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Abstract

Background: Adaptive radiation theory posits that ecological opportunity promotes rapid proliferation of phylogenetic
and ecological diversity. Given that adaptive radiation proceeds via occupation of available niche space in newly accessed
ecological zones, theory predicts that: (/) evolutionary diversification follows an ‘early-burst’ process, i.e, it accelerates early
in the history of a clade (when available niche space facilitates speciation), and subsequently slows down as niche space
becomes saturated by new species; and (i) phylogenetic branching is accompanied by diversification of ecologically
relevant phenotypic traits among newly evolving species. Here, we employ macroevolutionary phylogenetic
model-selection analyses to address these two predictions about evolutionary diversification using one of the
most exceptionally species-rich and ecologically diverse lineages of living vertebrates, the South American
lizard genus Liolaemus.

Results: Our phylogenetic analyses lend support to a density-dependent lineage diversification model. However, the
lineage through-time diversification curve does not provide strong support for an early burst. In contrast, the evolution
of phenotypic (body size) relative disparity is high, significantly different from a Brownian model during approximately
the last 5 million years of Liolaemus evolution. Model-fitting analyses also reject the ‘early-burst’ model of phenotypic
evolution, and instead favour stabilizing selection (Ornstein-Uhlenbeck, with three peaks identified) as the best model
for body size diversification. Finally, diversification rates tend to increase with smaller body size.

Conclusions: Liolaemus have diversified under a density-dependent process with slightly pronounced apparent
episodic pulses of lineage accumulation, which are compatible with the expected episodic ecological opportunity
created by gradual uplifts of the Andes over the last ~25My. We argue that ecological opportunity can be strong and a
crucial driver of adaptive radiations in continents, but may emerge less frequently (compared to islands) when major
events (e.g, climatic, geographic) significantly modify environments. In contrast, body size diversification conforms to
an Ornstein-Uhlenbeck model with multiple trait optima. Despite this asymmetric diversification between both lineages
and phenotype, links are expected to exist between the two processes, as shown by our trait-dependent analyses of
diversification. We finally suggest that the definition of adaptive radiation should not be conditioned by the existence
of early-bursts of diversification, and should instead be generalized to lineages in which species and ecological diversity
have evolved from a single ancestor.
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Background

Adaptive radiation theory predicts that the proliferation
of phylogenetic and ecological diversity within a lineage
results from the exposition of a single ancestor to mul-
tiple episodes of divergent natural selection [1, 2]. A fun-
damental component of this process is the emergence of
‘ecological opportunity, which provides the conditions
that allow speciation through adaptation to different
niches [3, 4]. Ecological opportunity arises when spatial
and/or ecological dispersal (i.e., access to novel niche di-
mensions facilitated by adaptive innovations) expose a spe-
cies to a new set of abundant ecological resources [2-7].
For example, spatial and/or ecological dispersal can be
driven by the emergence of new habitats (e.g., islands,
mountains), by modifications of existing environments via
climatic changes, or by the emptying of niches following
extinctions [1-3]. As diversification proceeds, the extent
of ecological opportunity declines as a function of increas-
ing saturation of niche space by newly evolving species.
Therefore, a core prediction based on the above scenario
is that adaptively radiating lineages will show early bursts
of rapid diversification followed by asymptotic decreases
in diversification rates over time [2, 8—10].

In addition, phenotypic traits with ecological signifi-
cance play a fundamental role in the process of niche
construction, and hence, in the way diversifying lineages
saturate niches over time [2, 11]. As a result, analyses of
macroevolutionary models of lineage accumulation have
been complemented with studies of tempo and mode of
diversification of ecologically relevant phenotypes during
adaptive radiations [2, 8, 12, 13]. Based on the model of
adaptively radiating lineages expounded above, we may
predict that phenotypic diversification is high early in a
group’s history, when ancestors enter an adaptive zone
with abundant resources [3, 10]. As natural selection pro-
motes saturation of ecological space via phenotypic diver-
sification, opportunities for niche occupation decline, thus
causing a slowdown in the rates of diversification of eco-
logically functional traits [2, 8-10]. Consequently, if the
radiation of a lineage has been adaptive, then the diversifi-
cations of both the lineage and the phenotype are ex-
pected to display similar patterns, which would be driven
by changes in niche filling over time (e.g., [2, 14]). For in-
stance, if the rapid early emergence of new species causes
a decrease in niche space, then the opportunities for adap-
tive speciation decline, and slowdowns in ecological trait
evolution would be expected given the reduced opportun-
ities for adaptive niche expansions.

Evidence for coupled patterns of lineage and pheno-
type diversification is not consistent. While some studies
reveal a link between these two components of diversity,
others fail to identify such links. For example, Harmon
et al. [12] showed that ‘bursts’ of lineage accumulation
in the radiation of iguanian lizards are consistent with
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pulses of phenotypic disparity during their phylogenetic
history. Similarly, the radiation of Caribbean Amnolis
lizards has been shown to partition ecological morpho-
space more finely as the numbers of competing lineages
present on an island increase [15]. In contrast, the radi-
ation of cetaceans shows signals of diversity-dependent
evolution of ecological phenotypes, while their net diver-
sification fails to support a model of early-bursts of spe-
ciation followed by slowdowns [13]. Finally, although net
lineage diversification has been rapid and described by a
diversity-dependent trajectory in the exceptionally explo-
sive radiation of Rattus rats, the extent of interspecific
morphological diversification has been minimal [16].

A number of hypotheses have been formulated to ex-
plain such disjoint patterns between lineage and pheno-
type diversity. For example, it has been suggested that the
signatures of early burst adaptive radiations can be
retained in phenotypic traits, while high extinction or fluc-
tuations in net diversifications can erase them from the
structure of the phylogeny [13, 17]. Also, non-adaptive ra-
diations are expected to diversify taxonomically but not
much phenotypically [16, 18-20]. Finally, a longstanding
debate focuses on whether macroevolutionary processes
differ between island and continental radiations. Given
that islands are spatially limited and have simpler eco-
logical backgrounds compared to continents, both diversi-
fication processes and cladogenesis-phenotype links may
follow different trajectories mediated by their intrinsic dif-
ferences in ecological opportunity, which is expected to be
more common on islands [1, 21-23]. In fact, although
most biodiversity resides on continents [24], current
knowledge on adaptive radiations derives primarily from
island models. Therefore, studies of diversification dynam-
ics in both lineages and phenotypes in continental radia-
tions remain both a critical empirical and conceptual need
and a promising research venue.

In recent years, the exceptionally diverse radiation of
South American lizards of the genus Liolaemus has
emerged as a promising model to investigate adaptivera-
diations on continents. Consisting of 240+ species,
Liolaemus is the world’s second richest genus of extant
amniotes [25]. Remarkably, since their origin (esti-
mated ~22 Mya, [25, 26]), these lizards have adapted
to the widest range of ecological and climatic condi-
tions known among reptiles [6, 25, 27, 28], including
extreme environments ranging from the Atacama
Desert (the driest place on Earth) to Tierra del Fuego
(the southernmost place where a reptile has been
found), along both the Pacific and Atlantic coasts,
and reaching up to 5,000 + m altitudes in the Andes
[27, 29-34]. Importantly, recent studies suggest that
this radiation may have been accelerated by the enor-
mous ecological opportunity created by the Andes up-
lift [6, 35]. This idea also suggests that the evolution
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of viviparity (live-bearing reproduction) provided the
key innovation that unlocked the harsh Andean envi-
ronments for early Liolaemus colonisation and subse-
quent diversification [6, 35, 36]. Thus, this lineage
offers a unique model to investigate the causes and
trajectories of evolutionary radiations on continents.
Here, we study the tempo and mode of macroevolu-
tionary diversification in lineage richness and body
size in the Liolaemus radiation, and discuss our findings
in the context of radiations triggered by continental
ecological opportunity. A central prediction derived
from adaptive radiation theory is that both diversity
dimensions will show signals of diversity-dependent
diversification over time.

Methods

Phylogenetic tree

Our analyses are based on a multi-gene molecular, time-
calibrated phylogenetic tree (Fig. 1), including 109 of
the ~240 known Liolaemus species (the total number of
species is difficult to determine given taxonomic con-
troversies and the lack of reliable diagnoses for several
species), extracted from Pyron et al’s [37] comprehen-
sive tree of squamates. The tree was time-calibrated
using recent estimates obtained from molecular phylog-
enies of the major clades within Liolaemus [26], and
based on the genus’ fossil record [38—40]. We set the
origin of the Liolaemus crown group radiation (beginning
with the latest common ancestry between the subgenera
Eulaemus and Liolaemus sensu stricto) at 19.25 million
years ago (Mya). This time represents the average between
paleontological and molecular estimates, which place the
origin of the crown group radiation, respectively, at 18.5
and 20 Mya.

Analyses of lineage diversification

Analyses based on the time-calibrated phylogenetic tree
were performed to quantify the evolutionary tempo and
mode of diversification in Liolaemus, with focus on both
lineage and body size diversity. To quantify historical
rates of species accumulations (i.e., tests of the predic-
tion that diversification has slowed down over time fol-
lowing an early burst) we created a lineage through-time
(LTT) plot implemented in the R package ‘ape’ [41]. For
the LTT curve, we first implemented Pybus & Harvey’s
[42] Monte Carlo Constant Rate (MCCR) test. This ana-
lysis calculates the y statistic for incompletely sampled
phylogenies, by comparing the distribution of inter-node
distances between the tree root and its temporal mid-
point to the distribution of distances between the tem-
poral midpoint and the tree tips [43]. Negative y values
indicate that inter-node distances between the root and
the midpoint are shorter than the distances between the
midpoint and the tips, and hence, that most branching
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events occurred earlier in the evolutionary history of the
clade, a pattern consistent with a decline in the rate of
species accumulation over time (i.e., an ‘early burst’
model of diversification). When lineage diversification
follows a constant rate process, the branching events are
evenly distributed throughout the tree, with y being nor-
mally distributed and with a mean of 0. Given that in-
complete taxon sampling in a phylogeny increases type I
error rates in diversification analyses, the MCCR test
computes corrected y distributions through simulations
of phylogenies to the known clade size (~240 species in
Liolaemus) under the null hypothesis of a constant rate
pure-birth diversification process. Species are then ran-
domly pruned from the simulated trees to replicate in-
complete sampling (109 species are included in our tree;
see above). Our analysis is based on 10,000 Monte Carlo
simulations. The MCCR test was conducted using the
‘laser” package in R [44].

We then analysed the diversification dynamics that are
more likely to have shaped the LTT trend of Liolaemus
species accumulation by fitting multiple evolutionary
models that rely on different evolutionary processes. We
used Etienne et al’s [45] maximum-likelihood fitting-
model approach to test four alternative hypotheses of di-
versification. This technique employs a hidden Markov
model (HMM) approach to calculate the likelihood of a
phylogenetic history under multiple diversity-dependent
birth-death models of diversification. These models ac-
count for the influence that species other than those
included in the phylogeny (i.e., both extinct species and
species missing from the phylogeny) may have on histor-
ical rates of diversification (given that speciation rates
are a function of existing species at each point in time).
Therefore, this approach is comparable to the results
produced by the MCCR test above as both techniques
consider the potential effects of species missing from the
tree [43]. Two of the four fitted models assume constant
diversification rates. These are the pure-Birth (or Yule)
model, which assumes no extinctions, and the constant
rate birth-death model (crBD), which allows extinctions
but assumes that the rates of speciation and extinction
remain constant through time and across lineages. The
other two models, density-dependent logistic (DDL + E)
and density-dependent exponential (DDE + E), assume
diversity-dependence and thus quantify diversification
rates as functions of changes in accumulating diversity
over time (while accounting for extinctions, E). While
the DDL + E models linear rate changes in diversifica-
tion, the DDE + E models exponentially declining speci-
ation rates as a function of extant lineage diversity at any
point in time. We fitted all four models under two alterna-
tive assumptions about the proportion of missing species in
the phylogeny. First, we assumed that the Liolaemus clade
consists of its currently known 240 species. We then
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assumed that the genus consists of many more species than
those currently reported, and that our phylogeny only
accounts for 30 % of the ‘real’ diversity of the lineage. For
both scenarios, we fitted all four models using the R pack-
age ‘DDD’ [45].

To evaluate the best-fit model, we employed the
Akaike Information Criterion (AIC) approach [46]. We
report the bias-corrected version of AIC, referred to as
AICc [47, 48]. The goodness of fit of candidate evolu-
tionary models is determined by identifying the lowest
AICc scores, and hence, when shown as AAICc scores
(the difference between the best or lowest AICc, and the
AICc of each alternative model), then the best model
has AAICc =0 [47, 48].

Body size data

To evaluate the potential relationship between clade diver-
sification and phenotypic evolution during the radiation of
Liolaemus, we investigated the rates and trajectories of
body size diversification. We focus on body size as it is the
single most important morphological trait that influences
the majority of ecological and evolutionary processes via
its correlation with most components of organismal form
and function [49, 50]. In addition, body size is often con-
sidered to be a key morphological indicator of niche in
natural populations [49, 51]. Also, in Liolaemus in particu-
lar, body size is ideally suited for diversification analyses as
existing evidence suggests that its variation is not predict-
ably influenced by geographic/climatic clines [28, 30, 34],
it varies with numbers of coexisting species (Pincheira-
Donoso, unpublished observation), and other phenotypic
traits observed to respond to ecological pressures in other
lineages (e.g., body proportions, [1]) vary in rather unpre-
dictable ways when linked to, for example, habitat charac-
teristics [30, 52, 53]. We used snout-vent length (SVL),
the traditional proxy for body size in lizards [54—56]. For
the analyses, we collated an extensive body size dataset
(Additional file 1) consisting of 6,500+ adult individuals
(adulthood was estimated based on body sizes reported in
previous studies, [30-32, 34]), representing >85 % of the
currently known species diversity within the genus. To ob-
tain SVL for each species, we averaged male and female
SVL values, calculated independently using the upper
two-thirds of the size range available for each sex in each
species [30, 57]. Although maximum SVL has been exten-
sively used as a proxy for size in lizards, it has been shown
that the use of extreme values may result in body size
overestimations [58]. In contrast, the use of intermediate
percentiles between the maximum recorded value and the
mean from the entire adult sample provides accurate
estimates of asymptotic size [58]. The entire dataset was
collected by the same person (DPD) to control for error
arising from inter-individual measurements (e.g., [57]).
The species included in our dataset encompass the entire
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phylogenetic, phenotypic, ecological, and geographic di-
versity known in Liolaemus [30, 52, 53], and therefore,
they provide an adequate sample of the body size diversity
in this genus (Fig. 1).

Modelling body size evolution

We investigated the evolutionary dynamics of body size
throughout the phylogenetic history of Liolaemus using
two quantitative approaches based on our time-calibrated
phylogeny. First, we quantified the tempo and mode of
body size diversification by fitting four alternative
models that describe different evolutionary dynamics:
the Brownian-motion model (BM, which describes a
random walk of trait evolution along branches in the phyl-
ogeny, with increase in trait variance centered around the
initial value at the root of the tree, and increasing with the
distance from the tree root; [59]), the Ornstein-Uhlenbeck
model (OU, which assumes that once traits have adap-
tively evolved, stabilizing selection pulls the trait values
around an adaptive optimum for the trait; [60]), the Early-
Burst or “niche-filling” model (EB, which describes expo-
nentially increasing or decreasing rates of evolution over
time based on the assumption that niches are saturated by
accumulating species within a lineage; [8]), and the Delta
model (a time-dependent model of trait evolution, which
describes the effects that early versus late evolution in the
tree have on the rates of trait evolution; it returns a § value
which indicates whether recent evolution has been fast
when §>1, or slow when §<1; [61]). Comparisons of
goodness of fit for these models were performed through
the Akaike Information Criterion (AIC) [46]. Selection of
the best evolutionary model is based on the same AICc
approach described above for model-selection of lineage
accumulation. Model implementation and fitting was
conducted with the R package ‘geiger’ [62]. We then
investigated whether the distribution of body size in
Liolaemus has evolved around a given number of SVL
optima (i.e., whether stabilizing selection has promoted
macroevolutionary convergences of the trait against
one or more such peaks), using the ‘surface’ package in
R [63, 64]. This surface method fits an adaptive radi-
ation model in which lineages on a phylogeny may ex-
perience convergent shifts towards adaptive optima on
a macroevolutionary Simpsonian landscape, import-
antly, without assumptions of whether some lineages
correspond to particular optima [63, 64]. Based on an
OU model [60] in which all species are pulled against a
single adaptive optimum in morphospace, SURFACE
employs a stepwise model selection approach based on
AIC,, which allows for identification of the best model
and the numbers and positions of adaptive peaks (i.e., trait
‘regimes’), and hence, for convergence towards these
optima over evolutionary time [63, 64].
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We then modelled body size disparity through time
(DTT). Based on size data from extant species (see
above), this approach calculates the mean disparity for
the trait over time, and compares the observed body
size disparity with that expected under a null model of
Brownian-motion by simulating body size evolution
10,000 times across the tree [12]. Then, the average
body size disparity obtained from the real and the sim-
ulated data are plotted against node age to calculate the
morphological disparity index (MDI). This index quan-
tifies the overall difference in relative disparity for the
trait among and within subclades (i.e., differences in
the range of variation) compared with the expectation
under the null Brownian motion model [13, 62, 65].
Negative MDI values indicate lower than expected trait
relative disparity under Brownian motion (i.e., low aver-
age subclade relative disparity), which in turn indicates
that most disparity occurs among subclades, and there-
fore, that they occupy smaller and more isolated areas
of the morphospace [12]. In contrast, positive MDI
values indicate that relative disparity among subclades
shows stronger overlap in morphospace occupation
[12]. Trait disparity analyses were conducted using the
R package ‘geiger’ [62]. The plot projecting the Liolae-
mus phylogeny onto the body size morphospace
(against time since the root), based on ancestral node
estimations using maximum likelihood [66] is shown in
Fig. 3 (see legend for details), and was built using the R
package ‘phytools’ [67].

We finally investigated the influence of body size on
macroevolutionary lineage diversification in Liolaemus.
We employed the phylogenetic likelihood-based ap-
proach Quantitative State Speciation and Extinction
(QuaSSE) implemented in the R package ‘diversitree’
[68]. This method fits evolutionary models based on the
distribution of extant characters (body size) on a phyl-
ogeny, under the assumption that diversification follows
a birth-death process and that a species can be character-
ized by its mean value of the measured trait, which affects
diversification through its effect on the speciation-
extinction rates (where rate of speciation is A, and the
rate of extinction is u, see [69]). Evolutionary models
are fitted by adding a ‘drift’ or ‘directional’ parameter
(¢), which describes the deterministic (or directional)
component of character evolution. That is, the expected
rate of character change over time as a function of se-
lection or other process which determines a directional
tendency [68, 70]. Thus, this term does not refer to
genetic drift specifically. After adding the drift term,
the likelihood functions created by QuaSSE describe
diversification by a constant, linear, sigmoidal, or
hump-shaped function of log body size [68]. Identifi-
cation of the best evolutionary model is performed
via the AIC approach (see above).
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Results

Diversification rates and evolutionary models

The results from the MCCR analysis, as shown by the
lineage through-time plot (Fig. 2), suggest that lineage
accumulation over time in Liolaemus differs from the
pattern expected under the null pure-birth model of
constant rate diversification (y =-3.84), but not signifi-
cantly so (P =0.13). Although the shape of the LTT plot
is not consistent with a traditional early-burst curve of
diversification, two slight pulses of increased diversifica-
tion rates followed by declines can be observed (how-
ever, both are contained within the 95 % confidence
interval). One of these increases occurs approximately
between 12-9 Mya, followed by a slight decline ~8-7
Mya. A subsequent slight increase occurs ~5-4 Mya
followed by a decline in the most recent phase of the
clade’s history (Fig. 2).

The maximum-likelihood analyses of lineage diversifi-
cation based on four candidate models identify the
diversity-dependent linear model (DDL + E) as the best
description of the estimated pattern of evolutionary di-
versification of Liolaemus (Table 1). This finding remains
supported when the same models are fitted under the
assumption that only 30 % of the ‘real’ diversity of the
genus is sampled in the phylogeny, and therefore, these
observations are unlikely to be an artefact associated
with numbers of known and missing species. However, it
is important to note that the AAICc values between the
DDL + E and the Yule models are small — for the sce-
nario based on the actual numbers of species known and
sampled, the difference (1.89, Table 1) is close to the
threshold value of 2, which identifies well-supported
models. The difference is much smaller (0.68, Table 1)
for the scenario that assumes 30 % of the real diversity,
which indicates that both models are qualitatively simi-
lar. An alternative model-fitting analysis based on the
same four models, but using the package ‘laser’ [44],
revealed identical results: the DDL model provides the
best approximation to the observed pattern of species
accumulation over time (results not shown).

Tempo and mode of body size evolution

The analysis of phenotypic DTT reveals that rates of
subclade-level diversification in Liolaemus body size are
consistently higher (positive) than expected under a
Brownian motion model of evolution (MDI = 0.23; Fig. 2).
Therefore, Liolaemus subclades have extensively diversi-
fied in body size and converged to occupy overlapping re-
gions of the lineage’s morphospace (Fig. 3). The DTT plot
shows an overall tendency for relative disparity in body
size to decrease over time, although there are multiple
pulses of increases in diversification. There are two slight
pulses during the Miocene (both within the 95 % CI calcu-
lated from simulations of body size disparity), one
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between approximately 15.5-14 Mya, and one between
approximately 10.5-7.5 Mya. More notably, however, a
strong increase is observed during the Pliocene, in which
the trend of body size relative disparity exceeds the 95 %
DTT range of the simulated data (Fig. 2). Such high posi-
tive relative disparity remains through to the Pleistocene,
when the model recovers an unusually high relative dis-
parity peak between approximately 0.6-0.3 Mya (Fig. 2).

Our model-based analyses of body size diversification
identified OU as the best approximation to the observed
pattern of evolution of this trait in Liolaemus (Table 2).
Therefore, our results suggest that body size diversifica-
tion has been subject to stabilizing selection that has
forced the expression of the trait around certain adaptive
optima over time. The Delta and BM models were, re-
spectively, the next best-fitted models, while the EB
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Table 1 Rates of species accumulation during Liolaemus
diversification history based on multiple evolutionary models. Fitted
models are pure-birth (Yule), birth-death (crBD), density-dependent
logistic (DDL + E) and density-dependent exponential diversification
(DDE + E). Best-fit of models based on (delta) bias-corrected Akaike
Information Criteria (AICc)
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Table 2 Rates and modes of evolutionary diversification in
Liolaemus body size based on comparisons of the fit of four
evolutionary models. Fitted models are Brownian-motion
(BM), Ornstein-Uhlenbeck (OU), Early-Burst (EB) and Delta.
Best-fit of models based on (delta) bias-corrected Akaike
Information Criteria (AICc)

Model A u LogL AlCc AAICc  Model Model Parameters B LogL AlCc AAICc
Known missing BM - 0.006 29.74 —55.37 16.12
Yule 4.02 0 21.16 —40.28 1.89 Oou a=0.122 0.009 38.86 —7149 0
crBD 4.02 1.3e-13 21.16 —38.20 3.96 EB a=-1.0e-06 0.006 29.74 —53.25 18.24
DDL+E 7.09 1.05 24.19 —42.16 0 Delta 6=299 0.002 3748 —68.73 276
DDE+E 224 037 -5.95 18.12 60.29

70 /% missing Finally, our analysis of trait-dependent macroevolu-
Yule 4.20 0 21.64 —4124 068 tionary diversification identified a negative linear function
crBD 420 25e-14 2164 -39.16 2.76 as the best model. That is, diversification rates increase as
DDL +E 732 125 2407 4192 0 a linear function of decreasing body size (Table 3).

DDE+E 224 037 -11.18 2858 70.50

model was identified as the weakest approximation to
describe the pattern of body size evolution (Table 2).
Our subsequent convergence analyses of multiple body
size peaks on a Simpsonian landscape revealed that three
optima (or body size regimes) exist within Liolaemus,
suggesting that species are pulled by stabilizing selection
around the size optima 57.96 mm, 80.45 mm, and
87.66 mm (Additional file 2: Figures S1 and S2).

46

<€— 87.66mm

44

<€— 80.45mm

42

€— 57.96mm

4.0

Body Size (In-transformed)

38

I T T T 1
0.00 481 963 14.44 1925

Time
Fig. 3 Projection of the Liolaemus phylogeny into a morphospace
defined by body size (In-transformed, on y) and time since the clade’s
origin (on x, in My elapsed since the root). Ancestral body size states
are estimated using likelihood. The degree of uncertainty is indicated
by increasing transparency of the plotted blue lines around the point
estimates with the entire range showing the 95 % confidence interval.
Red arrows indicate the position of the three body size peaks (in mm)
identified by the surface analysis (see text for details)

Discussion

Rapid early bursts of phylogenetic, phenotypic and eco-
logical diversification within a lineage entering a novel
adaptive zone are central components of the definition
of a process of adaptive radiation [2, 71]. Our analyses
investigating the tempo and mode of evolutionary diversi-
fication of one of Earth’s most prolific vertebrate radiations
(Liolaemus lizards) reveals a density-dependent pattern of
lineage accumulation over time (Fig. 2), while in contrast,
the evolution of body size does not follow a traditional
pattern of adaptive radiation mode of diversification (i.e., it
does not conform to an early-burst trajectory). This latter
finding is further confirmed by the strong subclade
overlap in morphospace revealed by the DTT analysis
(Figs. 2 and 3). Instead, body size evolution is best ex-
plained by a model based on stabilizing selection (i.e., OU)
that pulls the trait towards three convergent adaptive
optima during the lineage’s evolutionary history. These
multiple species-level size peaks are confirmed by our
maximum-likelihood phylogenetic reconstruction of

Table 3 QuaSSE trait-dependent lineage diversification in
Liolaemus. Analyses based on selection from multiple models
described by a linear, sigmoidal or hump-shaped function
with (drift) and without a ‘drift’ or directional term added to
the model fitting (see text for details). Best-fit of models based
on (delta) bias-corrected Akaike Information Criteria (AICc)

Model LogL X P AlCc AAICc
Linear =27511 451 0.03 55861 12.39
Sigmoidal —-275.70 334 034 56422 1800
Hum-shaped —275.83 308 038 564.47 18.25
Linear (drift) —267.82 19.09 7.1e-05 546.22 0
Sigmoidal (drift) —271.14 1245 001 55739  11.18
Hum-shaped (drift) —267.34 20.05 <0.001 549.79 3.58
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Liolaemus ancestral body sizes (Fig. 2). Interestingly,
analyses of trait-dependent diversification showed that
higher rates of lineage accumulation are associated
with smaller body size (Table 3). Traditionally, analyses
of both lineage and phenotypic evolution have been
employed to address the role of early ecological opportun-
ity followed by density-dependent declines in diversifica-
tion via niche saturation over evolutionary time (often
within the context of island versus continental radiations)
[2, 9]. In turn, these phenomena are central to the
definition of adaptive radiation [1, 2, 7, 10], and hence,
have served to identify lineages that have followed this
route of diversification.

Diversification dynamics and continental evolutionary
radiations

Evolutionary diversifications in island systems (e.g., oceanic
islands, mainland ‘lake archipelagos’) and in continental
settings are widely thought to proceed under different
ecological dynamics, and scenarios leading to adaptive
radiations are thought to prevail on islands. Indeed, most
emblematic examples of adaptive radiations have diversi-
fied on island systems [1, 72-74], and the outcomes of
evolutionary radiations often differ between island and
continental phylogenetically related lineages [22, 75]. High
ecological opportunity emerging from lower interspecific
competition and high resource abundance are broadly
believed to be the basis to trigger adaptive radiations on
islands. In contrast, mainlands offer much more complex
and competitive environments [1, 21-23]. Therefore, it
has been suggested that the ecological opportunity that
promotes adaptive radiations on islands may not generally
occur in continental systems [e.g., 23], which would ex-
plain their differences in radiation patterns.

Ecological opportunity is, however, unlikely to be a
feature of islands only. Instead, we argue that eco-
logical opportunity is temporally episodic and dependent
on the environmental (ie., ecological, geographic, cli-
matic) stability of a landmass. Islands are in general more
unstable [76], while continents (given their larger area) are
more stable over time. Therefore, the emergence of eco-
logical opportunity is more likely to be a function of land-
mass area, and hence, it may only be less frequent in
continents. In fact, continents are known to have been
scenarios for active adaptive radiations driven by emer-
gence of ecological opportunity, for example, following
mass extinctions [1-3, 72]. In line with these views, the
prolific continental radiation of Liolaemus lizards has been
suggested to be importantly explained by large-scale eco-
logical opportunity [6, 35]. Adaptive radiations can be
triggered by extrinsic factors such as the arise of new
ecological opportunity via emergence of novel envi-
ronments, and/or by intrinsic factors (‘key adaptive
innovations’) that increase the availability of niches to
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a diversifying lineage [1-3, 7, 9]. Pincheira-Donoso
et al. [6] suggested that the onset of this lizard radi-
ation resulted from a combination of both scenarios.
Extrinsically, the emergence and uplift of the Andes over
the last ~25My [77, 78] created unprecedented novel eco-
logical opportunity (an enormous new high-elevation eco-
system), which is known to have also promoted
biodiversity proliferations in a variety of other organ-
isms [79-82]. Intrinsically, given that low-temperature
environments impose strong selection against reptile
developing eggs in nests [83, 84], successful colonization
of cold Andean climates demanded the evolution of
prolonged embryo retention, i.e., viviparity [6]. In support
of this view, the overwhelming majority of cold-climate
Liolaemus species are viviparous [6, 36, 85], and the mul-
tiple independent events of phylogenetic oviparity-to-
viviparity transitions are strongly correlated with multiple
independent invasions of colder environments during the
lineage history [6]. Invasions of cold-climate Patagonia
have followed exactly the same patterns, thus reinforcing
the ‘key innovation’ nature of viviparity [6]. Remarkably,
over 55 % of the Liolaemus species for which parity mode
is known are viviparous [6, 85]. Therefore, this relatively
young continental lineage is likely to have adaptively radi-
ated driven by ecological opportunity, and about half of its
exceptional diversity potentially evolved as a result of the
viviparity innovation that allowed access to exploit such
opportunities [6]. Interestingly, as indicated by Schulte
et al. [36], our results also suggest that the enormous cli-
matic crises caused by the Pleistocene do not seem to have
had an important role in the diversification of Liolaemus
lineages (Fig. 2).

Our lineage through-time analyses support a density-
dependent model of adaptive radiation, as shown by the
DDL + E model identified as the best approximation for
the diversification within Liolaemus. This analysis suggests
that Liolaemus diversification has tended to decline over
time as a function of accumulating species, although both
the exponential and the decline phases of the diversifica-
tion curve are only slightly pronounced (in fact, the Yule
model was identified as the next best alternative; Fig. 2).
These findings contrast with the model-based analysis of
body size diversification, which identified the ‘early burst’
(EB) model as the less preferred alternative (and the OU
as the best one), while the relative disparity through-time
analysis returned a positive MDI value (i.e., extensive trait
diversification, but strong subclade overlap in the mor-
phospace, [12]). Traditionally, negative MDI values are
interpreted as consistent with phenotypic diversification
during adaptive radiation [12, 13, 16, 86]. Therefore, in
our analyses, the rates and trajectories of diversification
are not consistent between lineage and phenotypic evolu-
tion (although a negative relationship between the two
seems to have dominated the radiation history of this
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clade; Table 3). However, we argue that the high pheno-
typic diversification and morphospace overlap found in
Liolaemus can in fact be consistent with a process of
adaptive radiation. In this lineage, geographic overlap
among main subclades tends to be limited [31, 36, 87],
compared to other reptile radiations. Therefore, overlap
in morphospace does not translate into spatial (i.e., eco-
logical) overlap, and hence, such high phenotypic rela-
tive disparity is likely to have evolved independently
among subclades in different areas [12]. In other words,
the Liolaemus genus as a whole may be a collection of
replicated and independently radiating subclades where
events of diversification are marginally or not influ-
enced by other subclades within the genus. The role for
limited spatial overlap among diversifying lineages in
the rates of phenotypic diversification has also been sug-
gested elsewhere [2, 8, 12]. The principle is that EB-like
diversification is more likely to occur in lineages with a
large proportion of sympatric species early in their history,
given that saturation of ecological space is directly medi-
ated by species interactions (e.g., competition) and coad-
aptation [2, 8]. As indicated above, Liolaemus subclades
tend to ‘specialize’ in different geographic zones, and
important part of this territory is a highly complex An-
dean topography, that further increases spatial isolation
between groups of species within subclades [35]. An inter-
esting implication of this phylogeographic pattern is that
continental radiations can face opportunities for more
complex macroevolutionary patterns to emerge. For ex-
ample, non-adaptively radiating subclades may evolve
within a lineage that is fundamentally an adaptive radi-
ation. Cases like this may also exist in Andean Liolaemus
subclades, in which sets of morphologically and ecologic-
ally similar species occur in isolation from each other
along ‘mountain chains’ that run latitudinally. This idea
was suggested by Pincheira-Donoso & Nuiiez [31] who
noted thatsome phenotypically and ecologically similar
Liolaemus species (e.g., their ‘migroviridis’ group) replace
each other along a latitudinal chain of high Andean
areas. The same is true for the Liolaemus’ sister genus
Phymaturus, which has emerged as a candidate case of
non-adaptive radiation given the same pattern [88, 89].

What does define an adaptive radiation?

Although our study reveals an apparent disconnection
between dynamics of clade and phenotypic diversifica-
tion, both findings are consistent with evolutionary pat-
terns observed in a diversity of animal lineages [8, 16].
Most notably, Harmon et al. [8] recently showed that
the early-bursts of phenotypic diversification tradition-
ally predicted by theory [2, 10] are only rarely observed
across numerous cases of adaptive radiations ranging from
taxonomically small to large lineages. Therefore, this EB
pattern of evolutionary diversification traditionally implied
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as a central condition to define adaptive radiations is not
compatible with the evolutionary history of multiple clas-
sic lineages that have been instrumental in shaping the
theory of adaptive radiation itself. These replicated find-
ings raise the question of what features define an adaptive
radiation.

On one hand, we agree with previous authors [1, 8, 90]
that the timing of adaptive radiation is not a necessary
condition to define the process. Instead, it is a feature that
should be empirically tested to better understand the con-
texts of diversification of specific clades [1]. In addition,
inference of diversification dynamics as functions of eco-
logical processes (e.g., density-dependent diversification
via niche saturation over time) from LTT curves can be in-
accurate. For instance, while asymptotic functions may
not necessarily reflect density-dependent diversification
[91-93], failure to identify diversification slowdowns does
not rule out a density-dependent diversification [9]. Also,
the traditional link between asymptotic diversification pat-
terns and adaptive radiations implicitly assumes that the
environments occupied by radiating clades are rather
static over their evolutionary histories (i.e., ecological
opportunity gets saturated early on, then, adaptive diversi-
fication slows down). However, episodes of ecological
opportunity can emerge multiple times during the evolu-
tionary history of a lineage (see above). For example, the
temporally and spatially spread pulses of Andean uplifts
are likely to have generated episodic ecological opportun-
ity during the history of Liolaemus, potentially eroding a
more pronounced overall asymptotic diversity-dependent
curve for the genus (which may at least in part be linked
to the, although non-significant, slight pulses of diversifi-
cation observed in the LTT analysis; Fig. 2). Unquestion-
ably, diversification mediated by niche filling following
emergence of ecological opportunity is a central com-
ponent of processes of adaptive radiation. Therefore,
we argue that adaptively radiating lineages are likely to
experience bursts of species and phenotypic diversifi-
cation during their evolutionary history. Yet, as sug-
gested above, these bursts can occur in multiple
episodes which are, in turn, likely to be a function of
changes in the environment, thus eroding the density-
dependent signature of diversification. Consequently,
we support the view [1, 3, 90] that an adaptive radi-
ation should be defined as the diversification of a sin-
gle lineage into a variety of species adapted to exploit
different portions of the multidimensional spectrum of
ecological resources driven by divergent natural selec-
tion. On the other hand, as indicated above, we suggest
that interpretations of the signals of diversification
mode inferred from relative disparity through-time
analyses should be based on multiple factors, rather
than on the extent of subclade overlap in morphospace
(i.e., the MDI value) alone.
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Conclusions

Our study reveals that lineage diversification in the
continental genus Liolaemus, one of Earth’s most prolific
vertebrate radiations, conforms to a diversity-dependent
model. This process is traditionally interpreted as adap-
tive radiation through niche filling [2, 8, 94]. Consistent
with continuous large-scale environmental changes and
emergence of ecological opportunity caused by the uplift
of the Andes, this radiation shows some slight signals of
episodic pulses of lineage accumulation. Therefore, and
regardless of whether these pulses are linked to episodic
ecological opportunity offered by the Andes, we suggest
that ecological opportunity in continents can be strong
and a crucial driver of adaptive radiations, but may
emerge less frequently compared to islands. Body size
diversification, in contrast, does not follow a niche filling
process (it conforms to a multiple-peak OU model and
shows a positive MDI value). We argue that depending
on factors such as the nature (whether it is episodic,
spatially spread) of ecological opportunity, lineage distri-
bution, and the functional contribution of traits to adap-
tive diversification, models of diversification between
lineages and phenotypes can differ. Finally, in agreement
with previous authors [1, 8, 90], we suggest that adaptive
radiations should not be defined solely based on evi-
dence for early-burst processes. Instead, we advocate a
more general definition based on evidence for diversifi-
cation of an ancestor into multiple species adapted to
different ecological niches.
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