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Characterizing selective pressures on the
pathway for de novo biosynthesis of
pyrimidines in yeast
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Abstract

Background: Selection on proteins is typically measured with the assumption that each protein acts independently.
However, selection more likely acts at higher levels of biological organization, requiring an integrative view of protein
function. Here, we built a kinetic model for de novo pyrimidine biosynthesis in the yeast Saccharomyces cerevisiae to
relate pathway function to selective pressures on individual protein-encoding genes.

Results: Gene families across yeast were constructed for each member of the pathway and the ratio of nonsynonymous
to synonymous nucleotide substitution rates (dN/dS) was estimated for each enzyme from S. cerevisiae and closely
related species. We found a positive relationship between the influence that each enzyme has on pathway function
and its selective constraint.

Conclusions: We expect this trend to be locally present for enzymes that have pathway control, but over longer
evolutionary timescales we expect that mutation-selection balance may change the enzymes that have pathway
control.

Keywords: Evolutionary systems biology, Metabolic pathway evolution, Phylogenetics, Kinetic model, Enzyme
evolution, Substitution rate
Background
Predicting functional change in proteins based upon either
mutations segregating in a population or substitutions
fixed between populations is a fundamental goal in modern
computational genomics. Many approaches for making
such predictions rely upon tests for selection, with (for ex-
ample) the view that inter-specific functional changes may
have been driven to fixation by positive directional selec-
tion. A common test for this type of problem is dN/dS, the
ratio of nonsynonymous to synonymous nucleotide substi-
tution rates. In using this measure (or other measures of
selection) to predict functional shifts, one is making the
assumption that each protein-coding gene functions inde-
pendently. However, it is well known that proteins function
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as part of larger pathways or macromolecular structures
and it is through these combined functions that selection
actually acts (see [1]). An example of this that will be
applied here in metabolism is the contribution of each en-
zyme to steady-state pathway flux, as described by a kinetic
model (characterizing the kinetics of each step of a path-
way based upon underlying enzymatic rate parameters).
One prediction from coupling between enzymes in a

pathway is that when a pathway is under negative selection
(or other types of selection), that the selective pressure on
amino acid change in an individual protein will relate to
the sensitivity of pathway function to perturbation of each
individual enzyme based upon amino acid changes. This
model is based upon an expectation that enzyme function
will account for a sizeable fraction of selective constraint
on a protein. Several previous studies have examined the
relationship between evolutionary rate and pathway flux,
including examination of the effects of network topology
[2–5], although a picture linked to underlying evolutionary
processes has not yet fully emerged.
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Other factors have also been discussed as contributors to
amino acid substitution. Folding stability and specificity
independent of function contribute to amino acid substitu-
tion, and this drives faster substitution on the surface than
the core, with the surface area to volume ratio of a pro-
tein’s fold providing some potential signal for a difference
in relative rates [6, 7]. Negative aspects of function (select-
ive pressures to prevent spurious interactions or activities)
are also a potential contributor to relative substitution
rates and selective pressures, with an expected link be-
tween surface hydrophobicity and rates of evolution [8].
This second mechanism is linked to an observation that
expression level is an important driver of selective con-
straint. Highly expressed proteins are thought to be under
stronger constraint to avoid spurious interactions that be-
come more probable at increased concentration [9–11].
Lastly, it has been proposed that selection for translational
fidelity is a major contributor to relative substitution rate
[12]. Ultimately, all of these factors will interplay in deter-
mining which amino acid substitutions are fixed and the
relative rate of fixation. This makes naïve measures of se-
lection on proteins (like dN/dS) potentially poor predictors
of functional change.
Fig. 1 a. Schematic presentation of the de novo pyrimidine biosynthesis and
of enzymatic activity and gene expression, respectively. Green arrows show up
the boxes, with S. cerevisiae gene names above them: Carbamoyl-phosphate s
dihydroorotase (DHOase, URA4), dihydroorotate dehydrogenase (DHODH, UR
orotidine-5’-phosphate decarboxylase (ODCase, URA3), uridylate kinase (UMPK
URA7 and URA8). The free intermediates of the pathway are N-carbamoyl-asp
b. Comparison of the de novo pyrimidine biosynthesis in selected organisms.
We are interested in examining the contribution to func-
tional selective constraint as well as amino acid substitu-
tion more generally, from protein function defined at the
pathway level. The ultimate aim of this study and research
trajectory is to understand the evolution of protein func-
tions in a cellular and organismal context (and to develop
tools to do so). Here, we develop a model pathway to
study, that of pyrimidine biosynthesis in yeast, with a
particular emphasis on S. cerevisiae.
The six enzymatic steps involved in pyrimidine biosyn-

thesis occur nearly universally in all organisms (Fig. 1).
However organization into multifunctional enzymes as
well as subcellular localization and regulation change
with evolution [13–16]. The end product of the pathway,
uridine monophosphate (UMP), is further phosphory-
lated to uridine diphosphate (UDP) and uridine triphos-
phate (UTP) that can be further converted to cytidine
triphosphate (CTP), thereby providing the two pyrimi-
dine building blocks of RNA. At the diphosphate level,
they are substrates for ribonucleotide reductase, chan-
neling them into the synthesis of DNA precursors, deox-
yribonucleoside triphosphates. S. cerevisiae can salvage
uracil, e.g. from the surrounding environment, and this
its feedback regulation in S. cerevisiae. Red arrows show downregulation
regulation of gene expression. Enzymatic activities are represented in
ynthetase (CPSase, URA2) and aspartate transcarbamylase (ATCase, URA2),
A1), orotate phosphoribosyltransferase (OPRtase, URA5 and URA10),
, URA6), nucleoside diphosphate kinase (UDPK, YNK1), CTP synthase (CTPS,
artate (CA_asp), dihydroorotate (DHO), orotate (OA), orotidylate (OMP).
Figure modified after [13, 14, 18]
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salvage pathways enters into a common RNA and DNA
precursor synthesis at the UMP level. In S. cerevisiae the
pathway consists of 6 proteins (Fig. 1). URA2 is a multi-
functional enzyme catalyzing the first two enzymatic steps
of the pathway, and its activity is negatively regulated in a
feedback loop by the RNA precursor UTP, both at the gene
expression level as well as at the enzymatic activity level
[13, 17]. The organization of the first two activities into
one enzyme is also seen in other yeast like S. pombe [18].
The only other regulation known in yeast in this pathway
is by dihyhdroorotate that positively affects the gene
expression of all other proteins of the pathway [13]. The
fourth reaction of the pathway is catalyzed in S. cerevisiae
by a cytosolic enzyme, while in other yeast this step can be
catalyzed by a mitochondrial enzyme coupled to the re-
spiratory chain. Yeast like S. kluyveri have both isoenzymes
[19–21]. In contrast to other species, including other
yeasts, two isoenzymes URA5 and URA10 catalyze the 5th

reaction of the pathway in S. cerevisiae [13]. The third and
sixth reactions are catalyzed by single enzymes, URA4 and
URA3, respectively [22–24].
In this study, we characterize the phylogenetic history of

the enzyme gene families in yeast, including identification
of the relative rates of evolution in the clade including S.
cerevisiae. We also build a kinetic model for the pathway
in S. cerevisiae by homology to the model from E. coli.
Lastly, we compare the sensitivity of steady-state pathway
flux for each enzyme to the relative level of selective con-
straint each enzyme is under in an attempt to assess the
importance of pathway function in driving enzyme evolu-
tion as well as the relationship between local evolutionary
constraint and function at a higher level of organization.
This involves phrasing an important evolutionary question
in two directions, “How well does a more sophisticated
model of protein function explain observed evolutionary
patterns?” and conversely, “How well do simple evolution-
ary statistics describing selective constraint (here dN/dS)
describe conservation of function or the opportunity for
functional shifts in a pathway?”. Ultimately, this modeling
framework can be envisioned as leading to the develop-
ment of new statistical tests for functional shifts in com-
parative and population genomics.

Results and Discussion
Phylogenetic analysis
Phylogenetic trees for each of the URA genes involved in
the de novo pyrimidine biosynthesis pathway in S. cerevi-
siae S288c were constructed. The constructed phylogenies
were then assessed for selective strength using two differ-
ent tests for dN/dS; the free-ratios model, in which ω is
allowed to vary across each branch, and the 2-ratio model,
in which ω is constrained for each branch except for the
lineage of interest. The 2-ratio model was supported in
the YNK1 gene family, but not in any of the other gene
families. The free-ratios model was supported in four of
the gene families (two of which had no target sequence for
kinetic analysis), but the dS ratio for these lineages showed
extremely low dS such that the dN/dS estimates for these
lineages were unreliable. Hence the dN/dS ratio from the
1-ratio model was compared with the kinetic parameter
sensitivity for each of the gene families. It should be noted
as a caveat that there are potential errors in estimation for
maximum likelihood point estimates.
In each family, proteins with high dN/dS ratios may

reflect selective pressures that alter enzymatic function,
either quantitatively (corresponding to changes in kin-
etic parameter values) or qualitatively (corresponding to
changes in the structure of the differential equation kin-
etic model). Of course, as discussed in the introduction,
selection may also be acting on attributes of protein
sequence that are independent of these types of func-
tion. Further, our phylogenetic analysis was used to pin-
point well-supported candidate gene duplication and
lateral transfer events. We hypothesize that these events
may have functionally changed either kinetic parameter
values or the structure of the kinetic model. Unfortunately,
because kinetic data is currently unavailable outside of S.
cerevisiae, we cannot presently test these hypothesises.

URA1
The phylogenetic analysis of the URA1 gene family re-
vealed that the URA1 gene in S. cerevisiae S288c is evolv-
ing under negative selection with a dN/dS value of 0.31
(Table 1). However, it is under more relaxed selection than
in several other strains of S. cerevisiae. The S288c strain of
yeast is a laboratory strain that has undergone strong se-
lective pressure for rapid growth in a nutrient rich envir-
onment [25]. Other strains of yeast have additionally been
placed under strong selective pressures based upon the
different industrial uses to which they are applied. Within
the URA1 gene family we found that both the laboratory
S288c strain and the VL3 wine production strain were
under weaker selective constraint than both the wine
strain AWRI796 and the human pathogen strain YJM789.
The VL3 strain was under slight negative selection with a
dN/dS ratio of 0.90 (Additional file 1: Figure S1), which is
close to the dN/dS of 1 that would indicate the absence of
selective pressure on the gene. This could be indicative of
the domestication process that each of these strains has
evolved under. Since the laboratory strain has been domes-
ticated in a nutrient rich environment (and protected from
competition), there is potentially less selective pressure on
the pyrimidine biosynthesis pathway than there would be
for other strains. As noted by Borneman et al. [26], six
sequenced strains of yeast from similar and different indus-
trial and laboratory backgrounds showed substantial gen-
omic differences, even for yeast strains from the same
industrial setting. These differences include differences in



Table 1 Results of the phylogenetic analysis

Gene
Family

GI# dS tree
length

dN/dS
(Free-ratio)

dS branch
(Free-ratio)

dN/dS
(2-ratio)

dS branch
length (2-ratio)

dN/dS
(1-ratio)

P-value
(Free vs 2-Ratio)

P-value
(Free vs 1-Ratio)

P-value
(2 vs 1-Ratio)

URA1 6322633 2.38 0.31 <0.01 0.29 <0.01 0.05 <0.01 <0.01 0.26

URA2 – 3.05 – – – – 0.03 – – –

ATCase – 2.58 – – – – 0.02 – – –

CPSase – 0.78 – – – – 0.01 – – –

URA3 398364267 1.63 <0.01 <0.01 2.00 <0.01 0.04 0.09 0.12 >0.99

URA4 – 0.93 – – – – 0.14 – – –

URA5 6323530 0.09 <0.01 <0.01 <0.01 <0.01 0.14 <0.01 <0.01 >0.99

URA6 398364671 1.05 0.40 0.01 0.39 0.01 0.11 0.69 0.69 0.37

URA7 6319432 1.02 1.71 <0.01 2.00 <0.01 0.05 <0.01 <0.01 >0.99

URA10 6323927 1.54 <0.01 0.01 <0.01 <0.01 0.08 0.08 0.13 0.99

YNK1 6322783 1.30 <0.01 <0.01 <0.01 <0.01 0.05 0.10 0.05 0.005

dN/dS values according to different nested approaches in PAML [38] were estimated. dN/dS values in bold were compared with kinetic parameter sensitivities.
Underlined dN/dS values showed low dS and were considered to be poorly estimated (dS < 0.001)
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chromosome copy numbers, ORFs, and novel genes, which
may explain why each of these strains appears to be evolv-
ing nearly independently of each other and therefore may
be under different selective constraints.
The divergence of S. cerevisiae URA1 might also be

explained by the way S. cerevisiae catalyzes the fourth
reaction in the de novo pyrimidine biosynthesis pathway
compared to other yeast. In other yeast this reaction is
performed by a mitochondrial enzyme coupled to the re-
spiratory chain, while in S. cerevisiae it is performed in
the cytosol.
An examination of the entire URA1 gene family add-

itionally showed four different high confidence duplica-
tion events and one potential horizontal gene transfer
(HGT) event after being reconciled against the fungal
species tree using a soft parsimony-based approach
(Fig. 2; Additional file 1: Figure S12).

URA2
The kinetic parameters for this gene were drawn from the
strain MD171-1C, which derives from the wild-type strain
FL-100 [27, 28]. This strain was not present in the phylo-
genetic analysis. Although a phylogenetic tree for the
URA2 gene family was constructed, we were unable to de-
termine relative rates of dN/dS for the MD171-1C strain
and thus used the 1-ratio estimate of dN/dS of 0.03
(Table 1) to infer the dN/dS ratio for the lineage of
MD171-1C. Additionally, we examined the CPSase and
ATCase domains from the URA2 gene (strain S288c) in-
dividually to determine the relative rates of dN/dS for
these domains, because they carry out distinct enzym-
atic reactions. The 1-ratio estimate of dN/dS was again
used for both of the domains, with the CPSase domain
having an estimate of 0.01 (Additional file 1: Figure S11)
and the ATCase domain having an estimate of 0.02
(Additional file 1: Figure S10). This conformed to the
hypothesis that the two domains are under stronger nega-
tive selection than the complete protein, with the CPSase
domain under slightly stronger negative constraint.
From the URA2 gene family, it was possible to addition-

ally assess two different high confidence duplication
events which occurred in the early diverging fungal line-
ages. The two paralogs mapped to the Mucorineae lineage
and a lineage specific duplication on the lineage leading to
Rhizopus delemar (Fig. 2; Additional file 1: Figure S13).

URA3
The dN/dS analysis of the URA3 gene tree did not show
support for either the free-ratio or 2-ratio analysis, there-
fore the 1-ratio dN/dS value of 0.04 was used as the rate of
evolution for the S288c lineage (Table 1). To test how this
dN/dS value varied based upon small perturbations within
the tree, a subtree of the URA3 gene family was pruned
and examined. The 1-ratio analysis showed that the subtree
had a dN/dS value of 0.80, which is highly more relaxed
than the initial estimate, indicating this gene tree may be
highly influenced by small changes within the tree top-
ology. Additionally it was noted that a putative URA1 gene
from Pneumocystis jirovecii grouped within the S. cerevisiae
genes. This could potentially be an artifactual relationship
and the result of phylogenetic error, as these two species
are distantly related. Alternatively, this could be a signal as-
sociated with a lateral transfer event.
The gene tree/species tree reconciliation of URA3

showed three different duplications that might have oc-
curred throughout the gene family and one possible
HGT. Two of the duplications mapped to older line-
ages within the fungal species tree, Peziziomycetina
and Sordariomycetes. The third duplication was along
the Botryosphaeriaceae lineage. A potential xenolog/
paralog was additionally found on the Leotiomycetes
lineage but was consistent with both gene duplication



Fig. 2 Gene evolution within the fungal species tree. Shown is the NCBI fungal species tree annotated with inferred gene duplication and lateral
transfer events following gene tree/species tree reconciliation. Duplication events marked as paralog/xenolog were ambiguous and not obviously
differentiable between being a gene duplication event and a lateral transfer event. The numbered branches within the figure indicate the following
duplication and lateral transfer events: 1) Branch: Fungi [URA1 – Paralog(2), URA6 – Paralog(3), URA6 – Paralog/Xenolog(3), YNK1 – Paralog,
YNK1 – Paralog/Xenolog], 2) Branch: Rhizophagus irregulare [URA5/10 – Paralog], 3) Branch: Mortierella [URA7 – Paralog, YNK1 – Paralog], 4)
Branch: Mucorales [URA7 – Paralog], 5) Mucorineae [URA2 – Paralog, URA7 – Paralog], 6) Branch: Rhizopus microsporus [URA1 – Paralog, URA7 – Paralog,
YNK1 – Paralog], 7) Branch: Rhizopus delemar [URA2 – Paralog], 8) Branch: Encephalitozoon intestinalis [URA7 – Paralog], 9) Branch: Pucciniales
[URA6 – Paralog], 10) Branch: Filobasidiella/Cryptococcus neoformans species complex [URA5/10 – Paralog(5)], 11) Branch: Ceriporiopsis [URA1 – Paralog],
12) Branch: Fomitopsis pinicola [URA7 – Paralog], 13) Branch: Paxillus involutus [YNK1 – Paralog], 14) Branch: Laccaria bicolor [URA5/10 – Paralog], 15) Branch:
Taphrinomycotina [YNK1 – Xenolog], 16) Branch: Millerozyma farinosa [YNK1 – Paralog], 17) Branch: Saccharomycetacea [URA1 – Xenolog,
URA5/10 – Paralog(2), URA7 – Paralog], 18) Branch: Pezizomycotina [URA3 – Paralog], 19) Pleosporineae [URA7 – Paralog], 20) Branch:
Botryosphaeriaceae [URA3 – Paralog], 21) Branch: Leotiomyceta [URA3 – Paralog/Xenolog, URA7 – Paralog, URA7 – Paralog/Xenolog], 22)
Branch: Blumeria graminis f. sp. Hordei DH14 [URA5/10 – Paralog], 23) Branch: Sordariomycetes [URA7 – Paralog], 24) Branch: Hypocreales
[URA7 – Paralog], 25) Branch: Fusarium [URA7 – Paralog(3)], 26) Branch: Fusarium verticillioides [URA7 – Paralog], 27) Branch: Fusarium sambucinum
species complex [URA7 – Paralog], 28) Branch: Fusarium oxysporum FOSC 3-a [URA7 – Paralog], 29) Branch: Fusarium oxysporum f. sp. Vasinfectum 25433
[URA7 – Paralog]. An expandable pdf version of Fig. 2 is also found within the supplementary materials
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and lateral transfer as hypotheses for the origin (Fig. 2;
Additional file 1: Figure S14).
URA4
The kinetic parameters for the URA4 reaction were esti-
mated and not based on a specific strain of yeast. There-
fore we were unable to calculate a dN/dS ratio on a
specific lineage to estimate the relative rate of evolution.
We were able to estimate the dN/dS ratio for the 1-ratio
test in which ω is constant throughout the tree. This
resulted in a dN/dS estimate of 0.14 (Table 1). Interest-
ingly, similar to the URA1 gene tree, two S. cerevisiae
strains showed elevated dN/dS ratios compared to the
rest of the tree in the free-ratios analysis (which was
supported at below the 1 % level). The two strains were
the FostersB strain with a dN/dS ratio of 1.04 and an
unspecified S. cerevisiae strain (GI: 4765) with a dN/dS
of 0.99 (Additional file 1: Figure S4). The FostersB strain
is used in industry in the production of ale, and further-
more has been shown to contain the most heterozygous
SNPs compared to all other S. cerevisiae strains [29].
This strain is known to contain at least 36 ORFs not
present in the S288c laboratory strain, and it appears to
be evolving differently than the laboratory and wine
strains. Therefore, it is plausible that URA4 could be
under different selective constraints in this strain than
in other strains. The other S. cerevisiae strain was un-
known, and therefore it is unclear why this strain would
exhibit an elevated dN/dS ratio compared to the other
S. cerevisiae strains within the gene family. The URA4
gene family did not show clear signs of gene duplication
events (Additional file 1: Figure S15).
URA5/URA10
The URA5 and URA10 gene families were highly similar,
with the URA10 gene family being the larger of the two
(Additional file 1: Figure S16; Additional file 1: Figure S17).
These two gene families originated from a gene duplication
event and contained two distinct groups of S. cerevisiae
genes, grouping into the URA5 genes and URA10 genes.
The URA5 gene family was supported by the free-ratios
model but the lineage for S288c was not possible to esti-
mate accurately due to low dS along the branch. Therefore
the 1-ratio estimate of 0.14 was used as the branch esti-
mate of dN/dS for the S. cerevisiae S288c lineage (Table 1).
Furthermore, like the URA4 gene tree, the FostersB

strain in the URA5 gene family under the free-ratios
model showed elevated signals of dN/dS compared to
the rest of the tree. The dN/dS for this branch was 0.71
(Additional file 1: Figure S5), indicating highly relaxed
selective constraint along this lineage. As suggested
above, this may indicate that the FostersB strain is evolv-
ing differently from the rest of the S. cerevisiae strains.
The URA10 gene family was not supported at the
free-ratios level or at the 2-ratio level. Therefore a sub-
tree was assessed for relative rates of evolution. From
the 1-ratio model the dN/dS for each branch within the
tree was estimated at 0.08, and the dN/dS ratio of the
subtree was estimated at 0.06. The dN/dS ratio did not
alter much with the perturbation of the tree (as de-
scribed in the Methods section) and was therefore con-
sidered a reasonable indicator that the S288c strain is
evolving under strong negative selection.
The URA5 and URA10 gene families showed several dif-

ferent duplication events to have occurred throughout the
gene family, with no putative HGT events. Both of these
gene families showed numerous duplications within the
Filobasidiella lineage and the along Cryptococcus neofor-
mans lineage. Additionally there was a lineage-specific
duplication within Blumeria graminis which resulted in
two different copies within the B. graminis hordei D14
strain. The duplication analysis also identified a duplica-
tion event on the Saccharomycetacea lineage which was
putatively responsible for the divergence of the URA5 and
URA10 gene families (Fig. 2; Additional file 1: Figure S16;
Additional file 1: Figure S17).

URA6
The URA6 gene family encodes for a uridine monopho-
sphate kinase [30] and is responsible for catalyzing the sev-
enth step in the de novo pyrimidine biosynthesis pathway.
The URA6 gene family was not supported for the free-ratio
model; therefore the 1-ratio dN/dS estimate of 0.11 was
used for the tree (Table 1). This gene family showed two
distinct duplication events that occurred along the S. cerevi-
siae lineage, resulting in three different clades containing S.
cerevisiae genes (Fig. 2; Additional file 1: Figure S18). The
first of the three clades was the URA6 gene family and the
other two clades encoded an adenylate kinase ADK1 and
an adenylate kinase ADK2. Adenylate kinases are import-
ant for regulating energy levels within the cell and are
responsible for catalyzing the reaction of ATP and AMP to
2 ADP. Only the YJM789 S. cerevisiae strain was found in
all three of the clades, while the S288c strain showed evi-
dence of a URA6 gene and a single adenylate kinase,
ADK2. This suggests that some of the adenylate kinase ac-
tivity might be lost within some of the S. cerevisiae strains.
The URA6 gene family duplication analysis was also

able to identify one other potential paralog and three
potential paralog/xenologs at the base of the fungal tree.
These putative duplications and HGT events lead to
several species being placed distantly within the tree
from their locations in the fungal species tree (Fig. 2).

URA7
The free-ratios analysis for the URA7 gene family, which
encodes for a CTP synthetase, was significant at the 0.01
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level; however the dS ratio for the S288c lineage was too
low to accurately estimate the dN/dS ratio for the
branch (dS < 0.001). Therefore the 1-ratio estimate of
0.05 was used for the gene family (Table 1). Within the
URA7 gene family there was also an additional clade of
URA8 genes, which also putatively encode a CTP syn-
thetase. These proteins were separated from the URA7
genes via a duplication event along the Saccharomyces
lineage, suggesting that this duplication was specific to
the Saccharomyces clade (Additional file 1: Figure S19).
The URA7 gene family was also the most expansive of

the all of the URA gene families studied in this analysis,
with 18 putative duplication events and two putative
HGT events. A large number of putative duplications
were located within the genus Fusarium, with seven du-
plications occurring within the Fusarium clade (Fig. 2;
Additional file 1: Figure S19).
YNK1
The YNK1 gene family, which is a nucleoside diphosphate
kinase, was the only family to show support for the 2-ratio
vs 1-ratio likelihood ratio test. However the 1-ratio model
dN/dS estimate of 0.05 (Table 1) was used for the family,
because the dS estimate for the S. cerevisiae lineage of
interest was too low to accurately estimate the dN/dS for
the specific lineage (dS < 0.001).
The duplication analysis of the YNK1 gene family re-

vealed one putative xenolog, one ambiguous paralog/xeno-
log and five additional high confidence gene duplications.
The paralog/xenolog was mapped to the origin of the fun-
gal species tree as well as one of the paralogs, while the
putative xenolog was found along the Taphrinomycotina
lineage. The other duplications were recent lineage specific
duplications, spread out throughout the YNK1 gene tree
(Fig. 2; Additional file 1: Figure S20).
Kinetic modeling
Our kinetic model for the yeast pyrimidine biosynthesis
pathway was inspired by the Rodriguez et al. [31] model
for the pathway in E. coli. We optimized the 28 parame-
ters in the kinetic model to reproduce the observed
steady-state concentrations of UMP, UDP, and UTP, while
minimizing deviation from experimentally measured par-
ameter values (Table 2). We found the optimization to be
well-constrained, with only a single global optimum. Over
100 optimizations runs, the coefficients of variation for in-
ferred parameter values were all less than 10 %, with the
exception of Km8 (~30 %) and gpyr (~80 %). Moreover,
these parameter sets all generated highly similar influences
(standard deviations all less than 1e-3), and influence rank-
ings (mean rank correlation rho = 0.998). Thus in Table 2
we report only the single parameter set that produced the
lowest total cost. This parameter set closely reproduced
the observed metabolite concentrations (Table 3), suggest-
ing a good fit between the model and the data.
In general, optimized values were close to initial values,

however six parameters (vmax1, vmax2, vmax10, Km8, atp,
and bc) changed by a factor of two or greater. vmax1 and
vmax2 are rate parameters for the first two reactions in the
pathway, both of which take place on the combined en-
zyme URA2. atp and bc are substrate concentrations for
the first reaction, and vmax10 is a rate parameter for UMP
kinase URA6. These parameters are among the most sensi-
tive in the model, and as such it is not surprising that the
optimization procedure adjusts those parameters to best
reproduce metabolite concentrations. Km8 is the Michealis
constant for UTP for the CTP synthase URA7 that con-
verts UTP to CTP. While this parameter is not particularly
influential in terms of model behavior, UTP is one of the
metabolites whose concentration we constrained in the
optimization process, such that parameters sensitive to its
concentration might need to be adjusted. This level of de-
viation is not unexpected when comparing biochemical
inference from different experiments [32].
For each parameter we then calculated the sensitivity of

the steady-state UMP concentration to changes in that
parameter. These varied over many orders of magnitude
(Table 2). The largest values were for parameters involved
in the CPSase activity of URA2 and the UMP kinase
URA6, suggesting that these two enzymes act as control
points for flux through the pathway.

Relation between pathway kinetics and enzyme evolution
To assess the relationship between the biochemical prop-
erties of the pathway and the evolution of the constituent
enzymes, we assigned each enzymatic activity a single sen-
sitivity score by taking the geometric mean of the sensitiv-
ities for the parameters it possesses, and we compared
these sensitivities with evolutionary rate ratios. We find
that enzymes for which the steady-state flux is sensitive
tend to evolve more slowly (Fig. 3). The rank correlation
is −0.485, with a suggestive although statistically insignifi-
cant p-value of 0.19. Interestingly, the two enzymatic ac-
tivities of URA2 are predicted to have different effects on
pathway flux, and the CPSase enzymatic activity with
greater sensitivity indeed evolves more slowly. The most
notable exception to the overall trend of decreasing evolu-
tionary rate ratios with increasing pathway sensitivity is
URA6. URA6 converts UMP to UDP, forming part of the
negative allosteric feedback loop in the pathway. Our
model includes only the most direct route from UMP to
UTP, but other unmodeled metabolic pathways may be in-
fluential, perhaps leading our model to overestimate the
influence of URA6. In particular, the substrate of URA6 is
UMP, which can also be produced from uracil by the sal-
vage pathway (Fig. 1), which we have not modeled. Includ-
ing only the core reactions (URA2, URA4, URA1, URA5,



Table 3 Steady-state model metabolite concentrations

Metabolite Model concentration
(mM)

Experimental concentration
(mM; [39])

ump 4.2 × 10−4 3.7 × 10−4

udp 2.9 × 10−3 2.9 × 10−3

utp 6.7 × 10−3 6.7 × 10−3

ctp 7.5 × 10−1

cp 2.7 × 10−1

ca 4.7 × 10−3

dho 1.8 × 10−5

oro 2.2 × 10−6

omp 5.8 × 10−2

Table 2 Kinetic model parameter values and sensitivites

Parameter Description Experimental reference Initial value Optimized value Sensitivity Enzyme

vmax1 Vmax for carbamoyl synthetase [48] 5.40 × 10−1 3.62 9.68 × 10−1 URA2

Kutp UTP binding constant [48] 1.40 1.41 5.49 × 10−3 URA2

Katp ATP binding constant [48] 7.50 1.29 −8.68 × 10−1 URA2

Kq Km for glutamine [48] 7.00 × 10−2 5.78 × 10-2 −9.32 × 10−2 URA2

Kbc Km for bicarbonate [48] 8.00 2.37 −5.96 × 10−1 URA2

vmax2 Vmax for aspartate [49] 1.10 2.45 2.00 × 10−1 URA2

Kasp Km for aspartate [50] 2.80 × 10−1 1.68 × 10−1 −1.24 × 10−1 URA2

Km2 Km for aspartate [49] 4.00 2.00 −1.77 × 10−1 URA2

vmax3 Vmax for dihydroorotase 2.47 × 101 2.87 × 101 1.21 × 10−4 URA4

Km3 Km for dihydroorotase 7.00 × 10−1 1.27 −1.20 × 10−4 URA4

vmax4 Vmax for dihydroorotate dehydrogenase [21] 9.18 × 101 9.18 × 101 1.73 × 10−5 URA1

Km4 Km for dihydroorotate dehydrogenase [21] 1.60 × 10−2 1.60 × 10−2 −1.73 × 10−5 URA1

vmax5 Vmax for orotate phosphoribosyl transferase [51] 5.18 × 103 5.23 × 103 2.10 × 10−5 URA5

Km5 Km for orotate phosphoribosyl transferase [51] 1.97 × 10−2 1.95 × 10−2 −2.10 × 10−5 URA5

vmax6 Vmax for OMP decarboxylase [52] 3.03 × 101 3.50 × 101 4.63 × 10−2 URA3

Km6 Km for OMP decarboxylase 3.20 × 101 2.03 × 101 −4.62 × 10−2 URA3

vmax7 Vmax for nucleoside diphosphate kinase [53] 6.48 5.83 −6.92 × 10−5 YNK1

Km7 Km for nucleoside diphosphate kinase [53] 1.50 × 10−1 1.66 × 10−1 6.79 × 10−5 YNK1

vmax8 Vmax for CTP synthase [54] 5.40 1.63 × 10−1 2.46 × 10−2 URA7

Km8 Km for CTP synthase [54] 7.40 × 10−4 4.36 × 10−3 −5.22 × 10−3 URA7

vmax10 Vmax for UMP kinase [55] 1.14 6.56 −1.02 URA6

Km10 Km for UMP kinase [55] 1.50 × 10−1 2.68 × 10−2 1.00 URA6

gpyr Pyrimidine utilization rate 4.00 × 10−1 1.98 × 10−1 1.16 × 10−4

KMp Km for pyrimidine utilization 5.80 5.49 −1.16 × 10−4

bc Intracellular bicarbonate conc. [39] 4.51 × 10−1 1.52 5.96 × 10−1

glu Intracellular glutamine conc. [39] 4.51 × 10−1 5.46 × 10−1 9.32 × 10−2

asp Intracellular aspartate conc. [39] 5.85 × 10−2 9.73 × 10−2 1.24 × 10−1

atp Initial ATP conc. [39] 2.59 × 10−2 1.51 × 10−1 8.68 × 10−1

vmax parameters in units of mM/hr. Km parameters and concentrations in units of mM
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URA3), we find a correlation of −0.841, p = 0.036, perhaps
suggesting that our model more accurately captures the
core linear pathway than the feedback loops.
Among the strongest known predictors of protein evolu-

tionary rate are expression level and solvent accessibility.
For the enzymes in the pyrimidine biosynthesis pathway,
the rank correlation between dN/dS and expression level
(r = +0.11, p = 0.79) is notably weaker than that between
dN/dS and steady-state flux sensitivity. The correlation be-
tween dN/dS and absolute solvent accessibility (r = +0.46,
p = 0.21) is similar to but slightly weaker than that between
dN/dS and flux sensitivity. When expression level and solv-
ent accessibility are controlled for, the overall correlation
between dN/dS and flux sensitivity becomes somewhat
weaker (r = −0.37, p = 0.36), but it remains strong for the
core pathway genes (r = −0.94, p = 0.016). Together, these
results suggest that flux sensitivity predicts short-term



Fig. 3 Negative correlation between protein evolutionary rate ratios
and kinetic pathway sensitivity. With the exception of URA2, each point
represents an enzyme in the pathway, for which we have calculated
evolutionary rate ratio dN/dS and the geometric mean sensitivity of
steady-state pathway flux to kinetic parameters of that enzyme. For
URA2, we separately analyzed the domains corresponding to the two
enzymatic activities it performs
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protein evolution as well as the strongest previously known
predictors. Further, expression level contributes to selective
constraint through both flux sensitivity mediated by the
parameter Vmax (that is dependent upon [E]) as well as
through selection against negative (non-specific) effects
when [E] becomes large.

Conclusions
We found that enzymes with greater influence on flux
through the yeast pyrimidine synthesis pathway tend to
evolve under greater selective constraint, as measured
by dN/dS over a short evolutionary time. This is consist-
ent with a scenario in which deleterious changes are
strongly purged from rate-limiting enzymes, because they
alter pathway flux, but such changes may accumulate in
enzymes with less control over flux (Mannakee and
Gutenkunst, manuscript submitted). Genetic changes may
also accumulate that alter the expression levels of the vari-
ous enzymes. Over longer evolutionary periods, we expect
that mutation-selection balance dominates this process
(Orlenko, Teufel, and Liberles, manuscript submitted),
and rate-limiting steps in the pathway may change. Selec-
tion may also act on more aspects of pathway function
than steady-state flux, such as temporal dynamics, poten-
tially creating a more rugged fitness landscape. However,
even under more complex selective regimes, we still ex-
pect mutation-selection balance over longer evolution-
ary periods and stronger selection on enzymes
temporarily in control points over shorter evolutionary
periods. There are of course the caveats that the activity
level of an enzyme will likely influence the relative pro-
portion of mutations that improve or decrease function
and that the expression level of an enzyme will increase
selective constraint on that enzyme for reasons inde-
pendent of the positive function of the enzyme.
In the study here, a link in short-term evolution be-
tween dN/dS and flux control was found. The phylogen-
etic analysis presented covers much longer evolutionary
periods than the obvserved correlation between dN/dS
and flux. The reasons for this are two-fold. First, dN/dS
(in addition to other limitations) is limited in where it
can be applied due to problems with rapid saturation of
dS. Second, kinetic data is limited for most pathways
over most of the tree of life. A discussion of differences
in expectations of short and long evolutionary periods
has been undertaken, and together these reflect gaps in
data, methodology, and theory to address key problems
in the functional synthesis of molecular evolution.
Ultimately, as the functional synthesis progresses in mo-

lecular evolution, questions about using functional evolu-
tion to explain dN/dS and observed substitution patterns
more generally [33] will be flipped on their head. The
question will then be, “Can the field develop good evolu-
tionary metrics that are predictors of lineage-specific direc-
tional functional change between homologous proteins
from closely related genomes?”.

Methods
Phylogenetic analysis
Sequences for each step in the de novo pyrimidine biosyn-
thesis pathway of S. cerevisiae were downloaded from
NCBI. Sequences downloaded from NCBI were as follows:
URA1 (GI: 6322633), URA2 (GI: 330443609), URA3 (GI:
398364267), URA4 (GI: 6323452), URA5 (GI: 6323530),
URA10 (GI: 6323927), URA6 (GI: 398364671), URA7 (GI:
6319432), and YNK1 (GI: 6322783). All sequences were
from the laboratory strain S. cerevisiae S288c. A BLAST
search against all fungal species was performed for each of
the sequences to determine homologs from the non-
redundant database. BLAST e-value thresholds were var-
ied to include the largest amount of diversity possible.
The e-value threshold used for URA gene families 2, 3,
4, 5, 6, 7, 10, and YNK1 was 1e−10 while the e-value
cutoff for URA1 was 1. Where possible, families were ex-
tended such that each family would contain a sequence
from 4 different fungal species. The related species that
were attempted to be incorporated into each gene family
were: S. arboricola, Blumeria graminis, Schizosaccharo-
myces pombe, and Kluyveromyces polysporus, selected as
species with whole genomes designed to give a broad
picture of fungal protein evolution. The initial gene families
were then reduced based on size thresholds to limit the
number of partial sequences within the datasets. The
thresholds for size discrimination varied for each gene fam-
ily, to include the four related species. Size cutoffs of 45 %
were used for families URA1 and URA3, while a cutoff
value of 10 % was used for families URA2, 4, 5, 7, and 10.
Gene families for URA6 and YNK1 used a size threshold
of 20 %. These resulted in gene family sizes of 188 proteins
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(representing 161 unique species, URA1), 199 proteins
(representing 189 unique species, URA2), 297 proteins
(representing 226 unique species, URA3), 233 proteins
(representing 208 unique species, URA4), 244 proteins
(representing 208 unique species, URA5), 246 proteins
(representing 211 unique species, URA10), 260 proteins
(representing 220 unique species, URA6), 358 proteins
(representing 311 unique species, URA7) and 277 proteins
(representing 264 unique species, YNK1). Multiple
sequence alignments for each family were generated using
MAFFT (L-ins-i) method [34], and optimal substitution
models were calculated with Prottest 3.4 [35]. The best
substitution model as calculated from Prottest was: LG +
I + G + F (URA1), LG + I + G + F (URA2), LG +G (URA3),
LG + I +G (URA4), LG + I + G (URA5), LG + I + G
(URA10), LG + I + G (URA6), LG + I + G (URA7), LG +
I + G (YNK1), LG + I + G + F (CPSase), LG + I + G
(ATCase). These models were then used to calculate a
phylogenetic tree for each URA protein family using
PhyML 3.4 [36]. PhyML was run with 100 bootstraps
and implemented differently depending on the substitu-
tion model and parameters found using Prottest. Total
tree lengths varied for each of the gene families with
total lengths as follows: 86.69 (URA1), 46.12 (URA2)
66.38 (URA3),61.51 (URA4), 47.98 (URA5), 48.76
(URA10), 127.61 (URA6), 75.61 (URA7), YNK1 (53.74).
The URA1 gene family showed the second longest total
tree length while also having the fewest number of spe-
cies, suggesting higher levels of divergence than other
URA gene families.
Upon reconstruction of the phylogenetic tree, each

gene tree was then reconciled against the fungal species
tree as found on NCBI using Softparsmap [37] to infer
the root of each tree. The Softparsmap parameters that
were used in the analysis were “did = root” to minimize
the number of duplications and loss and to root the tree.
Also the parameter allowing for weak nodes to be col-
lapsed was set to 0.7. The removal of in-paralogous se-
quences was set to “no” so that paralogous sequences
would still be present in the duplication analysis. The
events that were identified as gene duplication events
were meant as a conservative estimate of high confi-
dence events, so evidence for multiple copies in at least
one species rather than purely topological differences
was required. The counts given are not meant to be
reflective of underlying duplication or lateral transfer
rates.
To determine dN/dS ratios (the ratio of nonsynonymous

to synonymous substitution rates) for the S. cerevisiae
288c lineage within the de novo pyrimidine biosynthesis
pathway in yeast, subtrees were selected from each of the
larger URA gene family trees. Subtrees were selected such
that the overall dS tree length was below 3, to control for
potential dS saturation throughout the tree. All subtrees
selected had an overall dS tree length of approximately 3
(or lower). Ratios for dN/dS were calculated for each sub-
tree with PAML 4.5 [38], using the free-ratios branch
model and the 2-ratio branch model (for URA1, URA3,
URA5, and URA10). The 2-ratio branch model was con-
figured such that the branch leading to S. cerevisiae S288c
was estimated independently from the rest of the tree
branches for genes where this species was used for kinetic
data. To test the robustness of dN/dS ratios dependent on
initial starting values of dN/dS in PAML, three different
starting values of dN/dS were used: 0.5, 1, and 2. Only the
URA6 and URA7 gene families showed fluctuations in
dN/dS values for the free-ratios model due to different ini-
tial starting values of dN/dS. However each of the fluctu-
ating branches also showed an extremely low value for dS,
were excluded from the analysis, and did not affect the
dN/dS ratio estimate for the family. The models formed a
nested hierarchy of complexity for model testing, compar-
ing the free ratio to two ratio and both to the one ratio
(for cases where the two ratio was not supported but the
free ratio was), with p-values calculated from a χ2 distribu-
tion. For lineages where dS < 0.01, the one ratio value was
used in place of the free-ratios value. No correction for
multiple testing was applied, as the aim of this analysis is
to identify the best supported dN/dS ratio without over-
fitting the data.
To further understand how perturbations to the phylo-

genetic tree could impact the relative rates of dN/dS, for
each tree that did not show support for the free-ratios
branch model, a subtree was built one node below the
original subtree and evaluated for dN/dS using the same
models as described above. For URA2 and URA4, al-
though both gene trees supported the free-ratios branch
model, the dN/dS ratio for the 1-ratio model was used
in subsequent analyses, since the S. cerevisiae S288c
strain was not used as the experimental strain in the kin-
etic parameter estimates. Thus to attain a more general
approximation of the relative rate of evolution along the
S. cerevisiae S288c lineage, only dN/dS values for the 1-
ratio branch model were used for these trees.
The URA2 gene family was explored further based on

domain boundaries within the protein to determine if
different domains within the protein influenced the overall
dN/dS of the protein family. The URA2 gene is composed
of four subdomains, from which the CPSase (carbamoyl-
phosphate synthase) and the ATCase (aspartate transcar-
bamylase) domains were examined independently to
determine the dN/dS ratio within the domain. The CPSase
domain region (441–1482) and the ATCase (1910 – 2214)
regions (see UniProtKB – P07259) were extracted from
the URA2 protein and analyzed phylogenetically using the
same methods described above to determine if an elevated
dN/dS ratio was detectable within either of the domains
compared to the overall dN/dS of the protein.
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Kinetic modeling
The structures of the pathway in E. coli and S. cerevisiae
are similar, with two exceptions (Fig. 1b). First, the first
two reactions in the pathway, carbamoyl phosphate synthe-
tase (CPSase) and aspartate carbamoyltransferase (ATCase),
occur on separate enzymes in E. coli and on the single
enzyme URA2 in S. cerevisiae. Second, allosteric regulation
of CPSase and ATCase is simpler in S. cerevisiae than in E
coli. In S. cerevisiae, both activities are allosterically inhib-
ited by UTP, while in E. coli there are multiple allosteric
regulators. All reactions were modeled with Michaelis-
Menten kinetics. We also included terms in our equations
accounting for dilution of all reactants due to cell growth.
We set the dilution rate to d = 0.11/hr, to match the condi-
tions of the chemostat experiment with which we compare
metabolite concentrations [39]. The complete set of equa-
tions is reproduced in Additional file 1. All computations
with the kinetic model were performed in SloppyCell [40].
The model contains 22 parameters for the biochemis-

try of the enzymes, 4 parameters for input metabolite
concentrations, and 2 parameters for cellular utilization
of pyrimidines. To assign values to these parameters, we
first gathered published in vitro biochemical data on the
enzymes and mass spectrometry data on metabolite con-
centrations (“experimental” reference values in Table 1).
We found experimental data for all but 5 of the model
parameters. To assign values to these parameters, we
initially sought to optimize their values to reproduce ex-
perimentally measured steady-state concentrations of
UMP, UDP, and UTP, by minimizing the least-squares
cost function

ump½ � – 0:37 μM
2:5 μM

� �2

þ udp½ � – 2:9 μM
2:5 μM

� �2

þ utp½ � – 6:7 μM
2:5 μM

� �2

ð1Þ
We were, however, unable to find a suitable parameter

set. This is not surprising, because these data come from
multiple sources, so they are not consistent with respect to
measurement conditions, which can cause models predic-
tions to be inaccurate [41]. We thus undertook another
series of parameter optimizations, in which we allowed all
28 parameters to vary. To incorporate the experimental
parameter measurements into our optimization, for the 23
parameters for which we had experimental measurements,
we added terms to the cost function of the form

ln p– ln p0ð Þ2
ln 1000

ð2Þ

Here p denotes the value of the parameter in the set be-
ing evaluated, and p0 denotes the experimentally mea-
sured value of the parameter. In a Bayesian likelihood
framework, these terms correspond to priors that put
95 % of the prior density within three orders of magnitude
larger or smaller than the experimental value p0. For the 5
parameters for which we did not have yeast experimental
data, we constrained the parameter more loosely to be
near the E. coli value reported by Rodriguez et al. [30], via
terms of the form

ln p– ln p0ð Þ2
ln 107

ð3Þ

To ensure convergence of our optimizations, we ran
100 different local optimizations from randomly assigned
starting parameter sets.
For each parameter set, we calculated the sensitivity of

the model to changes in each parameter as the normal-
ized first derivative of the steady state concentration of
UMP with respect to that parameter, i.e. the magnitude
of the change in steady state UMP concentration result-
ing from a small change in the value of the parameter:
d ump½ ��

dp � p
ump½ �

�
. This derivative was calculated using a

central finite difference method with a step size of 1 %
of the parameter value. The mean spearman rank correl-
ation of between sensitivities calculated from different
parameter sets was 0.998, so we report only results from
the parameter set with the lowest total cost (Equa-
tions 1–3). We calculated the overall sensitivity of the
model to changes in each modeled enzyme as the geo-
metric mean of the sensitivities of the reaction
parameters associated with the enzyme.
In S. cerevisiae, the fifth step in the pathway can be cata-

lyzed by both URA5 and URA10. However, in wild-type
cells 80 % of the OPRtase activity is due to URA5 [42],
and URA5 has been much more extensively kinetically
characterized than URA10 [43]. We thus based our model
parameters on URA5 and compared kinetic sensitivity of
the OPRtase step of the pathway with the evolutionary
rate ratio of URA5. Similarly, URA7 and URA8 have over-
lapping CTP synthetase activity. URA7 is, however,
responsible for the majority of CTP synthesis [44], so we
consider only URA7 in our analysis.
Expression and solvent accessibility
Expression data at mid-log phase in units of molecules/cell
was obtained from Holstege et al. [45]. Per-residue solvent
accessibility as predicted by SPINEX [46] was obtained
from [47]. For correlation analysis, we used the mean solv-
ent accessibility of the residues in each enzyme.
Availability of supporting data
The data sets and analysis supporting the results of this
article are included within the article and associated sup-
plemental materials.
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