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Abstract

Background: Domesticated animals quickly evolve docile and submissive behaviors after isolation from their wild
conspecifics. Model organisms reared for prolonged periods in the laboratory also exhibit similar shifts towards
these domesticated behaviors. Yet whether this divergence is due to inadvertent selection in the lab or the fixation
of deleterious mutations remains unknown.

Results: Here, we compare the genomes of lab-reared and wild-caught Drosophila melanogaster to understand the
genetic basis of these recently endowed behaviors common to laboratory models. From reassembled genomes of

common lab strains, we identify unique, derived variants not present in global populations (lab-specific SNPs).
Decreased selective constraints across low frequency SNPs (unique to one or two lab strains) are different from
patterns found in the wild and more similar to neutral expectations, suggesting an overall accumulation of
deleterious mutations. However, high-frequency lab SNPs found in most or all lab strains reveal an enrichment of
X-linked loci and neuro-sensory genes across large extended haplotypes. Among shared polymorphisms, we also
find highly differentiated SNPs, in which the derived allele is higher in frequency in the wild (Fst*,,iigs1b), €nriched
for similar neurogenetic ontologies, indicative of relaxed selection on more active wild alleles in the lab.

Conclusions: Among random mutations that continuously accumulate in the laboratory, we detect common

adaptive signatures in domesticated lab strains of fruit flies. Our results demonstrate that lab animals can quickly
evolve domesticated behaviors via unconscious selection by humans early on a broad pool of disproportionately
large neurogenetic targets followed by the fixation of accumulated deleterious mutations on functionally similar

targets.

Keywords: Behavior, Adaptation, Purifying selection, Positive selection, Extended haplotypes, Domestication

genomics, Model organisms, Domestication syndrome

Background

Our recent history of domesticating plants and animals
[1] offers a diversity of genetic systems to study evolu-
tion in action [2]. Crop and livestock breeders often
provoke relatively large phenotypic changes across suc-
cessive generations conditioned on available standing
genetic variation found in wild progenitor populations.
Such changes demonstrate the formidable power of dir-
ectional selection over relatively short periods of time.
In fact, Charles Darwin devoted the opening chapter of
“On the origins of species” to artificial selection in order
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to introduce natural selection as the principal driver of
evolutionary change [3]. In his two-volume follow-up
devoted specifically to domestication, Darwin noted that
“selection may be followed either methodically and
intentionally, or unconsciously and unintentionally” [4].
These histories can also be modeled as a co-evolutionary
framework between humans and the crops and livestock
they cultivate [5], whether the selective pressures were
intentional or not.

While domesticates usually have reduced effective
population sizes relative to their ancestral populations,
there still remains ample variation for selection to act
upon. Numerous loci involved in animal and crop do-
mestication are found to harbor positive selection
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coefficients [6] and selectively swept regions [7]. In do-
mestic chickens, genomic sequences from multiple lines
reveal the presence of selective sweeps leading to the
discovery of causative agents in growth differences be-
tween domestic lines [8]. In household pets, selection
for certain behavioral and sensory traits [9] have
produced signatures of positive selection in vision and
hearing genes in domesticated cats [10] and neural de-
velopment genes in dogs [11]. The growing literature on
crop, livestock, and pet domestication reveals that long-
term selection by humans can generate strong signals of
selection at the genomic level and provides a new lens
into the strength and target of selection during our re-
cent domesticated past.

Animals bred in the laboratory as model organisms
may also be adapted to human conditions, and over a
much shorter time period. Studies comparing laboratory
strains of mice and nematodes have identified genetic
differences in genes involved in behavior [12] and me-
tabolism [13, 14] suggesting adaptation to novel condi-
tions in the laboratory (e.g., [15]). Over a century ago,
Drosophila melanogaster was brought into the laboratory
initially as a teaching tool [16], and its fast generation
time and relative ease of maintenance quickly made the
fruit fly an important genetics research tool [17] in such
varied fields such as development, physiology, and evo-
lution. Canton-S(pecial), the oldest known wildtype fly
stock, was captured by Calvin Bridges over a century
ago from a natural population in Canton, Ohio, and first
debuted in his seminal 1916 paper on “Non-disjunction
as proof of the chromosome theory of heredity” [18].
Approximately a decade later, Donald Lancefield, an-
other product of Thomas Morgan’s prolific lab at
Columbia University, extracted Oregon-R from a popu-
lation in Roseburg, Oregon [19]. Many commonly used
fly stocks eventually coalesce ancestrally to these old
North American laboratory stalwarts, Canton-S and
Oregon-R (Fig. 1), which were independently extracted
from populations in North America and themselves pos-
sessing relatively recent African origins ([20]; Fig. 1).

With at least a dozen generations per year, D. melano-
gaster lab stocks have been isolated from their wild an-
cestors for over a thousand generations, providing ample
time to sufficiently diverge. It is known among fruit fly
researchers that behavioral traits of laboratory vs. wild
D. melanogaster are distinct, with lab-reared flies far
tamer and more manageable than those found in the
wild. Although lab-reared flies are generally maintained
under relatively standard conditions of temperature,
light, and diet, selective pressures in the lab are very dif-
ferent than those found in the wild providing the poten-
tial for strong selection for human-accommodating
phenotypes and/or the relaxation of selection on traits
adapted in nature [21, 22]. On the other hand,
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Fig. 1 Hypothetical genealogical relationship of laboratory strains in
relation to global populations of D. melanogaster and the closely
related species, D. simulans. The five lab strains are indicated in red
with hypothetical ancestral relationships marked as a dotted line.
Estimated time since common ancestors are indicated below

domesticates are generally less reproductively fit than
their wild relatives [23] and may exhibit similar less opti-
mal behavioral phenotypes. Lab stocks typically experi-
ence drastic decreases in population size and higher
levels of inbreeding ultimately decreasing the efficacy
of selection to rid lines of continually re-occurring
deleterious alleles [24]. Whether these phenotypic dif-
ferences in lab strains are driven by conscious selec-
tion, inadvertent selection, a relaxation in selection,
or are simply the fixation of deleterious mutations, is
not known.

Its relatively recent and well-documented history,
access to multiple isolated lines reared in similar envir-
onmental settings, well-characterized functional annota-
tions, and the availability of hundreds of genomes from
extensively sampled extant populations including a
closely related species, make D. melanogaster an ideal
model system to study the evolutionary processes that
underlie rapid phenotypic change. Here, we investigate
genetic differences between common laboratory stains of
D. melanogaster to those recently caught from nature to
examine whether this important, centuries-old genetic
model has evolved convergent domesticated behaviors
by adapting to a bottled existence or being inundated by
low-fitness alleles. We first document behavioral differ-
ences between lab-reared and wild-caught flies with re-
spect to their general activity and locomotory abilities.
We then identify SNPs that are differentiated between
the genomes of laboratory and wild strains to evaluate
the roles of selection vs. drift in flies isolated in bottles.
Among uniquely derived alleles found only in lab strains
we find patterns of drift and selection across, respect-
ively, low and high frequency classes, when comparing
evolutionary parameters such as Grantham distance,
missense to silent mutations, positional distribution
within codons, and levels of codon bias. We further
characterize putative regions under sustained selection
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among lab strains and find longer than expected haplo-
types near high-frequency derived SNPs, also enriched
in neuro-sensory genes. Finally, we suggest that this neu-
rogenetic class, residing on a disproportionately large
fraction of the genome relative to other functional clas-
ses, provides a large mutational target for genetic vari-
ation to accumulate and selection to act upon. Thus, the
genomics of fly domestication reveal an interplay of evo-
lutionary forces with mutation and selection on a large
neurogenetic class of genes playing a pivotal role in D.
melanogaster’s brief, but distinguished, history in the
laboratory.

Results

Behavior

Although it is well-known among Drosophilists that lab
strains are much slower and easier to handle than live
flies, literature documenting these differences is lacking.
We first confirm anecdotal reports of differences in the
overall activity between laboratory stocks (Canton-S,
Oregon-R, w'''®) and flies from wild populations
(Additional file 1: Figure S1). On average, flies from lab
strains are significantly less active than wild-caught indi-
viduals using different measures of locomotion including
standard and angular velocities (Additional file 1: Figure
S1A,B; Wilcoxon P< 0.05) and time-spent moving vs.
stationary (Additional file 1: Figures S1C, S1D; Wilcoxon
P < 0.05). Lab strains also demonstrate less responsive-
ness in the form of interactions between individuals
compared to wild-caught lines where the latter’s move-
ment is more uniformly distributed and gradually in-
creases with proximity to neighbors (Additional file 1:
Figure S1E). Flies from laboratory strains do not appear
to follow this relationship with motion uncorrelated to the
proximity with their nearest neighbor (Additional file 1:
Figure S1F). Overall, these results provide general support
for a convergence of slow-moving and less responsive be-
havior in lab strains.

Genetic variation in lab strains

After applying filters for quality and missing data, a total
of 98,442,787 base pairs were analyzed across five reas-
sembled laboratory strains of D. melanogaster, 516 ge-
nomes from 23 global populations including an
extensively sampled population from North America (n
=205), and one closely related species, D. simulans.
Among 14,545,645 polymorphic sites, 68.5 % are non-
singletons and used for subsequent analyses (Additional
file 2: Table S1). To test for signals of domestication, we
used three defined categories of SNPs differentiated be-
tween lab strains and populations of D. melanogaster
from nature: lab-specific SNPs and two types of highly
differentiated Fst (Fst*) SNPs, depending on whether the
derived allele is found at a higher frequency among lab
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strains (Fst*|apswilg), OF in a representative natural popu-
lation (Fst*,jq-1ap). While distinct, some overlap exists
between the lab-specific and Fst*|,,.i1q analysis categor-
ies: out of a total 50,565 differentiated SNPs, 520 SNPs
are common to these two SNP classes (Fig. 2a). In con-
trast, Fst*iq-1ab SNPs are unique and relatively rare (n =
123; Fig. 2a).

Lab-specific SNPs

The number of lab-specific SNPs is 17,250, with 9,258
and 1,951 SNPs located in genic and CDS regions, re-
spectively (Fig. 2c). The total number of lab-specific
SNPs is significantly larger than a subsample of five ran-
dom genomes from North Carolina and comparison of
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Fig. 2 Characterization of derived SNPs differentiated between lab
strains and a wild D. melanogaster population. a Number and
overlap of lab-specific SNPs (derived and unique among lab strains)
with Fst*.pswilq SNPs (derived allele is higher in frequency among
lab strains compared to sequenced flies from Raleigh NC). The total
number of Fst*,igs1ab SNPs (the derived allele is shared and lower in
frequency among lab strains) is also shown. b Site frequency
distribution of lab-specific SNPs, per chromosome. ¢ Genic
characterization of lab-specific SNPs found in the majority (at least

3/5) of laboratory strains, across chromosomal arms
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the number of SNPs specific to this random subset
against the entire North Carolinian dataset (performed
1,000 times; Sign test, P< 0.002) as well as the entire
global dataset (Sign test, P< 0.001). Lab-specific SNPs
represent only a small fraction (0.017 %) of the total
SNP variation found among global populations of D.
melanogaster, including singletons. Lab-specific SNPs
are distributed across all chromosome arms with a slight
but significant enrichment across non-coding regions
(e.g., intergenic, 1.02x, X*=33.56, P< 0.00I; intronic,
1.05x, ¥*=19.11, P<0.00L; Fig. 2b, c). The X-
chromosome is enriched for mid- and high-frequency
lab-specific SNPs (x> =201.48, P< 0.001). The number
of fixed lab-specific SNPs (i.e., found in all five lab
strains, or 4/4 due to missing data) was 75, 46, and 32,
respectively, in all genomic regions, genic, and CDS re-
gions (Additional file 2: Table S1). Genes containing
fixed lab-specific SNPs are enriched for regulatory and
signaling gene ontology (GO) categories (Additional file
3: Table S2; Additional file 4: Table S3) and up-regulated
in neural-sensory tissues (Additional file 5: Figure S2).

Fst*iab>wita SNPs

The number of derived SNPs with high Fsr (i.e., Fst¥)
that harbor a greater frequency in the lab compared to
the wild is 33,172, with 18,284 and 4,116 in genic and
CDS regions respectively (Additional file 2: Table S1).
Fst*lapswila SNPs generally describe variants that are
highly represented (=80 %) among lab strains but have a
low (<0.35) allele frequency in global populations.
Fst*lapswila are uniformly distributed across chromosome
arms and are enriched for genic regions (regulatory,
1.07x, x> = 104.09, P < 0.001; Additional file 2: Table S1).
The number of Fst*|;p-wiia SNPs that are fixed (i.e., found
in all lab strains) is 30,396 and 3,829, respectively, in all
genomic regions and CDS regions (Additional file 2: Table
S1). Fst*lapswiza SNPs are functionally enriched in general
developmental gene ontology categories (100+ GO cat-
egories are significantly enriched; Additional file 3: Table
S2; Additional file 4: Table S3). Fst*|,p-wia SNPs are upreg-
ulated in several tissues including ganglion, larval CNS,
and ovary (Additional file 5: Figure S2).

Fst*yiid>iab SNPs

A small proportion of Fst* SNPs (n = 123) are highly dif-
ferentiated in the opposite direction. These Fst*,iqs1ap
SNPs are found at low frequency (<25 %) among lab
strains but have high allele frequencies in global popula-
tions (>93 %). Fst*,iq-1ab SNPs are enriched on the X-
chromosome (1.6x, X2 =9.45, P< 0.01), across intergenic
regions (1.25x, x> =4.14, P<0.05), and significantly
enriched for neurogenetic genes (3.6x, x*=28.73, P<
0.001; Additional file 3: Table S2). Specifically, this SNP
category is significantly enriched in nervous system
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development and photoreceptor development gene on-
tologies and is upregulated in neural, visual, and ovarian
tissues (Additional file 4: Table S3, Additional file 5:
Figure S2).

Evolutionary relationships

Phylogenetic analyses on lab-specific SNPs and Fst*
SNPs were performed to provide insight on the origin
and relationship among isolated lab stocks (Additional
file 6: Figure S3). The lab-specific consensus SNP tree
reveals Canton-S as ancestral to the three Oregon-R
strains and the w''® strain, as expected (Additional
file 6: Figure S3A). The Fst* SNP consensus tree simi-
larly shows a distinct lab monophyletic clade with simi-
lar bootstrap support for lab strain topology (Additional
file 6: Figure S3B). A distinct origin among lab strains is
also seen using a random set of 100,000 polymorphic
sites among lab and wild strains (Additional file 6: Figure
S3C). The branch lengths of the lab strains dramatically
differ between trees indicating each lab strain’s distinct-
iveness (with the exception of OreR-661 and OreR-662)
from each other (Additional file 6: Figure S3A) and the
extant North American population (Additional file 6:
Figure S3B). The three congruent phylogenetic trees also
revealed several surprises including the three Oregon-R
strains being paraphyletic, with Ore-661 and Ore-662
more similar to w'''® than Ore-660. Also, while the ori-
ginal Oregon-R strain was independently sampled on
the US west coast a few decades later, all lab strains ap-
pear to be derived from a single Canton-S common an-
cestor (Additional file 6: Figure S3C), with the lab clade
best supported next to extant populations from France,
then North America.

Genome-wide levels of selection

To detect differences in selective constraints in the lab,
we estimate a series of evolutionary parameters (Gran-
tham distance, R/S ratio, C1/C2+C3, codon bias) across
five frequency bins of lab-specific SNPs located in cod-
ing regions. We compare parameter estimates against
similarly binned derived SNPs found only in the Raleigh
NC population along with simulation estimates expected
under strict neutrality. Additional file 2: Table S1 com-
pares the nature and number of lab-differentiated SNPs
to those found in the Raleigh NC population across au-
tosomes and X-chromosomes. When not binned accord-
ing to allele frequency, mean Grantham scores, R/S, and
C1/(C2+C3) ratios are similar to random simulations.
However, when grouped by frequency class, parameter
estimates of medium to high frequency SNPs more
closely follow a pattern of similarly binned SNPs from
the wild rather than expected neutral patterns based on
a random mutational model (Fig. 3).
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Effective population size

The effective population size is a strong determinant of
the effectiveness of selection and drift [25, 26]. Watter-
son’s theta, ®, [27], was estimated across non-
overlapping 50 kb windows to compare the amount of
genetic variation from an extant population to that

found among all lab strains. Like previous genome-wide
estimates of nucleotide diversity from the Raleigh NC
population [28-30], our estimates of ® similarly fluctu-
ate across genomic regions with a genome-wide average
of ®nc=0.0053 (Additional file 7: Figure S4). Although
laboratory strains do not collectively comprise a true
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interbreeding population, we estimate @y, to provide a
relative measure of ancestral N,. Laboratory nucleotide
diversity varies along the genome in a similar fashion as
the Raleigh NC population with a genome-wide mean of
O, = 0.00312 (Additional file 7: Figure S4), indicating at
least a two-fold reduction in ancestral N..

Extended haplotype blocks

Regions of extended homozygosity present potential sig-
nals of positive selection. We observe a mean haplotype
length for all lab vs. wild differentiated classes of SNPs
(lab-specific, Fst*iapswiias FSt*wilastab) of 653 bp (SD =
801 bp). Among lab-specific SNPs, long outlier haplo-
types were only found within the high frequency class
>0.8 and were significantly larger than all other fre-
quency classes (Wilcoxon rank sum test, P=3.41 x 107,
Fig. 4). Under a neutral model, we would expect similar
haplotype lengths across all frequency classes. In
addition, we have run simulations in which we choose
sites at random and estimate haplotype lengths. Using
1000 replicates, the random site haplotype lengths are at
least two standard errors lower than the observed 5/5
haplotype lengths. A total of 457 (lab-specific: 112,
Fst*labswild: 342, Fst*yids1ab: 3) large haplotype block out-
liers (Zpap >2.5) were identified ranging in length from
2,622 bp to 11,985 bp and were significantly enriched
(by nearly four times the expected amount) on the X-
chromosome (Fig. 5). Candidate lab-specific, Fst*,pswilas
and Fst*yiq-1ap haplotype blocks contain, respectively,
135, 334, and 4 genes. Genes found within these lab-

Lab-specific SNPs

8000
a
2
= 6000
+—
[@)]
C
o
o 4000
o
>
—
o
3 2000
©
- é
0 é — é I
RO N S N
N NN NN
i 7 7 7

Derived allele frequency

Fig. 4 Lab-specific SNP haplotype length across frequency class.
Boxplot of extended haplotype length surrounding lab-specific SNPs
across derived frequency allele classes
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specific candidate haplotype blocks are enriched for neu-
rogenetic gene ontology categories along with functional
classes related to regulation and behavior responses
(Table 1) as well as other significant functional
categories (Additional file 8: Table S4). However, when
normalized by gene length, significant GO category en-
richments in large lab-specific haplotype blocks dis-
appear. Within large Fst*|,,..1q haplotype blocks, genes
are enriched for GO classes involved with axon guid-
ance, post-embryonic system development, and regula-
tion (Table 1), even after normalizing for gene length.
No significant GO enrichment is found in the four genes
contained within large Fst*,4-1ap haplotype blocks.

Discussion

Phenotypic and genetic differences in laboratory stocks
The captive genetic model, Drosophila melanogaster, re-
veals hallmark features consistent with domestication. La-
boratory strains show significant differences in behavior
from their relatively recently isolated wild progenitors
(Additional file 1: Figure S1). Previous studies comparing
lab and wild-caught lines of D. melanogaster also report
differences in egg and larval survival [31] and life history
traits such as pre-adult development, early fecundity, and
remating frequency [32, 33]. These traits comprise a suite
of behavioral, physiological, and reproductive characters
[34] that have converged across multiple strains evolving
independently under similar laboratory conditions. Fur-
thermore, it previously has been demonstrated that these
traits can quickly evolve significant differences in as little
as 8-10 generations [35].

It is paradoxical that domesticates, typically derived
from small founder populations and maintained at very
low effective population sizes, can effectively adapt to
human conditions. From a population genetics perspec-
tive, we may expect the opposite: that small captive pop-
ulations and lower N, propagate the segregation and
eventual fixation of deleterious mutations, thus, impos-
ing a potentially large mutational burden on laboratory
strains [36, 37]. Our evolutionary parameter analysis re-
veals such drift-like signatures at the low end of the site
frequency spectrum. Estimates of Grantham distances,
R/S ratios, codon positional fraction, and codon bias
support a general genome-wide reduction in selection
on low-frequency derived alleles in the lab (Fig. 3) where
mildly deleterious alleles may persist for longer periods
of time [38]. With a decrease in effective population size
across each strain, inbreeding and drift dominate, which
in turn, can quickly fix allelic and associated phenotypic
changes across successive generations of captivity. Short-
term isolation studies in Drosophila have shown similar
rapid changes across a variety of phenotypes [35, 39]
with reductions in performance levels [40]). Thus, the
accumulation and fixation of mildly deleterious alleles,
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Table 1 Enriched gene ontologies (GO) on extended haplotype block outliers for two categories of differentiated SNPs: unique
among laboratory strains (lab-specific) or higher in allele frequency in the lab (Fst*apswild)

SNP Type GO: Biological Process GO: ID # of Genes in GO? **P-value Count
Lab-specific regulation of cellular component size 32535 305 0.028412 8
Lab-specific regulation of biological quality 65008 1994 0.038348 23
Lab-specific generation of neurons 48699 992 0.039188 22
Lab-specific nervous system development 7399 1744 0.040839 32
Lab-specific neurogenesis 22008 1525 0.041256 30
Lab-specific regulation of anatomical structure size 90066 374 0.042371 10
Lab-specific regulation of cell size 8361 89 0.042507 6
Lab-specific cellular component organization 16043 5855 0.042708 43
Lab-specific proboscis extension reflex 7637 9 0.043535 3
Lab-specific reflex 60004 9 0.043535 3
Lab-specific cell differentiation 30154 2770 0.043641 41
Lab-specific regulation of cell morphogenesis 22604 184 0.044224 9
Lab-specific axon development 61564 341 0.047764 12
Lab-specific behavioral response to nutrient 51780 10 0.048507 3
FSt*apswild motor neuron axon guidance 8045 62 0.007739 9
Fst*labswild system development 48731 2850 0.00912 88
FSt™apswild post-embryonic organ development 48569 583 0.009155 29
Fst*labswild multicellular organismal development 7275 3977 0.009225 106
Fst*labswild biological regulation 65007 13920 0.009452 112
FSt™apswild single-organism cellular process 44763 23874 0.014023 162
Fst*labswild regulation of biological process 50789 13269 0.015888 106
Fst*labswild regulation of cellular process 50794 12824 0.023125 96
FSt™apswild single-multicellular organism process 44707 5981 0.024058 118
Fst* abswild post-embryonic appendage morphogenesis 35120 452 0.026085 24
Fst*labswild appendage development 48736 470 0.026896 24

“Number of genes from Gene Ontology (Biological Process) from FlyBase FB2015_05

**P-value calculated using Benjamini-Hochberg correction

Gene ontologies within each SNP type are ranked by P-value. No significant gene ontology class was found for haplotypes classified for significantly differentiated
SNPs in which the derived SNP is found in lower frequency in the wild (i.e., Fst*yiigslab)
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particularly on larger neurogenetic genes (see below),
and subsequent inbreeding depression [41, 42] may pro-
mote both the rapid nature of domestication and its as-
sociated convergence of common behavioral traits.
These docile and non-aggressive traits may alternatively
be described as “lethargic” (at least relative to their wild-
caught conspecifics), a term commonly applied to in-
bred, and often sickly, Drosophila stocks.

When did these changes occur? Our results suggest
that these changes towards a domesticated phenotype
likely began very early on based on available standing
genetic variation of the progenitor population. While
heterozygosity in each contemporary isofemale lab strain
is virtually zero (data not shown), as a whole, these five
lab strains collectively only harbor a two-fold genome-
wide decrease in nucleotide diversity, ®,,, relative to a
large contemporary population from Raleigh NC
(Additional file 7: Figure S4). This diversity estimate pri-
marily reflects the amount of genetic variation captured
in each of the five lines from an ancestral population(s).
The five lab strains share ~800,000 derived SNPs with
extant global populations (a total of ~10 million non-
singleton D. melanogaster SNPs pass our data filters) in-
dicating that laboratory stocks collectively extracted a
significant fraction D. melanogaster genetic variation at
their time of capture.

The importance of ancestral standing genetic variation
can also be seen in the 17,250 lab-specific SNPs. In the-
ory, these SNPs represent any of the following: i) de novo
mutations that arose in the lab, ii) genetic variation that
previously existed in an extinct North American popula-
tion, or iii) a subset of genetic variation that has been
completely lost in extant global populations. We esti-
mate that only a small fraction of these SNPs can be
generated de novo (3.5 x 10~ mutations/bp/generation x
120 x 10° bp x 20 generations/yr x ~75 years x 5
strains = 3,150 lab-specific SNPs [43]). The remainder of
the lab-specific SNPs was probably lost in extant wild
populations during the last century. Strong evidence
supports a recent global sweep in D. melanogaster that
dramatically reduced species-wide genetic variation after
these particular lab strains were collected [44]. Thus,
from the large pool of available genetic variation from
their North American progenitor populations, Canton-S
and Oregon-R likely experienced similar selection pres-
sures on common genetic variants (see below) during
the earliest generations of lab domestication [45]. A
phylogenetic analysis of shared lab/wild SNPs also sup-
ports a distinct origin of all lab strains (Additional file 6:
Figure S3). However, whether the lab strain monophyly
is the result of an extinct progenitor population or the
loss of global variation is unknown. The inclusion of
more sequenced lab strains may differentiate between
these two hypotheses.
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Adaptation in the lab

Caenorhabditis elegans, like D. melanogaster, has been
lab-cultured for over 50 years, and harbors pronounced
differences in longevity and fertility when compared to
wild isolates [46]. Genome sequencing in the nematode
identified SNPs differentiated between wild and long-
term laboratory strains enriched for cell cycle and meta-
bolic/growth genes [13]. Their results suggest the
presence of strong selection early in nematode domesti-
cation for optimal growth under rich nutrient conditions
similar to the significant GO term, “behavioral response
to nutrients”, found among lab-specific SNPs in fruit
flies (Table 1). Laboratory mice have similarly been
shown to converge certain phenotypes including mela-
tonin deficiency [15], and a lack of aggression and tame-
ness [47, 48]. The results from our evolutionary
parameter analysis, when limited to lab-specific SNPs in
the mid- to high frequency range, support that common
phenotypic signals of domestication observed in the cap-
tive fruit fly have been strongly shaped by selection.
These derived SNPs, found in the majority of lab strains,
show similar evolutionary patterns to high frequency
SNPs from the wild and not to neutral expectations, un-
like low-frequency SNPs (Fig. 3). The laboratory setting
presents an immediate change in the fitness landscape,
permitting rapid and significant changes in phenotype
that would be detrimental to their fitness in the wild,
across relatively few generations [35, 36].

Inadvertent human habituation and unintentional con-
ditioning may be the primary selective agent for such
known differences among lab strains as faster develop-
ment and reproductive time [13, 14]. For instance, flies
that rarely escape the bottle or benchtop may be selected
due to human carelessness while fly stocks are trans-
ferred to new vials/bottles, or “flipped”. Our behavioral
results support such a convergent shift towards less ac-
tive and responsive flies (Additional file 1: Figure S1).
From our genomic analysis, we find that neurogenetic
genes, involved in such biological processes as neuro-
genesis and axon development, are enriched in extended
haplotype blocks common to differentiated SNPs (both
lab-specific and highly differentiated Fst*) found at high
allele frequencies (>0.8), with an overrepresentation of
fixations on the X-chromosome. These genes affect loco-
motion and visual cues suggesting lab selection on genes
involved in behavioral responses.

While an excess of long extended haplotypes on high
frequency lab-specific SNPs support an adaptive shift to-
wards domesticated phenotypes, a relaxation of selection
on certain loci involved in behavior may have co-
occurred in the lab. Conditions in the laboratory are
often optimized for growth and reproduction, reducing
the natural ability of flies to escape predators or compete
for food and mates. Thus, a relaxation of selection on
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activity levels, aggressiveness, and responsiveness, crit-
ical in the wild, may also drive the behavioral differences
that converged across lab strains. Characters involved in
mating, driven by the sparsity of mates in the vicinity, is
a key difference between domestic and wild species [49].
Our behavioral results, showing a reduction in inter-
active activity in lab flies, is consistent with this hypoth-
esis. In addition, our GO analysis of shared Fst*,q-1ap
SNPs, in which the derived allele is more frequent in the
Raleigh NC population than lab strains, finds a signifi-
cant enrichment of the neurogenetic functional class,
even when corrected for gene size. These SNPs are
found in different genes than the SNPs harbored in long
extended haplotype blocks, suggesting an extensive
cache of genes involved in behavioral differences be-
tween flies reared in the lab and those found in the wild.
A similar decrease in behavioral activity was observed in
lab strains of mice [50], with backcrossing to wild mice
isolates allowing them to regain these previously lost be-
havioral functions [47].

The use of inbred laboratory strains of D. melanoga-
ster presented unique analytical challenges that differ
from other domesticated studies. Due to initial and re-
current inbreeding and the lack of an interbreeding
population, laboratory strains violate most population
genetic models used to infer selection. In this study, the
site frequency spectrum is only applied across isolated
lab strains as a framework to bin our observed data and
could not be used to infer population genetic parame-
ters. Despite these difficulties, our results reveal an inter-
play of drift and selection at work in the lab. First, we
find genome-wide levels of selective constraints in the
lab that are significantly lower than a sampled North
American population. This pattern is likely caused by
low effective population sizes in bottles that promote the
accumulation of mildly deleterious mutations under
drift-like conditions, which we also observe in low fre-
quency alleles. Second, we observe derived SNPs that
are highly differentiated between the lab and a North
American population to be significantly enriched in neu-
rogenetic genes, suggesting a differential fitness land-
scape in behavior. This functional enrichment takes into
account the number of genes in each functional class as
well as their size. Third, we find signatures of positive
selection on extended haplotypes in both lab-specific
and highly differentiated SNPs. These, too, are signifi-
cantly enriched in neurogenetic genes. Fourth, there’s an
enrichment of these changes on the X-chromosome
(Fig. 2; Fig. 5; Additional file 2: Table S1). The prefer-
ential role of the X-chromosome is seen in marked
differences in the site frequency spectrum between
the X-chromosome and autosomes (Fig. 2b) and in
the enrichment of long haplotype blocks on the X-
chromosome (Fig. 4). Since many of these long X-
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linked haplotype blocks are fixed in all five lab
strains, the fixation of hemizygous loci likely occurred
early in fly domestication.

Preferential role for neurogenetic genes

Our results suggest a central role for neurogenetic genes
in domestication. Lab-specific SNPs found in the major-
ity of lab strains are strongly enriched for this functional
class, as are highly differentiated SNPs found in high fre-
quency in the wild (Fst*yiqs-1a0 SNPs; Additional file 4:
Table S3). Large outlier haplotype blocks also contain an
overrepresentation of neurogenetic genes (Fig. 5;
Additional file 8: Table S4). In most fly labs, inadvertent
selection is inevitable: more active, reactive, and
sensory-prone flies (and their alleles) have a higher prob-
ability of escaping during routine stock transfers. Hence,
fly researchers may have unconsciously selected for leth-
argic flies over thousands of generations in the lab.
Selected genes, enriched for sensory functions in eye
photoreceptors and peripheral nervous system, can ex-
plain these behavioral shifts seen in lab strains. The sig-
nificance of neurogenetic genes in changing activity and
response behaviors across a relatively short evolutionary
time period may also relate to how behaviors involved in
premating isolation [51-53] can swiftly and easily de-
velop in a population by drift and selection.

Recently, Wilkins et al. [54] proposed a general hy-
pothesis to explain the convergence of various pheno-
typic traits that differentiate mammalian domesticates
from their wild progenitors. These traits are collectively
known as the “domestication syndrome” [55, 56] and, in
mammals, include such morphological modifications as
depigmentation, facial skeletal, and floppy ears as well as
behavioral shifts towards docility and tameness [57].
Wilkins et al. [54] argue that a developmental deficit in
neural crest genes can generate each of these differences,
thus, explaining the commonality of these traits across
domesticated mammals. Our results extend the behav-
ioral component of the domestication syndrome to
non-vertebrates but through a more general genomic
mechanism based on the predominance of mutations on
neurogenetic genes affecting overall locomotion and ac-
tivity. In Drosophila, genes from this ontological cat-
egory are among the largest in gene number and gene
size, providing a large mutational target for rapid behav-
ioral change (Additional file 9: Figure S5). Currently,
1,708 out of 17,716 genes are characterized as “neuroge-
netic” (according to FlyBase R6.05), and 24 % of known
fly genes are expressed in the brain and nervous system
[58]. We propose that a large mutational target [85] of
neurogenetic genes can explain the rapid evolution of
behavior in animal taxa., These neurogenomic loci col-
lectively provide a large genomic substrate for variation
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to accumulate, and then selection and drift to act, to
quickly transform behavior within a relatively short time
frame.

Conclusions

Tameness and docility are hallmark features of domesti-
cation and the product of artificial selection by breeders.
Our results challenge the traditional notion that rela-
tively submissive laboratory animals are solely the
product of cumulating deleterious mutations and dem-
onstrate how unconscious selection for human-favored
traits plays an important role in driving rapid phenotypic
change in the lab. Selection on a large pool of available
genetic variation during the early stages of fly domestica-
tion, followed by strong and recurrent inbreeding, allow
for the successive roles of adaptation and drift in shap-
ing the genetic architecture of domesticated phenotypic
traits in a bottle. Our study finds that the genes and phe-
notypes in fruit fly domestication are enriched in,
respectively, neurogenetic and behavioral function,
providing a starting point to decode the genomic
basis of domestication and promoting its study in
genetic model systems such as Drosophila. A detailed
mapping of these genes and their SNPs to specific be-
haviors will not only be informative about the select-
ive pressures that we have inadvertently applied to
our immediate biotic environment, but may also pro-
vide new general insight on the divergence and isola-
tion of populations.

Methods

Behavioral assays

Locomotory assays were performed separately on five
lines of adult D. melanogaster (6-8 days post-eclosion),
each of North American origin. Three lines (Canton-S,
w''® and Oregon-R) represent common laboratory
stocks originally extracted from nature at least seventy
years ago (Fig. 1). Two wild-caught lines were collected
from Linvilla PA and Lancaster MA and reared under
normal laboratory conditions for less than one year
without specific selective regimes (courtesy of the
Schmidt lab, University of Pennsylvania). Stocks were
maintained in the laboratory at ~24 C, at ~40 % relative
humidity, kept in standard 250 ml bottles on Lewis food
medium [59], and exposed to a 12 h light—dark cycle.
Prior to behavioral assays, flies are anesthetized with
light CO, sedation (<15 s) for transfer and identification,
and allowed to acclimatize in the arena setting for
30 min, post-sedation. Assays are conducted in Delrin
arenas (McMaster-Carr) following specifications out-
lined in Simon and Dickinson [60] to optimize mobility
and provide an effective environment for automated
tracking. To prevent locomotion on the ceilings, glass
covers are coated with Sigmacote (Sigma Aldrich).
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Between assays, arenas are rinsed with ethanol and
allowed to dry for a minimum of 15 min to ensure no
residues remain from previous behavioral experiments.

Assays are conducted during active afternoon periods
across successive days. Each line is recorded using three
independent replicates per line tested on different days
and randomized to reduce experimental bias. Fly activity,
post-acclimation, is recorded for 30 min. Individual and
interactive activities are tracked using CTRAX and
MATLAB [61]. Errors in the initial tracking are cor-
rected using CTRAX’s Fix errors scripts. All output mea-
surements are analyzed using MATLAB and statistics
implemented using custom R scripts.

Genomic data sources

Whole genomic sequencing (125 bp paired-end) reads
from three separate Oregon-R lines were downloaded
from NCBI (SRX671605, SRX671606, SRX671607). Illu-
mina 150 bp paired-end reads from Canton-S and w'''®
were obtained from the Hawley lab (Stowers Institute).
Reference assemblies were generated by aligning filtered
reads against the D. melanogaster genome following
methods described by Lack et al. [62], an assembly pipe-
line that adds an intermediate realignment step for the
purpose of aligning reads around insertion and deletion
sites. Briefly, paired-end reads were aligned using BWA
v0.7.12 [63] against the complete D. melanogaster refer-
ence genome (Dmel Release 5) obtained from FlyBase
(flybase.org). Post-alignment files were transformed
using SAMtools [64] and Picard v1.79 (broadinstitute.-
github.io/picard/). Bases are filtered for a minimum
quality score of 30 and a minimum read depth of 15x
from VCEF files generated by the Genome Analysis Tool-
kit [65]. Additional file 10: Table S5 includes a brief
summary of the raw data.

To identify mutational states in the lab, 516 full gen-
ome assemblies from natural populations of D. melano-
gaster were downloaded from the Drosophila Genome
Nexus [62] representing 23 countries from Africa,
Europe, and North America [20, 66, 67]. Genome-
genome alignment of D. simulans R2 assembly [68]
against the D. melanogaster R5 assembly was performed
using Progressive Mauve [69] using default parameters.
To validate the quality of our alignment, the average
number of nucleotide substitutions (Dxy; [70]) was esti-
mated for 100 kb non-overlapping windows (Additional
file 11: Figure S6) and genome-wide patterns compared
to previous literature [71].

Genomic filters and annotations

All genomic analyses were restricted to euchromatic
chromosome arms (2L, 2R, 3L, 3R, X). To minimize
sampling biases, the combined dataset was subjected
to coverage filters for missing data. For a particular
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site to be used, a minimum 75 % of the laboratory
strains (# >3) and a minimum of 75 % of the popula-
tion samples (# = 388) must contain a non-ambiguous
nucleotide, with no more than two alleles present
(i.e., only monoallelic and diallelic sites were in-
cluded). SNPs are identified across all filtered base
pairs, with singletons from global populations ex-
cluded to conservatively reduce the effects of sequen-
cing error from low-coverage global samples. Data
were also filtered for the presence of a D. simulans
allele to infer ancestral state. After filtering for data
quality, coverage, and ancestral state, 98,442,787 eli-
gible sites (Additional file 12: Table S6) were used to
identify SNPs differentiated between the lab and wild.

We identify several types of derived mutations:
SNPs unique to lab strains and SNPs significantly dif-
ferentiated between lab stains and the wild. Derived
SNPs uniquely found in labs (i.e., the lab strain(s)
possess a base neither present in known global popu-
lations of D. melanogaster nor D. simulans) are classi-
fied as “lab-specific” SNPs. Highly differentiated SNPs,
often shared across both lab and wild samples, were
identified via Hudson’s Fgyp estimator [72, 73] with
Fgr scores Z-transformed as follows: Z-Fgp = (Fgp -
pFst)/0Fst. SNPs with Fgp estimates harboring a Z-
score > 2.5 were considered highly differentiated (Fst*)
SNPs. Fst* SNPs are further classified as either: i)
“Fst*lapswitd_ if the derived allele is found at a higher
frequency in the lab, or ii) “Fst*yq.1ap” if the derived
allele is higher in frequency in the wild. Both lab-
specific and Fst* SNPs can be further categorized as
polymorphic (1/5,...4/5) or fixed (5/5, or 4/4 in the
case of missing data) with respect to their frequency
among the five sequenced lab strains.

SNPs are annotated by genomic location (e.g., genic
vs. inter-genic) using FlyBase R5.9. SNPs located
within a gene model, represented by their longest
transcript, are further classified according to their an-
notated position within a gene model (5’UTR, exon,
intron, 3’'UTR), and their codon position (C1, C2, C3)
if found within an exon. SNPs found within exonic
regions are also classified as non-synonymous or syn-
onymous. The relative fitness of each amino acid sub-
stitution is estimated using a Grantham score [74],
which evaluates biochemical dissimilarity (based on
polarity, amino acid size, and side chain composition)
between ancestral and derived states, with lower
Grantham scores indicating a greater biochemical
similarity. Synonymous codon shifts are categorized
into four separate classes (P2P, preferred codon > pre-
ferred codon; P2N, preferred codon > non-preferred
codon; N2P, non-preferred codon > preferred codon;
N2N, non-preferred codon > non-preferred codon) ac-
cording to the classification of Vicario et al. [75].
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Detecting selective signals

To determine whether selection is acting in the lab, we
compared evolutionary patterns of coding region vari-
ation in lab-specific SNPs against: i) a North American
population comprising of 205 DGRP genomes from Ra-
leigh NC [28, 62] and ii) neutral expectations. Since
negative and positive selection differentially affects the
site frequency spectrum, we bin these differentiated
SNPs according to their shared frequency among lab
strains: with five strains, the site frequency spectrum is
divided into fifths.

To generate neutrally simulated data, » mutations,
based on the number of SNPs found in the CDS of lab
strains, are randomly assigned to D. melanogaster coding
regions. SNPs within CDS regions are labeled according
to their codon position (C1, C2, C3) and classified as a
non-synonymous or synonymous substitution with syn-
onymous SNPs classified as preferred or non-preferred
codons. A simple model of equal probability of changing
any position within the codon to another nucleotide is
applied. 1000 simulations are performed. After binning
these simulated data into the five allele frequency clas-
ses, we estimate basic evolutionary parameters including
mean Grantham score of amino acid substitutions, pro-
portion of non-synonymous SNPs, fraction of polymor-
phisms in 1% codon position, and shifts in codon
preference. Wilcoxon rank-sum tests [76] are used to
compare these neutral estimates, as well as those from
the North Carolina population (n =205), against param-
eter estimates from the lab strains (n = 5).

Recent domestication studies have surveyed genomic re-
gions for significantly reduced heterozygosity [8, 77, 78] to
identify selectively swept candidate genes. However, het-
erozygosity is rare, if not absent, in isogenic strains of D.
melanogaster (data not shown). For each SNP, we estimate
the mean population (i.e.,, laboratory) haplotype length
conditioned on frequency class. Haplotype length analyses
are performed using custom perl scripts allowing for non-
congruent haplotypes to extend from each lab-specific
SNP. Due to the lower sequencing coverage of lab strains,
a maximum of one individual per site is permitted to have
missing data. Large outlier haplotype blocks are identified
by a Z-hap score > 2.5.

Phylogenetic and functional enrichment analyses

To understand the topological relationship among lab
strains, neighbor-joining trees [79] are generated
using p-distance [70] and bootstrapped 1,000 times
[80] for laboratory-specific and high Fy* (Fst*lpswila +
Fst*wilas1ap) SNP sets. To evaluate the topologies be-
tween lab strains and extant populations, 100,000
SNPs that are shared in lab and nature were ran-
domly chosen for NJ tree analysis and bootstrapped
1,000 times using MEGAG6 [81]. Overrepresented gene
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ontologies for differentiated SNPs are identified using
DAVID [82] and FlyMine [83]. Gene sets are weighted
according to the size of their categories and a False
Discovery Rate (FDR) is used to correct for the de-
ployment of multiple tests. For selected enrichment
analyses, gene lengths were used to normalize the po-
tential impact of genes from certain GO categories
covering a disproportionate fraction of the genome.
Gene annotation data for tissue specificity and onto-
genetic stages are characterized using FlyAtlas [84].

Additional files

Additional file 1: Figure S1. Differences in activity between laboratory
and wild-caught Drosophila. (A) Mean fraction of time spent moving per
angular velocity bin (radians/sec) for laboratory (red) and wild-caught
(green) flies. Shading indicates standard error across replicates (B) Mean
fraction of time spent moving per forward velocity bin. Laboratory flies
spend significantly greater proportion of time at lower angular and
forward velocity then their wild conspecifics (P-value < 0.05, Mann-
Whitney U Test). (C) Mean fraction of time per fly spent walking during
a 30 min assay. (D) Fraction of time per fly spent stationary (velocity =

0 m/s). (E-F) Relationship of distance to nearest neighboring fly and its
velocity. Heatmap colors denote velocity gradient for wild (E) and lab (F)
flies. Wild-caught flies are generally more active with greater velocity
when in closer proximity to other flies. (TIF 32946 kb)

Additional file 2: Table S1. SNP characterization. Number and
genomic location of laboratory-specific, high-Fsi/high lab (Fst*iapswild),
and high-Fs/low lab SNPs (Fst¥,iq-1ab). Expected proportions based on
genic fractions garnered from FlyBase Dmel R5.9. Random simulations
capped using the number of laboratory-specific SNPs. (XLSX 43 kb)

Additional file 3: Table S2. Gene characterization. Characterization of
genes containing highly differentiated lab SNPs. (XLSX 244 kb)

Additional file 4: Table S3. Gene ontology. Significant Gene Ontology
(GO) classes for genes containing highly differentiated SNPs. Enrichments
were normalized by gene lengths among gene ontology categories.
Significance adjusted for multiple tests via Benjamini-Hochberg correction
(Benjamini and Hochberg 1995). (XLSX 48 kb)

Additional file 5: Figure S2. Tissue expression. Distribution of tissue
expression for coding region SNPs highly differentiated between lab
strains and wild-caught lines. (A) Lab-specific SNPs, (B) Fst*apswild SNPs,
(O) Fst* yiigs1ab SNPs. (TIF 10759 kb)

Additional file 6: Figure S3. Neighbor-joining trees. Phylogenetic trees
for (A) lab-specific SNPs (B) highly differentiated (Fst*) SNPs, and (C)
random 100,000 polymorphic sites. Bootstrap values for 1000 replicates
are placed at each node. Numeric node labels represent individuals from
lab strains (1-5), Raleigh, NC (6-210), France (211-219), and Africa
(220-521). Location of the laboratory strains are highlighted using

red branches. (TIF 38440 kb)

Additional file 7: Figure S4 Genome-wide nucleotide diversity.
Genome-wide distribution of nucleotide diversity (6,) across 50,000 bp
non-overlapping windows in (A) a Raleigh NC population and (B) all lab
strains. Centromeres are denoted as ovals. (TIF 15720 kb)

Additional file 8: Table S4. Large extended haplotype gene
characterization. Characterization of genes found within large extended
haplotype blocks surrounding SNPs (Lab-specific, Fst*|op=wiq, and

Fst* vilgslab). (XLSX 29 kb)

Additional file 9: Figure S5. Genomic coverage of functional classes.
(A) Genes are functionally classified by gene ontology and may overlap
multiple classes. Neural functional class is highlighted in blue. (B)
Comparison between average size of neural vs. non-neural functional
classes across gene regions. (TIF 7433 kb)

Page 12 of 14

Additional file 10: Table S5. Summary of sequenced reads, strain
origin, and distribution of lab-specific SNPs for each assembled laboratory
strain. Counts within parentheses denote the number of lab-specific SNPs
found among the five laboratory strains for each of the frequency classes,
1/5,2/5, 3/5,4/5, and 5/5. Each assembly used paired-end lllumina reads. All
reads were filtered for quality and assembled against the D. melanogaster
R5 genome (see Materials and Methods for further details). (XLSX 8 kb)

Additional file 11: Figure S6. Genome-wide nucleotide substitution
(Dxy) plot for D. simulans and D. melanogaster. Dxy was calculated
using 100,000 bp non-overlapping windows. Ovals denote centromeres.
(TIF 14250 kb)

Additional file 12: Table S6. Base call quality control. Genome quality
control filters use sequence coverage and the presence of a D. simulans
R2 base call across chromosome arms. The number of lab-specific SNPs
are indicated per chromosome arm. (XLSX 42 kb)
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