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Abstract

Background: Gene duplication is believed to be the classical way to form novel genes, but overprinting may be an
important alternative. Overprinting allows entirely novel proteins to evolve de novo, i.e., formerly non-coding open
reading frames within functional genes become expressed. Only three cases have been described for Escherichia
coli. Here, a fourth example is presented.

Results: RNA sequencing revealed an open reading frame weakly transcribed in cow dung, coding for 101 residues
and embedded completely in the −2 reading frame of citC in enterohemorrhagic E. coli. This gene is designated
novel overlapping gene, nog1. The promoter region fused to gfp exhibits specific activities and 5’ rapid
amplification of cDNA ends indicated the transcriptional start 40-bp upstream of the start codon. nog1 was strand-
specifically arrested in translation by a nonsense mutation silent in citC. This Nog1-mutant showed a phenotype in
competitive growth against wild type in the presence of MgCl2. Small differences in metabolite concentrations
were also found. Bioinformatic analyses propose Nog1 to be inner membrane-bound and to possess at least one
membrane-spanning domain. A phylogenetic analysis suggests that the orphan gene nog1 arose by overprinting
after Escherichia/Shigella separated from the other γ-proteobacteria.
Conclusions: Since nog1 is of recent origin, non-essential, short, weakly expressed and only marginally involved in
E. coli’s central metabolism, we propose that this gene is in an initial stage of evolution. While we present specific
experimental evidence for the existence of a fourth overlapping gene in enterohemorrhagic E. coli, we believe that
this may be an initial finding only and overlapping genes in bacteria may be more common than is currently
assumed by microbiologists.
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Background
A widely established model to explain the evolutionary
origin of novel genes is gene duplication [1–4]. However,
recent phylogenetic evidence suggests that de-novo for-
mation might be an alternative, important source for the
de novo origin of orphan genes [5]. This is corroborated
by findings that long non-coding RNA may serve as a
novelty pool and that ribosomes indeed translate novel
ORFs [6, 7]. It is hypothesized that this mechanism

might produce novel domains or folds, which are added
to existing genes or assembled to new genes [8, 9].
In eukaryotes, large parts of the genome do not harbor

protein-coding genes, potentially providing DNA raw ma-
terial for novel genes [10, 11]. In contrast, prokaryotic ge-
nomes are densely packed with genes and inter-genic
space is quite limited. Therefore, as early as 1977, Grassé
proposed a mechanism for the evolution of novel genes
termed “overprinting” [12], which some years later was
substantiated by Ohno [13]. According to this hypothesis,
a previously non-coding sequence, overlapping an existing
gene in an alternate reading frame, is transformed into a
coding sequence by the creation of a new promoter next
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to a suitable ribosome binding site and a start codon. Al-
ternatively, a gene may elongate through the emergence of
an alternative start codon further upstream or the loss of
its original stop codon, leading to an overlap with an adja-
cent gene. This mechanism of overprinting is an option to
solve the de-novo evolution problem for prokaryotes.
Trivial overlaps of only a few base pairs are found

in about 30 % of the bacterial genes [14, 15]. The
likely benefit is a translational coupling of both genes,
since the stop codon of the upstream located gene
overlaps with the start codon of the downstream gene
[16]. In non-trivially overlapping genes the protein
coding regions are embedded completely or substan-
tially in the annotated “mother gene”, which by defin-
ition occupies reading frame +1, and are encoded by
one of the five alternate reading frames. Non-trivially
overlapping genes are generally assumed to be very
rare. This assumption is due to a severe information
content constraint since single mutations often affect
the protein function of both overlapping genes. Thus,
such an arrangement is believed to be less likely to
be beneficial for the organism carrying the overlap-
ping gene pair [14].
The majority of non-trivial overlapping genes have

been described in viruses [17–20] and their emer-
gence was attributed to a hypothetical selection pres-
sure acting on the size of the viral genome, exerted
by spatial limitations of the capsid [21]. In sharp con-
trast, in prokaryotes only very few overlapping gene
pairs are known. In the extremely well-researched
Escherichia coli, as far as we know, only three over-
lapping gene pairs have been described: htgA/yaaW
[22, 23], yghW/morA [24], and tnpA/astA [25, 26].
Here we report on direct experimental evidence in-

dicating the presence of a novel overlapping gene pair
in enterohemorrhagic E. coli O157:H7 str. EDL933
(EHEC) which was found during the investigation of
the transcriptomic response of EHEC to a number of
environmental conditions [27]. The novel overlapping
gene nog1 is completely embedded −2 antisense in its
mother reading frame citC which is part of the op-
eron citCDEFXG. This operon is responsible for cit-
rate fermentation. citC is induced anaerobically and
encodes the citrate lyase ligase which activates the γ-
subunit of the citrate lyase [28]. In addition to a
functional analysis of nog1, we provide evidence that
this overlapping gene may be restricted to the Escher-
ichia/Shigella/Salmonella clade and probably arose re-
cently by genetic overprinting.

Methods
Bacterial strains and plasmids are listed in Additional
file 1: Table S1.

Construction of gfp fusions and fluorescence
measurement
The region 365 bp and 361 bp upstream of the start co-
dons of citC and nog1 respectively was amplified from
genomic EHEC-DNA (NC_002655, [29]) using primer
GGC GGT CGA Ccg gtg cct ttt aac acc aga tc (Z0762 +
667R-Sall) and ACA GAA TTC gaa ctg ata aac ctc gcc
tat g (Z0762+325F-EcoRI) and the primers GGC GGT
CGA Caa aga tac gca gcg gaa atg c (Z0762-362F-SalI)
and ACA GAA TTC tgg gag aaa ggg ggg tga tcg a
(Z0762-3R-EcoRI) respectively. The PCR products were
digested with the appropriate enzymes (cut sites italic
above) according to the manufacturer (NEB) and ligated
in pProbe-NT [30] using T4-ligase (NEB). EHEC was
transformed with the plasmids and was grown under
shaking at 37 °C in the dark in LB medium [31] supple-
mented with 25 μg/ml kanamycin. For aerobic growth,
1:100 diluted overnight cultures were used to inoculate
10 ml 1:2 diluted LB with 25 μg/ml kanamycin and cells
were grown at 37 °C for 4 h until the culture reached
OD600nm = 1 in plain LB medium. Induction of the pro-
moter fusion was tested using 100 mM 1,2-propanediol,
20 mM CsCl, 1.25 mM CuCl2, 25 mM cycloheximide,
1 mM dithiothreitol, 78 μM erythromycin, 200 mM
formamide, 4 mM HCOOH, 2 mM glutamine, 200 mM
MgCl2, 320 μM menadione, 400 mM NaCl, 10 mM 1-
methylimidazole, 10 mM propanedioic acid, 62.5 mM
salicin, 16 mM Na3VO4, and 10 mM Na2B4O7.
For anaerobic growth, bacteria were grown in 15 ml

medium as above in tightly closed 15-ml falcons. An-
aerobiosis was tested using resazurin in separate tubes.
All cultures, including an empty-vector control, were
grown for approximately 7 h to OD600nm = 0.3 in the
dark. To allow GFP to mature to fluorescence, anaer-
obically grown cultures were aerated for 15 min by shak-
ing in larger bottles. Bacteria were washed once with
1 ml PBS (6600 × g, 2 min) and diluted to OD600nm = 0.6.
Two-hundred μl of this suspension was measured for
fluorescence using a black microtiter plate and a plate
reader (Wallac Victor3, Perkin Elmer Life Science, exci-
tation 485 nm, emission 535 nm, measuring time 1 s).
The mean value of four replicate wells was calculated
and the experiment was repeated three times.

Determination of the transcription start site by 5’-RACE
5’-RACE was performed using the “5’RACE System for
Rapid Amplification of cDNA Ends Version 2.0” (Invi-
trogen) according to the manufacturer. Wild type strain
was grown in 1:2 diluted LB medium with the addition
of 320 μM menadione to OD600nm = 0.5. RNA was iso-
lated with Trizol. For 5’-RACE, the primers CAA CAT
GCA CCT TCA GGA T (Z0762+59R) and TGG CGG
AAA TCG CCC AAT TCC TGC AT (Z0762+140R)
were used. After gel electrophoresis, the strongest band

Fellner et al. BMC Evolutionary Biology  (2015) 15:283 Page 2 of 14



was cleaned (Invisorb® Fragment CleanUp, STRATEC,
Berlin) and used as a template for subsequent amplifica-
tion and sequencing (LGC Genomics, Berlin) using the
nested primer GAG CGT TGA CAC CAC AGT CGA
AGT AT (Z0762+177R).

Overexpression of Nog1 C-terminal fused with GFP
The open reading frame of nog1 was amplified via PCR
using primers Z0762+323R-SphI (TTG CAT GCC GTG
GCT AAT GTC AGC GCC AG) and Z0762+20F-KpnI
(C CGG TAC CCG GTT TGC AAC ATT GAA CAA
CA). The amplicon was cloned in the SphI and KpnI re-
striction sides of pEGFP (CLONTECH laboratories).
The plasmid was sequenced for verification. Ten ml LB
with 120 μg/ml ampicillin was inoculated with 100 μl
overnight culture of TOP10 transformed with the empty
vector and the vector containing the open reading frame
of nog1. Bacteria were grown to OD600nm = 0.3 – 0.5 at
37 °C shaking. 1 mM IPTG was added and bacteria were
grown for two more hours. Bacterial culture was washed
with 2 ml PBS and subsequently suspended in PBS with
OD600nm = 1. Two-hundred μl bacterial suspension was
transferred in one well of a black microtiter plate and
measured using a plate reader (Wallac Victor3, Perkin
Elmer Life Science, excitation 485 nm, emission 535 nm,
measuring time 1 s). The mean value of four replicate
wells was calculated and the experiment was repeated
three times.

Overexpression of Nog1 and Western blot
The open reading frame of nog1 and its upstream region
was amplified via PCR using primer GAT CCC ATG
GCG GTG CCT TTT AAC ACC AGA TC (Z0762
+667R-NcoI) and GAG CGA ATT CG TTT GCA ACA
TTG AAC AAC ATT (Z0762+21F-EcoRI). The ampli-
con was cloned in the NcoI and EcoRI restriction sites of
pBAD Myc-His C (Invitrogen) resulting in pBAD-nog1::-
Myc-His. The plasmid was sequenced for verification
and EHEC were transformed with pBAD-nog1::Myc-His
or with pBAD Myc-His C as control. One-and-a-half L
of 1:2 diluted LB medium supplemented with 120 μg/ml
ampicillin and 320 μM menadione were inoculated
1:250 with an overnight culture of the transformants.
Bacteria were grown in six 1-L bottles (250 ml medium
each), shaking at 37 °C to OD600nm = 0.5. Bacteria were
pelleted (10 min, 3500 × g) and resuspended in 15 ml
lysis buffer included in the QIAexpress® Ni-NTA Fast
Start kit (Qiagen). The cells were sonicated six times for
15 s (interval time 0.5 s at 25 % total power, ultrasonic
converter tip UW 2200 powered by HD 2200, Bandelin
electronics, Berlin) and proteins were purified under na-
tive conditions according to the manufacturer’s protocol.
From the empty control, a mock sample was ‘purified’.
Proteins were precipitated with acetone and Laemmli-

buffer was added. The sample was heated for 5 min at
95 °C and loaded on a 15 % SDS-gel. One well was
loaded with 5 μl of the PageRuler Prestained Protein
Ladder (Fermentas) for size determination. After SDS-
PAGE, the proteins were transferred to a PVDF mem-
brane (Amersham/Millipore). Transfer to the membrane
was carried out in blotting buffer (50 mM Tris, 39 mM
glycine, 0.039 % SDS in 20 % methanol) for 10 min at
150 mA. Next, the membrane was blocked for 1 h in
TBS-T (10 mM Tris, 150 mM NaCl, pH8, 0.1 % Tween
20) supplemented with 1 % BSA at room temperature.
The membrane was then incubated with 5 ng/μl BD
Pharmingen mouse anti-human c-myc-antibody (BD
Biosciences) in TBS-T plus 1 % BSA. After washing
twice in TBS-T for 10 min, the membrane was incubated
for 1 h at room temperature with the second antibody
(alkaline phosphatase (AP) anti-mouse chimera, 6 ng/μl)
in TBS-T plus 1 % BSA. The membrane was washed
twice for 10 min with TBS-T and equilibrated in AP-
buffer (100 mM Tris, 150 mM NaCl, 5 mM MgCl2,
pH 9.5). For the final detection of the fusion proteins,
the membrane was incubated with 0.7 mg/ml BCIP and
0.07 mg/ml NBT solution in AP buffer.

Construction of translationally arrested mutants
Chromosomal DNA was modified for the Δnog1 and
ΔcitC mutants using plasmid pMRS101 [32]. For Δnog1,
two fragments of this gene were amplified using primers
CAT TTT CAT GAA GGA ATT GGG (Z0762
+152RmutS) and ata cta gtA TTT CAC GCC GAA ATA
CTC C (Z0762-59F-SpeI) and the primer CCC AAT
TCC TTC ATG AAA ATG (Z0762+152FmutS) and gcg
ggc ccA ACA GCG CCT CGT ATT CGG T (Z0762
+382R-ApaI). Mutated bases in the primers and the
added restriction sites are marked bold and italic re-
spectively. The two nog1-fragments are located up- and
downstream of the desired mutation and overlap in this
area. The fragments were used in a third PCR using pri-
mer Z0762-59F-SpeI and Z0762+382R-ApaI to recreate
a complete fragment with the mutation. This was con-
ducted accordingly for ΔcitC using the primer pairs
TGT TAT CGA TCT TCA ACG AAT GT (Z0762
+38RmutA) and ata cta gtT AAA TCA ATT AAA TCA
CTT A (Z0762-171F-SpeI), and primer pair ACA TTC
GTT GAA GAT CGA TAA CA (Z0762+38FmutA) and
gcg ggc ccG ATT CAC TGA TAG CAA CGC A (Z0762
+268R-ApaI). The final PCR products were cloned in
the SpeI and ApaI sites of pMRS101, and transformants
grown in LB medium plus 100 μg/ml ampicillin. The
high-copy number ori was removed by restriction with
NotI and subsequent self-ligation. The remaining plas-
mid contains a second low-copy pir-dependent ori. This
plasmid was introduced into E. coli CC118λpir via elec-
troporation, cells were grown in LB medium plus 30 μg/
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ml streptomycin, and the plasmid sequence was verified
by sequencing using either primer CTT ATC GAT GAT
AAG CTG TC (pMRS101+458R) or TCA ATC ATG
CGA AAC GAT CC (pMRS101+184F). Plasmids were
transferred to E. coli SM10λpir, which enables conjuga-
tion, and integrated in EHEC NalR via plate mating: Each
500 μl overnight culture was mixed, plated on LB agar,
and incubated for 24 h at 30 °C. Cells were resuspended
in LB and plated on LB-plates containing 30 μg/ml
streptomycin and 20 μg/ml nalidic acid. The correct in-
sertion of the suicide plasmid was confirmed using
primers pMRS101+184 F and CTT GCG GGT TGT
CCC GAG CC (Z0762-272F) for Δnog1 or ΔcitC from
genomic DNA of the trans-conjugants. To facilitate a
second cross-over, cultures were grown in plain LB to
OD600nm = 0.8 and counter-selected on sucrose agar
(modified LB-agar without NaCl, supplemented with
10 % sucrose). A PCR fragment using primers TTC
AGT CGC GTG GCG CTG TT (Z0762+460R) and
CTT GCG GGT TGT CCC GAG CC (Z0762-272F) ob-
tained from the chromosome was sequenced to identify
the desired strand-specific mutants of either nog1 or
citC.

Growth curves of individual strains
Overnight cultures of EHEC wild type, ΔcitC and Δnog1
were used to inoculate 100 ml 0.5 × LB medium supple-
mented with 200 mM MgCl2 in 250-ml Schott bottles at
an OD600nm = 0.03. Bacteria were grown at 37 °C under
shaking (150 rpm) and the OD600nm was recorded at
given time points.

Competitive growth assays
Overnight cultures in LB were adjusted to OD600nm = 1
and the two test strains were mixed in equal numbers.
Control samples were taken immediately (t = 0). Half-
strength LB medium (supplemented as indicated, e.g.
150 mM MgCl2, or the substances used before for the
promoter induction) was inoculated 1:30,000 using the
bacterial mixture. Bacteria were grown under shaking at
150 rpm for 18 h at 37 °C, harvested by centrifugation
(3 min, 16,000 × g) and boiled for 5 min at 95 °C to re-
lease the DNA. Each sample was used as template for
PCR with a locus specific primer pair GTT TGC AAC
ATT GAA CAA CAT TCG (Z0762+21F), and GAC
TGT GGT GTC AAC GCT CAA ATC (Z0762+172R),
for Δnog1 or ΔcitC versus wild type. PCR products were
purified and sequenced (AGOWA, Berlin) using primer
Z0762+21F for Δnog1 and primer Z0762+172R for
ΔcitC. For competitive growth experiments between
Δnog1 and ΔcitC, PCR products were generated using
primer TTC AGT CGC GTG GCG CTG TT (Z0762
+460R) and CTT GCG GGT TGT CCC GAG CC
(Z0762-272F). The PCR product was sequenced using

primer Z0762+460R. After sequencing, the ratios be-
tween peak heights from the Sanger sequencing of the
alleles were determined and expressed as a percentage of
each strain. This experiment was repeated at least three
times.
To complement the translational arrested mutant

Δnog1, nog1 was cloned on the arabinose-inducible plas-
mid pBAD Myc-His C (Invitrogen) using a PCR-product
generated with the following primers gat ccc atg gca gtg
gct aat gtc agc gcc ag (Z0762+304R-NcoI) and gag cga
att ctc agt ttg caa cat tga aca ac (Z0762+18F-EcoRI).
The amplicon was cut with NcoI and EcoRI and ligated
into the plasmid using T4-ligase. The plasmid sequence
was verified by sequencing. The translational arrested
mutant was transformed either with an empty plasmid
(control) or with the overexpression plasmid pBAD-
nog1. A wild type transformed with the empty vector
was used as control. These control bacteria and comple-
mented mutants of nog1 were grown in competitive as-
says as described above in medium supplemented with
120 μg/ml ampicillin (for plasmid selection) and 0.2 %
arabinose (for nog1 induction). The percentage of “com-
plemented mutants” versus “control bacteria” was deter-
mined as described above after 18 h of competitive
growth.

Metabolomics
For a full description of the metabolome measurements
see Additional file 2: File S1. In short, the following
strategies have been applied.

Metabolomes by GC-MS
The methanol-soluble part of the metabolome was de-
termined from six biologically independent cultures of
mutant and wild-type, respectively. Briefly, flash frozen
bacteria were extracted derivatized for metabolite ana-
lysis via GC-MS in a two-step procedure as described
[33]. For metabolite profiling a HP Agilent 7890 gas
chromatograph was used to perform GC analysis and
coupled to an Agilent 5975 Quadrupole mass spectrom-
eter (Agilent Technologies, Böblingen) for mass deter-
mination. The software MetaboliteDetector (version
2.06) was used for processing. Differences in the metab-
olome between wild type and the mutants were tested
for significance using Student’s test (T-test; p ≤ 0.05).

Metabolomes by ICR-FT/MS
Sample preparation was carried out as above for three
biological replicates of each wild type, Δnog1 and ΔcitC
mutants. Metabolite profiling was conducted using Ion
cyclotron resonance Fourier transform Mass spectrom-
etry (ICR-FT/MS) on a Bruker solariX equipped with a
12 T magnet (Bruker Daltonics, Bremen). Putative me-
tabolites were annotated using the MassTRIX webserver
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[34]. Statistical analysis was carried out in MS Excel
2010 and Genedata Expressionist for MS 7.6 (Genedata,
Martinsried) using Welch’s T test (p ≤ 0.05) [35, 36].

Bioinformatics methods
σ70 Promoters were searched for using BProm (Soft-
berry Inc., New York), and terminators using WebGe-
STer DB [37]. Sequences from other bacteria were
searched with blastp or tblastn (NCBI, http://blas-
t.ncbi.nlm.nih.gov/Blast.cgi, default parameters). All
methods mentioned in the following were used with
preset values. Domain search was conducted using
CDD [38] with an e value cut-off of 10−2. The distri-
bution of charged amino acids in Nog1 was analyzed
manually. Prediction of disordered regions was con-
ducted using GlobPlot [39] and Meta-Disorder [40]
The authors of GlobPlot claim for a given prediction
a specificity of 88 % and a sensitivity of 28 % [39].
For Meta-Disorder, the preset reliability index sug-
gests to find about 52 % of the disordered residues
and 68 % of those would be correct [40]. Low com-
plexity regions were discovered using CDD [38] which
implements SDUST with preset values [41]. The
transmembrane and overall topology was predicted
using hmmtop [42], TMHMM [43], PHDhtm [44],
and BCL::Jufo9D [45]. The program hmmtop correctly
predicts 89 % of the membrane spanning regions and
71 % of the correct topology [42]. TMHMM correctly
predicts 97-98 % of the transmembrane helices. The
specificity and sensitivity of this program is greater
than 99 % if no signal peptide is present [43].
PHDhtm predicts the topology for helical transmem-
brane proteins at 86 % accuracy [44]. Finally, BCL::Ju-
fo9D has a prediction accuracies of 73.2 % the
secondary structure prediction, and 94.8 % for the
transmembrane span prediction [45]. Beta-turns were
predicted using NetTurnP [46]. Sensitivity is 76 %
and specificity 79 %, respectively, in distinguishing
turns from not-turns [46]. The protein secondary
structure was established using SOPMA [47],
PSIPRED [48], Pred2ary [49], and GOR IV [50] via
the web server NPS@ [51]; PROFseq [52] via the Pre-
dictProtein server [53], BCL::Jufo9D [45], or using
Porter [54]. SOPMA correctly predicts 69.5 % of
amino acids for a three-state description (α-helix, β-
sheet and coil; Q3) of the secondary structure [47].
The current PSIPRED 3.2 achieves an average Q3

score of 81.6 % [55]. For Pred2ary, the secondary
structure prediction accuracy was given as 63 % [49],
and GOR IV has a mean accuracy of 64.4 % for Q3

[50]. PROFseq has an overall accuracy of 71.6 % and
a sustained Q3 of 88 % for 40 % of the residues [56].
BCL::Jufo9D has prediction accuracies of 70.3 % for
nine possible states, and 73.2 % for the Q3 secondary

structure prediction [45]. Finally, Porter's accuracy ex-
ceeds 79 % [54]. Protein binding sites were predicted
using ISIS, which has total two-state accuracy of
68 % [57]. Protein statistics were calculated using
ProtParam [58], signal protein sequences were
searched for using SignalP [59], and the protein
localization was predicted using LocTree3. This pro-
gram reaches a six-state accuracy (6 localizations) of
89 ± 4 % for bacteria [60].

Tree construction
The evolutionary tree is based on a concatemer of
the conserved genes 16S rRNA, atpD, adk, gyrB,
purA and recA and is independent of citC/nog1. The
gene sequences were obtained from the genome of
each organism (for sequences and accession numbers,
see Additional file 3: Table S2). All the above-
mentioned genes of each organism were concatenated
and aligned using muscle in Mega6.06 [61] with de-
fault parameters. The alignment was checked and
since this original alignment had gaps (Additional file
4: File S2), all nucleotides in the respective column
which had a gap were manually removed by deleting
this column until no gap remained in the complete
final alignment. In addition, positions (i.e., columns
within the alignment) in which ambiguities were
present, were manually deleted as well. There were a
total of 7721 positions in the final dataset (Additional
file 5: File S3). MEGA6.06 allows precomputation of
the best nucleotide substitution model for Maximum
Likelihood (ML) to match the data, including General
Time Reversible, Hasegawa-Kishino-Yano, Tamura-Nei,
Tamura 3-parameter, Kimura 2-parameter, and Jukes-
Cantor. Non-uniformity of evolutionary rates among
sites may or may not be modeled by using a discrete
Gamma distribution (+G) with 5 rate categories and
by assuming that a certain fraction of sites are evolu-
tionarily invariable (+I). The model with the lowest
Bayesian Information Criterion score is considered to
best describe the substitution pattern [62], which is
General Time Reversible with gamma distribution and
invariable sites in this case. For the precomputation,
the tree topology was automatically computed using
Neighbor-Joining.
The final evolutionary history was inferred by using the

ML method based on the General Time Reversible model.
The tree with the highest log likelihood (−58141.5) is
shown. Values within the tree indicate the percentage of
1000 bootstrap tests showing the same cluster. Bootstrap
values below 50 % are not shown. Initial trees for the
heuristic search were obtained by applying the Neighbor-
Joining method to a matrix of pairwise distances estimated
using the Maximum Composite Likelihood (MCL) ap-
proach. A discrete Gamma distribution was used to model
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evolutionary rate differences among sites (5 categories,
parameter = 0.6072). The rate variation model allowed for
some sites to be evolutionarily invariable. The final tree is
drawn to scale, with branch lengths measured in the num-
ber of substitutions per site.

Results
Discovery of an overlapping protein-coding ORF
displaying protein-coding features
In previous experiments, EHEC was grown under eleven
different growth conditions and strand specific transcrip-
tomes were sequenced [27]. These conditions comprised
LB medium at pH4, pH7, pH9, or at 15 °C; LB with
addition of nitrite or trimethoprim-sulfamethoxazole; LB-
agar surface, M9 minimal medium, spinach leaf juice, the
surface of living radish sprouts, and cow dung. In the con-
dition “cow dung”, we found a novel RNA to be induced
about 14-fold compared to LB, based on RPKM values
(Fig. 1a). Briefly, for the condition “cow dung”, 10 g cattle

feces were inoculated for 6 h at 37 °C with EHEC pre-
grown in LB [27]. This RNA covers an overlapping ORF
which consists of 306 bp (position from 732757 to 733062
in EHEC genome, accession no. NC_002655) and is com-
pletely embedded in antisense to citC in frame -2 (position
733079 to 731934, the reading frame of citC being defined
as +1; Fig. 1a). Thus, we wondered whether this novel
RNA was maybe protein coding and undertook experi-
ments to verify this hypothesis. To facilitate further read-
ing, we introduce the suggested gene name nog1 here
(novel overlapping gene).
The novel ORF nog1 was C-terminally fused in frame

to gfp to determine protein production. After induction,
GFP fluorescence was increased compared to the unin-
duced control showing that the novel ORF nog1 is in-
deed translatable (Fig. 1b). However, we could not detect
Nog1 induced from its natural promoter and fused to
His and Myc tags (data not shown). Despite enrichment
using Ni-columns and acetone precipitation, His-Myc-

Fig. 1 a Strand-specific transcription signals of nog1. Shown are the transcriptome data of EHEC (upper panel) grown aerobically in 1:10 diluted
LB medium (upper line) or incubated in cow dung (lower line). The transcriptome sequencing reads are shown above or below the genome line
for the forward and reverse strand respectively. Only a single read of citC is visible in the LB-condition. However, nog1 (pink shaded area) is
induced about 14-fold in cow dung compared to LB, based on RPKM values. The lower panel shows the genomic architecture around citC, drawn
using Artemis [93]. The open reading frames of nog1 and citC are indicated by blue arrows in the respective reading frames. b Fluorescence units
of nog1 C-terminally fused with gfp after IPTG induction for 2 h using the indicated inducer concentrations. This experiment shows that nog1 is
principally able to be translated by ribosomes. c Genetic organization of nog1. Grey, predicted promoter (BProm); orange letter, transcription start
site according to the transcriptome sequencing data (Fig. 1a); orange arrow, transcription start site according to 5’-RACE; underlined, possible
Shine-Dalgarno sequences; green, predicted start codon; blue, coding sequence; red, stop codon; bases highlighted by bold underline, predicted
rho independent terminator with possible hairpin structure (WebGeSTer)
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tagged Nog1 was not detectable in Western blots using
Myc-tag antibodies. But acetone precipitation is prone
to lose small proteins and Nog1 is predicted to be un-
stable and a membrane protein (see below), which may
have rendered immunological detection of this short
protein difficult. However, the above nog1::gfp fusion
shows that the ribosomes pass the GTG start codon to
translate the nog1 ORF.
Next, we predicted promoter, Shine-Dalgarno and ter-

minator sequences for nog1, all of which were found
(Fig. 1c). A possible transcription start site in the vicinity
of the predicted promoter could be the read mapping
farthest upstream in the strand-specific transcriptome
sequencing (Fig. 1a). The read starts 40 bp upstream of
the putative start codon. To verify this position, the +1
was determined using 5’-RACE. The latter result is in
perfect agreement with the former since the indicated
transcription start site of the new ORF was also found to
be 40 bp upstream of the putative start codon GTG.
Thus, this position is suggested to be the major +1 for
nog1 (Fig. 1c, orange arrow).

Promoter activities of the genomic regions upstream of
nog1 and citC
The promoter region immediately upstream of nog1 was
fused to gfp and tested for inducibility. Unfortunately,
cow dung was not usable for these experiments due to
the opaqueness, autofluorescence, and the many other
bacteria present in this substrate. Sterile filtration before
and after dilution was attempted, but extremely difficult
due to the high content in fine particulate matter. To
ease analysis, we decided to test LB medium supple-
mented with a number of various inorganic and organic
stressors in sub-inhibitory concentrations for promoter
activity (see Methods). Using LB medium as a control,
promoter Pnog1 activity was increased when cells were
grown aerobically in the presence of 320 μM menadione
(3-fold), 5 mM malonic acid (2.5-fold), and 150 mM
magnesium chloride (1.5-fold; Fig. 2). The transcription
of citC is only induced in the presence of citrate under
anaerobic conditions [63], thus, these conditions were
tested additionally (Fig. 2). PcitC becomes active about 2-
fold when bacteria are grown anaerobically with the
addition of 20 mM citrate. Interestingly, Pnog1 activity
increased under anaerobiosis in plain LB, as well as in
citrate supplemented LB (Fig. 2), and, in addition, when
adding menadione (2-fold) or malonic acid (5-fold).

Metabolome of the translationally arrested mutants
compared to the wild type
To uncover phenotypes related to the gene product
Nog1, its translation was arrested by introducing a stop
codon without changing the amino acid sequence of the
mother reading frame citC (Δnog1, Fig. 3, left). Similarly,

citC was arrested without changing Nog1 (Fig. 3, right).
If nog1 were being a non-coding RNA, its function
would not be disturbed by a single nucleotide exchange.
In contrast, translation is arrested by the artificial stop
codon and Nog1 production ceases. The metabolome of
the mutant compared to wild type was analyzed by non-
targeted profiling approaches using either gas chroma-
tography coupled with mass spectrometry (GC-MS) or
ion cyclotron resonance Fourier transform mass spec-
trometry (ICR-FT/MS).
For GC-MS, six biological replicates of both wild type

and Δnog1 were grown in plain LB and significantly dif-
ferent metabolites determined (p ≤ 0.05). Only a decrease
of metabolites in the nog1-mutant was found. For in-
stance, tryptophan had the highest fold decrease of
about 4.7. Next were citric and isocitric acid, as well as
succinate with a decrease of about 1.5 to 2-fold (further
metabolites are in Additional file 6: Table S3). Hence, we
believe there is a slight influence of the Δnog1 mutation
on the primary metabolism, probably with a focus on
the TCA cycle due to changes in citrate and succinate.
Using the more sensitive and accurate ICR-FT/MS

for profiling, several thousand features were detected
(data not shown) and MassTRIX [34] annotated sev-
eral hundred metabolites from different pathways. Sig-
nificantly different molecules between wild type and
mutant (p ≤ 0.05) included metabolites, e.g., of the
glutathione metabolism (glutathione decreased 5.6-
fold in Δnog1 compared to wild type). Furthermore,
amino acid metabolism pathways were affected, since
corresponding metabolites were found to be changed
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(see Additional file 7: Table S4). The latter fits with
the observed change in tryptophan levels in the GC-
MS experiment above. GC-MS and ICR-FT/MS com-
plement each other. ICR-FT/MS is not able to detect
small masses, e.g., of tricarboxylic acid cycle (TCA)
intermediates, but glutathione metabolites were not
identifiable in the GC-MS experiment. However, tar-
geted investigations are needed to further support the
above results since only a weak metabolic phenotype
is found in both assays.

Fitness of translationally arrested Nog1 and CitC mutants
When wild type and Δnog1 mutant were grown separately
under a variety of stress conditions, no differences in
growth rates were observed (data not shown), except a
slightly reduced growth of the Δnog1 mutant in medium
supplemented with MgCl2 (Fig. 4a). In contrast, competi-
tive growth assays comparing two strains (e.g., mutant ver-
sus wild type) in the same flask are highly sensitive tools
to detect even small fitness differences between two
strains [64, 65]. For competition experiments, the two
strains were mixed in equivalent small cell numbers
(50:50) and broth supplemented with MgCl2 at sub-
inhibitory concentration was inoculated using the strain
mixture. A change in relative fitness between the two
strains becomes apparent by determining the fraction of
one strain over the other. After 18 h of aerobic growth,
the performance of each strain was measured (Fig. 4b).
Interestingly, Δnog1 shows a clear loss of fitness compared
to its parental strain when grown in plain LB. When using
MgCl2-supplemented broth, the decrease in fitness of
Δnog1 was even more pronounced, corroborating the
finding of retarded growth in MgCl2-supplemented
medium (compare to Fig. 4a). A mutant translationally
arrested in citC, however, did not show any fitness differ-
ences when competitively grown against its parental strain
(Fig. 4b). Accordingly, when Δnog1 was grown competi-
tively against ΔcitC a similar decrease in fitness was ob-
served comparable to the wild type strain, both in plain
LB and medium supplemented with MgCl2.

For complementation experiments, the nog1 ORF
was cloned downstream of an arabinose inducible
promoter in the plasmid pBAD. At first, the transla-
tionally arrested Δnog1 mutant and wild type, both
transformed with an empty pBAD, were grown com-
petitively in MgCl2-supplemented medium. Unexpect-
edly, the difference in competition, visible when using
vector-less strains in this medium, diminished some-
what. Next, Δnog1 was transformed with pBAD::nog1
to compete against the wild type containing an empty
pBAD. The Δnog1 strain containing pBAD::nog1 com-
peted better against wild type containing the pBAD
vector, although it could not be fully restored (Fig. 4b).
We hypothesize that the indispensable addition of
ampicillin and arabinose to the latter experiments dis-
turbed the competition experiments to some extent.

Bioinformatics analysis of the Nog1 protein sequence
The new overlapping-encoded protein Nog1 is pre-
dicted to have 101 amino acids, a theoretical molecu-
lar weight of 11.15 kDa, a pI of 11.36, an aliphatic
index of 117.72, and the GRAVY value is 0.564 [66].
No signal peptide or domain was predicted [38, 59].
The instability index was computed to be 42.05 which
classifies the protein as being unstable [58]. Secondary
structures and membrane domains were predicted,
using a number of similar programs allowing com-
parison of the results for different algorithms. This
assumes that secondary structures predicted by sev-
eral programs are possibly more reliable. The Nog1
protein structure potentially consists of three short
helices and several very short β-sheets. At least one
membrane domain was predicted by all algorithms
used (compare to Additional file 8: Figure S1). The
protein may be localized in the inner membrane ac-
cording to the software LocTree3 [60], most likely
with the N-terminus outside and the C-terminus in-
side, as agreed on by two of three programs for
transmembrane topology prediction [42, 43].

Fig. 3 Mutations introduced to arrest the translation of nog1 (left) or citC (right) strand specifically. The numbers indicate the distance of the
sequence shown from the start codons of nog1 and citC respectively. Note that the amino acid sequence of the reading frame in antisense
remains unchanged in both cases. The positions of the mutations are shown in red
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Phylogenetic analysis of nog1
In order to elucidate the phylogeny of nog1, a phylogen-
etic tree including EHEC was constructed of species har-
boring citC (only a representative subset was used
omitting identical or very similar sequences) with Heli-
cobacter as an out-group (Fig. 5). The phylogenetic tree
calculation was independent of citC since it was based
on a concatemer of 16S rDNA, atpD, adk, gyrB, purA

and recA. All six genes belong to the core genome of the
species included in the analysis. Homologs of citC were
then analyzed for the presence of nog1 in their −2 anti-
sense reading frame. The full reading frame nog1 was
found in Escherichia or Shigella. In a few instances,
its reading frame was destroyed, for example due to
an insertion sequence or a frame shift which also
destroyed citC (the only two of such species found
are shown in Fig. 5). Several Salmonella species con-
tain a nog1-like part in their citC sequence. Depend-
ing on the Salmonella strain, nog1 appears to be
either elongated or fragmented, but whether nog1 is
indeed functional in some Salmonella strains remains
unknown. In all other genera, the nog1 reading frame
is clearly fragmented (Fig. 5).

Discussion
nog1 probably encodes the protein Nog1
In this paper we report that nog1 possesses an active
promoter, activated in natural as well as lab conditions
(Figs. 1a, and 2). A transcription start was determined,
the gene is followed by a terminator sequence (Fig. 1c)
and a protein can be expressed (Fig. 1b). In addition, we
provided ample evidence that the Δnog1 mutant shows a
weak phenotype, especially in MgCl2-supplemented
medium (Fig. 4; Additional file 6: Table S3; Additional
file 7: Table S4). This data clearly shows that the gene is
functional, although of apparently minor influence to
the fitness of E. coli.
We were successful in demonstrating a stable gene

product at the protein level when fusing Nog1 to GFP
and detecting the latter by its fluorescence (Fig. 1b) but
one could still hypothesize, despite this finding, that
nog1 actually may encode a novel ncRNA rather than a
protein in vivo. A number of relatively short RNAs are
not translated and might function solely as ncRNAs at
the RNA level [67, 68]. However, we suggest rejecting
the “non-coding RNA hypothesis” of nog1 for the follow-
ing five reasons.
First, a bioinformatics analysis of the open reading

frame of nog1 (Fig. 1c, Additional file 8: Figure S1)
shows clear characteristics of a protein encoding ORF,
including a ribosome binding site in proper distance
from the start codon. While it cannot be excluded that
such sequence characteristics may occur just by chance,
we consider this to be a remote option [69]. Second, if
nog1 regulates citC via antisense silencing, nog1 should
only be induced when citC mRNA is present [70]. How-
ever, nog1 is induced in cow dung where no transcript of
citC could be detected (Fig. 1a). Promoter studies of this
and other work show that citC is expressed only under
anaerobic conditions, but nog1 was also detectable in
aerobic conditions. Thus, it is quite unlikely that nog1
acts as regulatory RNA in an anti-sense fashion against

a

b

Fig. 4 Growth phenotype of wild type, and ΔcitC and Δnog1.
a Growth curves of wild type, and ΔcitC and Δnog1 strains grown
separately in Schott bottles under shaking at 37 °C. The average OD
values and the standard deviations from three replicates are given.
b Percentage of strains after growth in competitive growth assays.
Gray columns indicate plain LB medium, green columns LB
supplemented with MgCl2. The experiments were repeated at least
three times and standard deviations are shown. First column,
growth of Δnog1 against wild type in LB; second column, Δnog1
against wild type in LB with MgCl2; third column, growth of ΔcitC
against wild type in LB; fourth column, growth of Δnog1 against
ΔcitC in LB; fifth column, growth of Δnog1 against ΔcitC in LB with
MgCl2; sixth column, growth of Δnog1 + pBAD competing against
wild type + pBAD in LB with MgCl2; seventh column, Δnog1 +
pBAD::nog1 was grown together with wild type + pBAD in LB with
MgCl2. The last two experiments were performed in the presence of
ampicillin and arabinose
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citC since, for antisense-RNA regulation, the presence
and base pairing of both sense and antisense transcripts
is required [71]. Third, the introduction of a single base
pair change only, to translationally arrest nog1, leads to a
clear phenotype which would not be expected when
nog1 is an antisense regulator. Also, a hypothetical ribo-
zyme activity would require stable base pairing involving
many nucleotides [72]. Single base pair changes, such as
those used in this study to translationally arrest nog1
(Fig. 3), are unlikely to cause detectable differences in an
RNA-RNA pairing event which involves many base
pairs. Fourth, a translationally arrested ΔcitC mutant
which introduced a nucleotide change synonymous in
the overlapping nog1 did not, as was expected, display
any fitness differences in competitive growth experi-
ments (Fig. 4). Finally, supplementing the Δnog1 strain
with a functional nog1 on a plasmid in trans means that
Nog1 is produced, and the strain competes somewhat
better against wild type in MgCl2-supplemented medium
(Fig. 4b). However, if nog1 acts as ncRNA, this strain
should compete even less against the wild type since the
gene dosage of the plasmid-borne gene is higher and
more ncRNA would be present to regulate its targets.

Potential function of Nog1
Transcription of nog1 is specifically induced in cow dung
(Fig. 1a), and the promoter is activated by magnesium
ions (Fig. 2), menadione and malonic acid. In addition,
magnesium ions had an effect on growth of Δnog1 in
growth and competitive growth assays (Fig. 4). However,
the function of nog1 remains cryptic. It would have been

interesting to elucidate the function of nog1 in cow dung
further, but this is a difficult substrate to work with. For
this reason we relied on lab media. Changes in metabol-
ite concentrations of the Δnog1 mutant are small com-
pared to wild type in plain LB, so nog1 is only slightly
involved in any central metabolic reaction (e.g. TCA
cycle, amino acid metabolism; Additional file 6: Table
S3, Additional file 7: Table S4). Since the Δnog1 mutant
displayed a small growth disadvantage in MgCl2-supple-
mented medium (Fig. 4a), bacteria carrying nog1 may
have an increased fitness in environments reflecting this
or other unknown conditions. Whatever function this
gene exerts, its modificatory action is at least strong
enough to cause a phenotype in a competitive growth
assay. Since, according to the bioinformatics analysis,
Nog1 is membrane bound, it could either act as sensor
or modificatory protein in the membrane. However, fur-
ther experiments would have to support this hypothesis.

Recent origin of nog1 by overprinting
The citrate-lyase ligase gene citC, which is the mother
gene of nog1, is taxonomically broadly distributed (mostly
in γ-proteobacteria and firmicutes, but also in some other
bacteria). In contrast, nog1 is found only in the Escheri-
chia/Salmonella clade. Such a taxonomical distribution
could be explained by an ancient overprinting event
followed by many subsequent deletions of the nog1 read-
ing frame in all clades except the Escherichia/Salmonella
clade. However, for parsimony reasons we suggest a recent
origin of nog1 after the separation of Escherichia/Salmon-
ella from the rest of the enterobacteria (Fig. 5).

Fig. 5 Phylogenetic tree of nog1-bearing E. coli and Shigella strains and species carrying nog1-like sequences. On the left, phylogenetic tree of
representative bacterial strains containing a nog1 or nog1-like open reading frame within citC. The tree was inferred using the Maximum
Likelihood method and is based on a concatemer of 16 s RNA, atpD, adk, gyrB, purA, and recA, thus, independent of citC and nog1 respectively.
The percentage of trees which clustered together in 1000 bootstrap replicates is shown next to the branches. Helicobacter was used as out-
group. On the right, an alignment of nog1 and nog1-like sequences within citC of the strains is shown. Black, sequence parts which can be
aligned to nog1 of EHEC using BLAST2 and which might be translated; turquoise, N-terminal methionine; pink, translational stop; blue, frame shift
mutation (which destroyed both, nog1 and citC); red, insertion of IS1 and duplicated amino acids ProAlaIle around the insertion site; this insertion
also destroys nog1 and citC. Orange, regions likely not to be translated; green, insertion element in some Salmonella and Citrobacter strains,
keeping the frames intact
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Based largely on research in eukaryotes, recently
arisen genes are thought to be shorter and less im-
portant compared to genes with a longer evolutionary
history [11, 73, 74]. After a short evolutionary history,
novel genes should be less well-integrated in the cel-
lular metabolism and, therefore, may provide only a
limited fitness gain for the cell. Since young genes are
expected to be not yet well-adapted, due to their
short evolutionary history, they may be expressed at a
low level only. New genes should be orphans [75]
and overlapping genes have been proposed to be
phylogenetically more restricted than the mother gene
they overlap [17]. Finally, de novo formed genes may
have a strain specific function only [76], which could
be important for niche specific adaptations assumed
for orphan genes [77].
We suggest that nog1, embedded completely in its

mother frame citC, offers a number of characteristics
which fit the hypothesis of nog1 being a young gene:
(i) nog1 shows a restricted occurrence within the
closely related genera of Escherichia/Salmonella, (ii)
the gene is short, (iii) it is weakly expressed, (iv) it
appears to be only marginally associated in E. coli’s
central metabolism, and (v) the gene product provides
only a small fitness advantage for its carrier. Con-
versely, the mother frame citC is widely distributed
among many bacterial species since it is important to
metabolize citrate (in the TCA) under anaerobic
growth conditions [28]. Thus, we hypothesize that
nog1 may have arisen by a recent overprinting event,
probably after the split of the Escherichia/Shigella
clade or after the divergence of Escherichia/Salmon-
ella from the other γ-proteobacteria (Fig. 5).

Conclusions
According to Nekrutenko & He [78] “[…] genes with
overlapping reading frames exemplify some of the most
striking biological phenomena […]”. This is a statement
with which we agree, especially since Johnson and
Chisholm [14] proposed an information content con-
straint which should prevent non-trivially overlapping
genes to form freely. Indeed, the initial sequence features
of the citC mother reading frame, which would allow for
a successful overprinting process producing a Nog1 pro-
tein with at least a weak initial function, are unknown
and certainly require further investigation.
Bacteriological research has never been directed to

discover overlapping genes. On the contrary, bacterial
genome annotation programs systematically remove
overlapping genes [73, 79–81], thereby efficiently pre-
venting their discovery. Perhaps it is not surprising
that with the exception of E. coli’s three overlapping
genes, only a few further examples have been discov-
ered rather accidentally in Streptomyces [82],

Pseudomonas [83, 84] or Xanthomonas [85]. Func-
tional analyses of overlapping genes in bacteria are
even rarer.

Bacterial overlapping genes may be more common than
expected
Four lines of argument lead us to suggest that overlap-
ping genes in bacteria are more common than is cur-
rently assumed by microbiologists.
First, a systematic bioinformatics analysis of bacterial

overlapping ORFs demonstrates that bacterial genomes
contain a larger number of long overlapping ORFs than
is expected based on a statistical analysis [86]. Random
mutational drift would have eliminated this signal long
ago if no selection pressures were stabilizing these ORFs.
Indeed, Sabath, et al. [76] found that overlapping loci are
under weak positive selection.
Second, during various comprehensive transcriptomic

analyses of E. coli targeted to its differential gene expres-
sion in different habitats [27], we have noticed that many
overlapping reading frames show a transcriptional signal
which is clearly above background and is probably not
due to ncRNA (data not shown). Such signals might be
evidence for the existence of further overlapping genes.
Third, a bioinformatics analysis suggests that overlap-

ping genes appear abundantly in some viruses [87, 88].
There is good evidence that all bacteria are parasitized
by viruses and bacteriophage vastly outnumber bacterial
cells on earth [89]. Furthermore, genomes of bacterial
viruses are constantly being mixed, by various mecha-
nisms, with the genomes of their hosts, which should re-
sult in an increase of overlapping genes in bacteria [90].
Fourth, for eukaryotes it has been suggested that com-

pletely new genes evolve frequently de novo from non-
coding DNA and for a few cases even overprinting has
been suggested [5, 10, 73]. Since prokaryotic genomes
are densely packed with established genes [91], that
source for novel genes is almost absent and we suggest
overprinting as a more important alternative to gene du-
plication for these organisms acquisition of completely
novel genes. This exploits a huge hypothetical hidden
coding reserve potentially providing a “novelty pool“ for
adaptation [92].
While in this paper we have presented specific ex-

perimental evidence for the existence of a fourth
overlapping gene in E. coli EHEC, we suggest that
this may be an initial finding only. For the origin of
gene novelties in bacteria, such cases of new overlap-
ping genes could lead to the establishment of over-
printing as a potentially more significant alternative
to gene duplication, once microbiologists and evolu-
tionary biologists start to target experimental research
along this research path.
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