks in the
Crenicichla-Teleocichla clade and the remaining ben-
thic and epibenthic lineages (mean +/- SD of model
parameters: o =0.974 +/— 0.07, 0 =7.420 +/- 0.12,
eCren‘—Teleo =-11.027 +/- 1.65, ebenth‘/epibenth, =1.126 +/-
0.20; Figure 2). The number of peaks and incidences of
convergence resulting from Brownian Motion (BM) simu-
lation models were not significantly different from those
of the SURFACE model (Table 2), suggesting that a pat-
tern consistent with 2 adaptive peaks could have arisen
in Geophagini under a random walk process. The best
SURFACE model for PC2 was one with a single adaptive
peak for all geophagine cichlids (mean +/- SD of model
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Figure 2 Phylogenetic Principal Components Analysis (PCA) for locomotor morphology based on the Maximum Clade Credibility (MCC) tree. Refer to
Figure 1 for complete species names. The green and blue convex hulls indicate the areas of morphospace occupied by lineages belonging to the two
geophagine adaptive peaks as identified by SURFACE. Green: Crenicichla-Teleocichla adaptive peak. Blue: benthivorous/epibenthivorous adaptive peak.
Colours correspond to those on Figure 1. Text on the top and right margin of the plot indicate the trait complexes and functional implications of these
trait complexes based on published literature (refer to text and Additional file 2 for details) at the extremes of PC1 and PC2. Numbers in brackets indicate
the percent variance explained by each of the critical PC axes. Photos are included in the plot to show the variation in functional morphology along the
axes and correspond to species present near the extreme of each axis. Starting with the photos at the top left corner and going clockwise, the species
represented are: Crenicichla sp. "Orinoco-wallacii’, Geophagus aff. dicrozoster, Mikrogeophagus altispinosus, Guianacara dacrya, Teleocichla sp. "preta’, and
Crenicichla lugubrisco The photo in the centre of the plot is Mazarunia charadrica. Photos were taken by H. Lopez-Ferndndez, JH. Arbour, KM. Alofs, NK. Lujan.
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Table 2 SURFACE parameters for PC1 and Brownian
motion (BM) simulations

SURFACE parameters SURFACE BM P

K 2 318 +/-1.14 0.95
k' 2 2.70 +/— 0.88 0.95
C 0 092 +/-0.17 1.00
K conv 0 043 +/-0.55 1.00
Ak 0 048 +/—- 0.65 1.00
c/k 0 0.23 +/- 099 1.00

BM values represent the mean +/— standard deviation of SURFACE parameter
estimates across the 500 BM simulations of the morphological data. k = number
of peaks before convergence; k' = number of non-convergent peaks; ¢ = number
of shifts to convergent peaks; Ko, = number of convergent peaks; Ak = reduction
in the number of peaks with convergence; c/k = the proportion of convergent peaks
relative to the total number of peaks. P = the proportion of BM simulations that
produced SURFACE parameters as high or higher than the preferred SURFACE
model for PC1.

parameters: o =14.032 +/— 22.87 (median=6.77), o*=
32.838 +/- 53.507 (median = 15.84), 0, = -0.088 +/- 0.01).

Early accumulation of morphological disparity

We tested for evidence of an “early burst” in locomotor
divergence using maximum likelihood models and dis-
parity through time (DTT) analyses [38]. BM, OU, Early
Burst (EB), and SURFACE models were fit and com-
pared for PC1 and PC2 across the 1000 posterior distri-
bution trees and then used to simulate the expected
pattern of divergence under each model. Based on the
maximum likelihood approach, the evolution of PC1
was best described by a 2-peak Ornstein-Uhlenbeck
(OU) model (i.e. the SURFACE model), while the evolu-
tion of PC2 corresponded to a single-peak OU model.
Both OU and SURFACE models produced identical re-
sults for PC2 (i.e. a single adaptive peak for the entire
clade), and thus here we compare only BM, OU, and EB
models for this axis (Table 3).

DTT analyses generally corroborated the results of the
maximum likelihood approach. Simulations under the
best model for PC1 and PC2, according to the maximum
likelihood approach, produced similar patterns of diver-
gence as the observed data. The mean morphological
disparity index (MDIL area between simulated and
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observed DTT curves) and posterior predictive p (hence-
forth p; frequency of simulated curves as extreme as the
observed DTT curve) for DTT based on SURFACE sim-
ulations across the 1000 trees were -0.016 +/- 0.0017
and 0.24 +/- 0.10 respectively (Figure 3A). Though max-
imum likelihood also rejected an EB model for PC1, DTT
showed that the observed pattern of divergence differed
only slightly from the expected pattern under an EB
model (mean MDI =-0.088 +/- 0.019, mean p-value =
0.088 +/- 0.055; Figure 3B). Both maximum likelihood
and DTT rejected a BM model of phenotypic evolution
for PC1 (Figure 3C). DTT analyses for PC1 based on BM
simulations resulted in a mean MDI value of —-0.20 +/-
0.018 and mean p-value of 0.0034 +/- 0.00. Thus the ob-
served MDI value for PC1 was best approximated by a
two-peak OU model (highest p-value; [39]) with some
support for an EB model. Both SURFACE and EB models
suggest that the accumulation of morphological disparity
decreased precipitously near the base of the tree, after
which later divergence events contributed little to the
overall morphological disparity of the clade. DTT for PC2
analyses based on single-peak OU simulations resulted in
a mean MDI value of 0.12 +/- 0.056 and mean p-value of
0.21 +/- 0.11 (Figure 3D).

Discussion

The phylogenetic PCA recovered two critical PC axes
consistent with combinations of locomotor traits that
characterize adaptation to divergent swimming modes
[see Additional file 1]. Most of the locomotor phenotypic
diversity in Geophagini is related to traits associated with
PC1. PC1 represents a gradient from elongate-bodied
fishes with a deep caudal peduncle to discoid-bodied
fishes with large pectoral and caudal fins and pelvic and
dorsal fins positioned relatively far from the center of
mass. Trait complexes at the extremes of PC1 appear to
be related to a trade-off between adaptations for fast starts
and high-speed manoeuvres (negative end of axis) and for
precise slow-swimming manoeuvres (positive end of axis).
A streamlined body and deep caudal peduncle are optimal
for fast starts and rapid turns and manoeuvres because
this phenotype concentrates thrust near the trailing edge

Table 3 Brownian Motion (BM), Ornstein-Uhlenbeck (OU), Early Burst (EB), and SURFACE model summaries

BM ou EB SURFACE
PC1 AIC 141.18+/-1.25 14362 +/-1.25 138.80 +/— 1.93 129.790 +/- 0.94
AAIC 11.385 +/— 4,51 13.83 +/— 4.51 9.01 +/— 449 0.00 +/- 0.0
wWAIC 0.012 +/- 0.01 0.003 +/- 0.00 0.04 +/—- 0.047 0.95 +/- 0.06
PC2 AIC 111953 +/-1.82 10542 +/-0.23 11440 +/— 1.82 _
AAIC 9.502 +/—-1.72 0.00 +/- 0.00 11.95 +/-1.72 _
wAIC 0.041 +/-0.03 0.95 +/— 0.045 0.01 +/-0.01

AIC: Akaike Information Criterion, AAIC: the difference in AIC between each model and the best model (AIC of the best model = 0), wAIC: the weight of support for
each model across 1000 posterior distribution chronograms. Values represent the mean + standard deviation across 1000 posterior distribution trees.
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Relative subclade disparity

Relative Time

Figure 3 Disparity through time (DTT) plots for PC1 and PC2 axes. Grey lines show a random subset of 10 000 Brownian motion (BM) simulations
that fall within the 95% confidence interval of the 1000 simulations performed for each of the 1000 posterior distribution trees. The dotted line is
the mean change in disparity across all simulations and the solid black line shows the mean of the actual change in disparity across the 1000
trees. The observed DTT curve for PC1 was compared to simulations under the A) SURFACE model, B) early burst model, and C) BM model.

D) The observed DTT curve for PC2 was compared to simulations under a single-peak Ornstein Uhlenbeck model.

J

of the fins and provides the largest contribution to overall
thrust and momentum [25]. In contrast, a discoid body
with large median fins positioned far from the center
of mass is better adapted for performing precise slow-
swimming manoeuvres. A discoid body allows for tight
turns by reducing the vertical turning radius [25,40]. Large
fins and fins positioned far from the centre of mass in-
crease the volume of water that is moved and the torque
or force applied to move that water respectively at specific
regions of the body, which allows for localized and pre-
cisely directed acceleration, turning, breaking, and balan-
cing manoeuvres [22,25,27,40,41].

The distribution of species along PC1 reflects an early
adaptive peak shift in the Crenicichla-Teleocichla lineage
that resulted in selection towards a ram/rheophilic adaptive
peak in the Crenicichla-Teleocichla lineage and a benthic/
epibenthic adaptive peak in the remaining geophagine lin-
eages (the preferred SURFACE model). The negative ex-
treme of PC1 corresponds to the ram/rheophilic adaptive

peak and is occupied exclusively by members of the Cre-
nicichla-Teleocichla clade. These species are active,
ram-feeding predators (Crenicichla) and/or rheophilic
specialists (Teleocichla) [31,35] that benefit from having
a streamlined body with a deep caudal region for ambush-
ing prey or manoeuvring in strong river currents. The
positive extreme of PC1 corresponds to the benthic/epi-
benthic adaptive peak and includes all of the non-Crenici-
chla-Teleocichla lineages. Species at the positive extreme
of PC1 are benthic substrate-sifters and benthic/epiben-
thic invertebrate pickers that feed on slow or non-evasive
prey [31,32] and thus may rely greatly on the optimization
of precise, slow swimming manoeuvres. Precise manoeuv-
ring in the lower levels of the water column is an integral
part of the widespread behaviours involved in picking up
substrate into the mouth cavity and processing it through
winnowing (e.g. [42]). Neotropical cichlid lineages that
feed by substrate-sifting have been found to be highly con-
vergent functionally, despite a relatively large amount of
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overall morphological diversity [32]. Results from the
present study suggest that morphological variation in body
shape and other locomotor attributes within substrate
sifters (positive end of PC1) may reflect yet undescribed
variation in locomotor function that may be associated
with fine-tuning of habitat use. Further studies should ad-
dress the correlation between locomotor attributes found
herein and variables that describe habitat attributes.

BM simulations suggest that a single peak shift in PC1
could have also arisen under a random-walk process
(Table 2), but maximum likelihood model comparisons
strongly rejects BM in favour of a 2-peak OU model
(Table 3). The probability of arriving at similar regions
of trait space under a random-walk process increases
with decreasing number of taxa [43]. It is possible that
the inclusion of a larger number of taxa in future work
will recover more adaptive peaks that outnumber those
expected under a BM process and provide more definitive
support for the validity of the Crenicichla-Teleocichla
adaptive peak (e.g. [14]). Work on the ecology [31,33],
functional morphology [20,31], and evolution [14,38] of
Neotropical cichlids provide additional support for a
Crenicichla-Teleocichla adaptive peak. The Crenicichla-
Teleocichla clade also occupied a unique region of trophic
morphospace that corresponded to an adaptive peak char-
acterized by fast protrusible jaws capable of strong grip-
ping bites that optimize ram feeding [20,14]. It appears
that the Crenicichla-Teleocichla lineage represents a sin-
gular case of morphological innovation in both locomo-
tion and feeding that, early in geophagine diversification,
moved the clade into a new selective regime that favoured
exploration of new ecological niches not available to the
remaining geophagine lineages. The large taxonomic and
functional diversity of the Crenicichla-Teleocichla clade
suggests that further evolutionary diversification occurred
within the group, a suggestion further supported by the
finding of a so-called “species flock” of Crenicichla in the
Parana River basin of South America [44].

PC2 represents a gradient of slight variation in the
size shape and position of paired and median fins.
Paired and median fins have functional implications for
manoeuvrability, and thus variation along PC2 appears to
be related the diversity of locomotor phenotypes that
optimize manoeuvrability under different conditions. For
example, substrate sifters near the positive end of PC2
spend considerable time sifting for invertebrates in sandy
substrates adjacent to structurally complex rocky or vege-
tated habitats into which they retreat periodically ([45],
HLF pers obs). During sifting their large dorsal fin may
help them maintain a vertical position in the water col-
umn by producing balancing torques that reduce the
tendency to roll or yaw [46]. Additionally, their high as-
pect ratio paired fins (tapering fins) are optimal for gener-
ating lift and reducing drag [26,47,48], which may be an
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adaptation for maximizing swimming efficiency and hov-
ering close to the substrate while sifting. Taxa near the
negative end of PC2, such as Apistogramma, Teleocichla,
and a few Crenicichla species, are characterized by pec-
toral fins with a slightly lower aspect ratio (broad, paddle-
shaped fins) and longer moment arms. Low aspect-ratio
fins generate more thrust during the power stroke than
tapering fins, especially at low speeds [26,48], and have
been found in species that remain in close proximity to
structurally complex habitats [49]. Similarly, Apistogramma
and Teleocichla are associated with highly structured habi-
tats such as the leaf litter and rocky crevices respectively
[34,44,50]. Though species exhibit some variation along
PC2, the reduced variation relative to PC1 and the prefer-
ence of a single-peak OU model suggest that the evolution
of paired and median fin attributes, at least as described
herein, is restricted to a single adaptive optimum in all of
Geophagini.

All of the traits loading strongly on PC2 are related to
the paired and median fins, which are functionally rele-
vant for slow-swimming manoeuvres because the distri-
bution and mobility of the paired and median fins allow
fish to generate small, localized, and specifically directed
bouts of propulsive thrust [22,25,27,40,41]. Paired/me-
dian fin propulsion is important for navigating tight
turns and crevices in structurally complex habitats [22].
Species belonging to both the ram/rheophilic and benthic/
epibenthic adaptive peaks are associated with structured
habitats to some extent, which may have constrained the
evolution of some paired and median fin attributes to a
small range of phenotypes that improve manoeuvrability
in structurally complex habitats. Therefore the apparent
functional trade-offs of PC1 and convergence of PC2 may
be due to selection towards either a ram/rheophilic or
benthic/epibenthic adaptive peak within the selective con-
fines of structurally complex habitats.

The EB and our multi-peak OU (SURFACE) model
predicted decreasing phenotypic divergence in PC1, but
both maximum likelihood (Table 3) and posterior pre-
dictive approaches (Figure 3A,B) suggested that the ob-
served accumulation of phenotypic disparity approaches
the early divergence pattern produced by the multi-peak
OU model more closely than that of the EB model. EB
assumes that decreased phenotypic divergence towards
the tips is due to decreasing rates of divergence, presumably
as a result of niche saturation by early adapting lineages [7].
Our multi-peak OU model assumes that decreased diver-
gence near the tips is due to evolution towards different
adaptive optima that were adopted by early diversifying
lineages. Though both models suggest that decreasing
divergence is related to early adaptive diversification, the
observed divergence patterns were likely better fit by
the multi-peak OU model because by incorporating
multiple selective regimes it provides a more explicit and
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biologically realistic account of adaptive divergence along
the branches of the phylogeny. Most DTT analyses used
to test for evidence of adaptive radiation compare the ob-
served pattern only to the expected pattern under a con-
stant rate BM process, or sometimes under an EB process
[39], and interpret deviations from BM as evidence for de-
creasing rates of evolution. Here we show that a multi-
peak OU model akin to a Simpsonian macroevolutionary
adaptive landscape with early adaptive peak shifts may
better explain the commonly observed “early burst” of
adaptive radiations.

DTT further suggest that the utility of adaptive land-
scape models in describing phenotypic diversification ex-
tends beyond the identification of the best-fit model.
Comparative datasets contain a wealth of information
about the evolutionary process that is only partially tapped
with traditional model fitting approaches. Despite the
overlap in SURFACE parameter estimates for BM simula-
tions and our 2-peak OU model (Table 2), the application
of the latter to posterior-predictive analyses revealed an
early divergence pattern underlain by adaptive optima
shifts (Figure 3) that is undetectable with model fitting
alone (Table 3). Previous analyses have also shown that
traditional model fitting approaches may be limited in
their power to characterize adaptive processes in trait evo-
lution [39]. Evaluation of phenotypic change over time, as
done using DTT analyses, provides a more nuanced and
detailed representation of the evolutionary patterns than
that obtained by model-fitting approaches. Altogether,
our results suggest that complementing model fitting
methods with adaptive landscape perspectives provides
a richer, more informative understanding of clade-wide
divergence patterns and their possible underlying evolu-
tionary processes.

The early diversification of locomotor morphology in
Geophagini is consistent with the role of ecological op-
portunity and niche filling in phenotypic evolution
within the clade. The unique Crenicichla-Teleocichla
adaptive peak may be the result of a key innovation that
presented the lineage with new ecological opportunity
not available to or being exploited extensively by other
taxa, which may have in turn promoted its extensive
diversification into over 90 species. Subsequent com-
petition between increasingly species-rich geophagine
lineages likely contributed to the lack of more recent
shifts between adaptive peaks in the evolution of
Geophagini. Divergence of benthic and pelagic preda-
tory/zooplanktivorous ecomorphs has been reported
in several marine [51,52], lacustrine [53,54], and river-
ine lineages [55]. Furthermore, an early benthic-pelagic
shift resulted in a burst in diversification during the
adaptive radiation of an eastern North American cyp-
rinid clade [55]. It appears that evolution along a
benthic-pelagic axis has been an important source of
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diversity across distantly related lineages and different
aquatic ecosystems.

Though our sample of taxa spans the crowns of the
major ecomorphological subclades, the relatively small
sample size (32 species) may have prevented SURFACE
from identifying more complex models with additional
adaptive peaks due to the lack of power to reject simpler
models [40]. Nonetheless, geophagine species exhibit high
levels of intrageneric similarity in ecology [31,33,34] and
morphology [31]. Additionally, ~50 million year old Gym-
nogeophagus fossils have been found to occupy the same
region of morphospace as modern representatives of the
genus [Arbour and Lépez-Fernandez unpublished]. Thus
we hypothesize that if additional adaptive peaks do exist
in Geophagini, shifts towards these peaks will also be con-
centrated deep in the phylogeny and will thus continue to
support a multi-peak OU model as the most likely explan-
ation of the observed early burst pattern.

Considerable variation exists among estimates of cich-
lid ages, with estimates ranging from Eocene [56,57] to
late Cretaceous [58] to late Jurassic-early Cretaceous
[30] origin. All of these estimates are problematic and
must be considered tentative because some suggest ages
that are likely too old (e.g. [9]) and others find the family
to be younger (e.g. [57]) or barely older than its own
crown-lineage fossils (e.g. [57]). The set of 1000-scaled
trees used in this study were based on absolute age esti-
mates that date the origins of Cichlidae to 150 Mya
(95% highest posterior density 128.2—174.78, 9). Even in
relative time trees like those used in this study, differ-
ences in age estimates could affect internode distances,
which in turn could affect the early burst pattern ob-
served here. Fossil evidence constrains the origin of the
geophagine genus Gymnogeophagus to a conservative es-
timate of at least 39.9 million years old, although it is
likely older [9,59,60]. Younger ages for the family com-
bined with older ages for crown lineages would compress
basal branches by virtue of reducing the time from initial
divergence to attaining recognizable modern diversity.
Shorter basal branches derived from younger family-ages
than the ones reflected in the branch lengths used in our
study would strengthen the early burst signal detected
here, and thus this work provides, at worst, a conservative
estimate of early phenotypic divergence in Geophagini.

Conclusions

Cichlinae is amongst the most speciose and ecologically
diverse groups of fishes in the Neotropics and recently
studied patterns of phyletic and phenotypic diversifica-
tion suggest this diversity resulted from at least one epi-
sode of continent-wide adaptive radiation. Extensive
work on trophic adaptive diversification has shown that
the evolution of trophic phenotypes was an important
dimension of ecomorphological diversification during
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the geophagine radiation; our study offers a complemen-
tary look at the diversification of locomotor morphology.
Variation of locomotor trait complexes in geophagine
cichlids suggest that post-cranial phenotypic diversity
may be related to adaptations for feeding and habitat
use. Much of the modern diversity in locomotor attributes
arose during an early burst of morphological diversifica-
tion. Evolutionary model fitting and disparity analyses
favoured evolution towards different adaptive peaks as the
underlying mechanism driving the early burst of loco-
motor diversification. These results suggests that perhaps
the commonly observed early burst of adaptive radiations
is better explained by a multi-peak OU model akin to a
Simpsonian macroevolutionary adaptive landscape with
early adaptive peak shifts than the traditional EB model,
which emphasizes the potential role of selective constraint
in shaping adaptive radiations. A hypothesis of the phylo-
genetic position of adaptive peak shifts also provides a
framework for future assessments of the ecological con-
text of phenotypic divergence in adaptive radiations.

Methods

Phylogenetic relationships and divergence times
Analyses were carried out on a sample of 1000 posterior
distribution Cichlinae chronograms from Lépez-Fernan-
dez et al. [9,36] to account for topological and branch
length uncertainty. Cichlinae chronograms were obtained
using relaxed molecular clock methods and Bayesian in-
ference based on the alignment of 3868 base pairs from
two nuclear and three mitochondrial genes for 166 cichlid
species in BEAST 1.6.2. The Maximum Clade Credibility
(MCC) tree and 1000-chronogram set were pruned to in-
clude only the species for which morphological data were
collected, and scaled to a total length of 1 to account for
total length differences and make results comparable
across trees ([61]; see 9,36 for details of phylogenetic re-
construction and chronogram generation).

Taxon sampling and morphological data

We measured standard length (SL) and 15 functional
locomotor attributes related to swimming performance
on preserved museum specimens housed at the Royal
Ontario Museum (ROM), Canada representing each of
the geophagine genera [61]. A total of 111 specimens
from 32 species were measured with 1-6 individuals per
species (average 3.5) and 1-6 species per genus (average
1.9). Only adult individuals with similar intraspecific SL
values were used to minimize potential variance due to
ontogenetic allometry [Additional file 2]. The inclusion
of all genera in the tribe ensures that all crown lineages
are considered in our analyses. Moreover, inclusion of a
few species per genus should provide adequate sampling
of the crowns of the major ecomorphological subclades.
Species belonging to the same genus exhibit similar diets
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[31,33], habitat preferences [34], and morphologies
[20,31,33,34], and intergeneric morphological variation
vastly exceeds intrageneric variation [31]. We strived to
sample morphological attributes of the same species in-
cluded in the phylogeny, however, as specimens were
not available for Crenicichla sveni and Teleocichla gephyr-
ogramma, they were replaced with data from the related
C. saxatilis and T. sp “preta”, respectively, for comparative
analyses.

Locomotor attributes included body depth, body
width:depth ratio, moment arms of the paired (pectoral
and pelvic) and median (dorsal and anal) fins, surface
area of the pectoral, caudal, and median fins, aspect ratio
of the pectoral and caudal fins, peduncle:body depth ra-
tio, frontal area, and fineness ratio. Linear measurements
were taken directly on the fish using digital calipers and
areas were measured on photographs of the correspond-
ing measured individuals using the program Image] [62]
[see Additional files 2 and 3 and references therein]. Fol-
lowing Gerry et al. [63], each fish’s left side was photo-
graphed with fins spread and pinned down keeping the
shot angle perpendicular to the lateral plane of the fish.
To ensure the specimen lay in a horizontal plane, photo-
graphs were taken with the fish laid on a foam board
with a groove carved out to accommodate the curvature
of the body. The foam board was placed over a grid that
was used to calibrate measurements taken on photo-
graphs. Each specimen was photographed in front of a
mirror positioned at a 45° angle with respect to the hori-
zontal plane of the fish, providing a simultaneous lateral
and frontal view of the fish in each photo. To find the
centre of mass, each fish was photographed 3 more
times while hanging from a string attached to a different
fin (dorsal, anal, and caudal) each time. These photo-
graphs were superimposed on each other and rotated to
match the margins of the fish shape in Adobe Photoshop
CS5°. The point of intersection of the string in the 3
overlain photographs was determined to be the centre of
mass of each individual [63].

Patterns of morphological diversity

SL and locomotor attributes were log-transformed to
standardize trait scales and make interspecific variance
comparable for large and small specimens. Species
means were obtained for each log-transformed variable.
Locomotor attributes were corrected for size by regres-
sing each mean log-transformed locomotor attribute
against mean log-transformed SL and obtaining the re-
siduals. Phylogenetically-corrected Principal Components
Analyses (PCA) were performed on the residuals for each
of the 1000 posterior distribution trees and for the MCC
tree. Size-correction and phylogenetic PCAs were carried
out using the functions “phyl.resid” and “phyl.pca” in the
R package “phytools” [64]. Critical Principal Component
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(PC) axes and the morphological attributes that influence
critical PC axes most strongly were identified by permut-
ing the original morphological dataset 1000 times and per-
forming a phylogenetic PCA on each of these permuted
datasets. We compared the mean and 95% confidence
interval (CI) of eigenvalues and eigenvectors across the
1000 trees to the mean and 95% CI of the eigenvalues and
eigenvectors for the permuted datasets. Similar to Horn’s
parallel analysis [65], we considered critical PC axes to be
those with eigenvalue distributions greater than the distri-
bution of permuted eigenvalues. Morphological attributes
with eigenvector distributions that did not overlap with
those of the permuted datasets were considered import-
ant descriptors of interspecific variability in the corre-
sponding axes.

Macroevolutionary adaptive landscape

To investigate the macroevolutionary adaptive landscape
of locomotor morphology in Geophagini we tested for
shifts in selective regimes that yield new adaptive peaks
across lineages using PC1 and PC2 scores. We used
Ingram and Mabhler’s [37] SURFACE algorithm, which
searches for adaptive peaks and convergence on those
peaks without a-priori identification of lineages in which
regime shifts may have occurred. SURFACE searches the
adaptive landscape by fitting a series of increasingly
complex Ornstein-Uhlenbeck (OU) models. SURFACE
carries out a “forward” search phase, during which adap-
tive peaks are added to various locations in a phylogeny
until there is no additional improvement in AIC scores,
followed by a “backward” phase, during which similar
adaptive peaks are collapsed together.

SURFACE models were fit for PC1 and PC2 on the
sample of 1000 posterior distribution trees. PC1 and
PC2 were analyzed independently because traits associ-
ated with these axes were characterized by different
modes of evolution (see Results and Table 3) and a com-
bined PC1-PC2 analysis does not change the geophagine
adaptive landscape (not shown). We also assessed the
effect of a larger morphospace (up to 4 PC axes) given
the potential consequences of underestimating the num-
ber of critical PC axes on macroevolutionary patterns
due to the loss of relevant information with discarded
axes. Additional PC axes had no effect on the macroevo-
lutionary adaptive landscape (results not shown) and are
not discussed further.

We simulated the evolution of locomotor morphology
under a Brownian motion (BM) model 500 times for the
PC axis that was best fit by a SURFACE model to see if
the same number of adaptive peaks could have also
resulted from a random-walk process [37]. SURFACE
models were fit for each of these simulated datasets and
the number of regime shifts produced by the SURFACE
models for the observed and simulated datasets were
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compared. Given the computational intensity of the
SURFACE algorithm, the BM simulations could not be
performed on the 1000 trees and thus BM simulations
and the comparison of simulated and observed regime
shifts were performed only for the MCC tree. SURFACE
model fitting and BM simulations were implemented
using the functions “runSurface” and “surfaceSimulate”
respectively in the R package “surface” [37].

Early accumulation of morphological disparity

We used maximum likelihood and disparity through time
(DTT) analyses [38] to test whether Geophagini experi-
enced an early burst in the diversification of locomotor at-
tributes. The DTT approach differs from the maximum
likelihood approach in that rather than choosing the single
best model that maximizes the probability of the ob-
served data it allows us to compare the observed pattern
of phenotypic divergence to expected patterns of diver-
gence under different evolutionary models using simula-
tions [39].

The fit of the best SURFACE model was compared
with the fit of BM, single-peak OU, and early burst (EB)
models of PC1 and PC2 evolution across the 1000 pos-
terior distribution trees using AAIC, and the Aikaike
weight of evidence [66]. A BM model assumes that mor-
phological evolution has occurred under a random walk
process in which morphological disparity accumulates
approximately linearly through time. A single-peak OU
model assumes that morphological evolution has been
constrained toward a single adaptive peak [4,5]. An EB
model predicts that rates of morphological diversification
have decreased exponentially through time [7]. The SUR-
FACE algorithm produces models of varying complexity
that assume that evolution has been constrained towards
different adaptive peaks along different branches in the
phylogeny [4]. BM, OU, and EB models were fit using the
function “fitContinuous” in the R package “geiger” [67].

DTT computes the morphological disparity of each
subclade relative to the morphological disparity of all
taxa, and plots the change in average relative subclade
disparity through time. The observed pattern can be
compared to the expected pattern under any evolution-
ary model by simulating data under the desired evolu-
tionary model and then performing DTT analyses on the
simulated datasets. The area between the curves repre-
senting the observed and simulated changes in disparity,
also known as the morphological disparity index (MDI),
is used to assess the similarity of observed and expected
patterns of phenotypic divergence. Relative subclade dis-
parity is expected to decrease linearly towards the present
if phenotypic evolution has occurred under a constant rate
process. In contrast, a rapid drop in subclade disparity
near the base of the tree is interpreted as early accumula-
tion of phenotypic disparity [38].
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We performed DTT analyses on the 1000 posterior
distribution trees and compared each to 1000 simula-
tions of PC1 and PC2 evolution under different evolu-
tionary models using the function “dtt” in the R package
“geiger” [67]. Maximum likelihood parameter estimates
were used to simulate PC1 scores under a BM, EB, and
the SURFACE model and PC2 scores under a single-
peak OU model. Several models were compared for PC1
because it has been noted that when a clade includes
one or more lineages whose evolutionary trajectory dif-
fers from the ancestral mode, such as when a lineage es-
capes to new adaptive peaks as is the case for PC1 here
(see Results), DTT is better at detecting early bursts
than maximum likelihood approaches [39]. DTT plots
and simulations were restricted to the lower two thirds
of the tree to avoid biases caused by incomplete taxon
sampling towards the present [38]. We used a posterior
predictive approach to determine whether the observed
MDI differed from the various evolutionary expectations
of the different evolutionary models [39]. The frequency
of simulations with MDI values more extreme than that
observed MDI (more positive for + MDI, more negative
for —MDI) was used to compare the ability of different
models to predict the observed pattern of phenotypic
divergence [38,68].
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