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Abstract

Background: Secondary sexual traits and mating preferences may evolve in part because the offspring of attractive
males inherit attractiveness and other genetically correlated traits such as fecundity and viability. A problem
regarding these indirect genetic mechanisms is how sufficient genetic variation in the traits subject to sexual
selection is maintained within a population. Here we explored the additive genetic correlations between
carotenoid-based male ornament colouration, female fecundity and juvenile survival rate in the three-spined
stickleback (Gasterosteus aculeatus) to test the possibility that attractiveness genes reduce important fitness
components in the bearers not expressing the sexual trait.

Results: Male sexual attractiveness (i.e, red nuptial colouration) as well as female fecundity and juvenile viability
showed heritable variations in the three-spined stickleback. Thus, females can gain indirect benefits by mating
with an attractive male. There was a strong positive genetic correlation between female fecundity and juvenile
viability. However, red sexual signal of male sticklebacks was negatively genetically correlated with juvenile
survival, suggesting genetic conflict between attractiveness and viability. There was no significant correlation
between attractiveness of brothers and fecundity of sisters, suggesting no intra-locus sexual conflict.

Conclusions: The negative effects of mating with a colourful male on offspring viability may contribute to maintaining
the heritable variation under strong directional sexual selection. The strength of indirect sexual selection may be
weaker than previously thought due to the hidden genetic conflicts.

Keywords: Antagonistic pleiotropy, Animal model, Carotenoid, Genetic correlation, Good genes, Sexual conflict,

Sexual trait, Survival

Background

Understanding the evolution of male sexual traits and
female mating preferences has been a long-standing
task in evolutionary biology since C Darwin [1]. It is
generally thought that sexually selected traits evolve be-
cause non-random mating brings direct or indirect
benefits to females [2, 3]. Female preference can evolve
under natural selection for either direct phenotypic
benefits associated with a male ornament, such as a
high quality territory, nutrition, parental care or protec-
tion, [4] or other reasons, such as sensory biases [5].
On the other hand, indirect genetic benefits arise when
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the offspring of attractive males inherit attractiveness
(“Fisherian sexy sons” [6]) and/or other genetically cor-
related traits such as fecundity and viability (“good
genes” [7, 8]). Substantial effort has been devoted to
hypothesising and testing indirect genetic mechanisms
that drive the evolution of ornamental traits and associ-
ated mating preferences [9]. Nevertheless, there remain
problems regarding the maintenance of sufficient gen-
etic variation in these traits in order to sustain female
choice through indirect genetic benefits (“the paradox
of the lek” [10-12]).

Indeed how to explain the maintenance of genetic vari-
ation against the eroding effects of selection is a central
problem in current evolutionary biology [13-15]. This
problem is based on the fact that fitness is always under
directional selection, and thus a single best genotype
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should become predominant within a population [16].
Persistent female preferences for elaborate male orna-
ments should erode genetic variance in these traits,
eventually eliminating any indirect genetic benefit to
the preferences. Numerous solutions to the mainten-
ance of genetic variance under sexual selection have
been proposed, including the capture of genetic vari-
ance by condition dependent traits and indirect genetic
effects [17-19]. Antagonistic pleiotropy that constrains
a sexually selected trait may be also an important
mechanism. The intra-locus sexual conflict, in particu-
lar, is produced by antagonistic selection, in which
favourable alleles for male fitness are detrimental for fe-
male fitness (e.g., [20, 21]). Antagonistic pleiotropy may
also arise between sexually selected traits and life-
history traits, both of which are most closely related to
fitness, but few studies provide empirical support for
this mechanism [22, 23].

A large number of sexually selected coloured orna-
ments in animals are based on carotenoids, which they
cannot synthesise de novo but acquire from their diet
[24]. Carotenoids also have several physiological func-
tions including modulation of the immune system [25]
and protection of soma and developing sperm against
oxidative damage [26, 27]. Therefore, a carotenoid-
based signal has the potential to be an honest indicator
of quality but at the expense of trade-offs with these
other critical functions [28, 29]. In birds, for example,
the positive association between conditions experienced
in early life and the expression of carotenoid-based sex-
ual traits [30, 31] in turn suggests a trade-off between
the physiological functions during development and the
later expression of sexual ornaments.

In this study, we explore the genetic relationships be-
tween carotenoid-based male ornament colouration,
female fecundity and juvenile survival rate in the
three-spined stickleback (Gasterosteus aculeatus). The
red ornament that stickleback males express in their
cheeks and throat during the reproductive season is
one of the most frequently studied sexual traits. Fe-
male sticklebacks preferentially mate with redder
males [32]. The red ornament is an honest indicator of
condition and parasite resistance (e.g., [33, 34]). Previ-
ous studies of the three-spined stickleback have shown
that individual variation in the carotenoid signal has a
strong genetic component; there is a positive genetic
correlation between the red colouration and female
preferences for a redder male [35-37]. Here, we test
the presence of genetic conflict between ornament ex-
pression and other fitness-related traits by exploring
whether the attractiveness of a male is genetically cor-
related with life-history traits of its family. We provide
rare evidence for the negative genetic correlation be-
tween male sexual signal and juvenile viability.
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Methods

Ethics

Wild fish were sampled under permission from the
Xunta de Galicia (021/2013), and the study procedures
were approved by the Animal Ethics Committee of the
Universidad de Vigo (17/12 and 10/14).

Breeding design and rearing condition

Three-spined sticklebacks were captured in the Rio Ulla
(Spain) in February 2013 before sexual maturation and
used for breeding. Like in other populations near the
southern edge of the species’ range [38], the majority of
fish in this population reproduce repeatedly throughout
a single relatively long breeding season, after which they
die. A total of 32 F1 families were produced by breed-
ingl6 sires and 16 dams. Each breeder mated twice with
two different mates during April-May 2013 (for details,
see [39]). Thus, each F1 fish had full-sibs and maternal
and paternal half-sibs. The breeders were housed in indi-
vidual tanks and paired with a single mate at a time. The
fertilised clutches were collected from the nests within
3 h and incubated in a 100-1 tank, following the standard
egg husbandry protocol [40]. Each full-sib clutch was
isolated in a hatching tank with a sponge filter prior to
hatching; then hatchlings were reared there until age
40 days (mean + SE number of fry per full-sib family:
57.8 +3.0, n =32 families). Survival rate of the F1 fam-
ilies during the first 40 days was extremely high (mean
survival rate: 0.971 + 0.006).

At age 40 days, fry in each F1 full-sib family were al-
located among two (n =7 families) or four (n =25 fam-
ilies) 8-1 growth tanks (7 =114 tanks). Each growth
tank initially housed 11 or 12 juvenile fish. The rest of
the fish were housed separately and used in other stud-
ies. The growth tanks were connected to four closed
water systems (30 tanks/system), in which water was
continuously filtered for nitrification, aerated and
temperature-controlled by the combined flow-through
function. Juvenile fish were fed daily ad libitum on a
progressive diet of newly hatched Artemia and a commer-
cial pelleted diet (Gemma Micro, Skretting, Norway). We
analysed the total carotenoid concentration in these food
items. Carotenoids were repeatedly extracted using
n-hexane, and then carotenoid concentration was deter-
mined in a spectrophotometer (Synergy HT, BioTek,
Winooski, VT, USA) at 440 nm using a lutein curve as
standard. Both food items contained high levels of caroten-
oids (wet Artemia larvae: 169 pg g% dry food pellets:
103.9 pg g '). The programmed photoperiod in the tanks
reflected the natural seasonal pattern in the region. This
fish stock was reared also for an experiment to test reaction
norms of life-history traits in response to winter
temperature; a half of each F1 family replicates (i.e., growth
thanks) were maintained at 14 °C and the other half
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experienced a gradual temperature change to 9 °C during
winter [37]. This difference in winter conditions was taken
into account in all statistical analyses.

At age 6 months juvenile fishes were permanently
marked with colour elastomer tags (Northwest Marine
Technologies, Shaw Island, WA, USA) under a low
dose of benzocaine anaesthetic to track individual life-
histories (7 =1038 individuals). Randomly selected
samples from the fish stock were sacrificed with an
overdose of benzocaine anaesthetic during the growth
period to be used in the study of temperature manipu-
lation (n =221 in Sep-Nov 2013; n =364 in Feb 2014).
The juvenile survival rate was calculated in each full-
sib family replicate as the proportion of individuals
surviving to maturity (i.e., expression of red colour-
ation in males and spawning in females) in the growth
tank, excluding the sacrificed individuals.

Measuring male sexual signal and female fecundity

A total of 392 F1 males sexually matured and expressed
red nuptial colour in the 2014 breeding season. Among
these, 209 males were randomly selected and allocated
into individual tanks containing a sponge filter and
nesting materials (i.e., sand and polyester thread). Dur-
ing 6 months (March-August) of the reproductive sea-
son, each male was shown a gravid female enclosed in a
transparent glass for 5 min twice a week to prompt ex-
pression of nuptial colour, nest construction and court-
ship. Each male was repeatedly photographed every two
weeks up to 11 times throughout the season (on aver-
age 10 times). The photographs were scheduled so that
the males were always photographed 2-3 h after the
stimulation with a gravid female. On each occasion the
fish was placed in a small transparent water-filled plas-
tic box, positioned on its lateral side (either left or right
to reduce handling time) using a grey sponge and
photographed under standardized conditions within a
black box containing illumination [41]. A stickleback
reduces its nuptial colour while being handled out of
the water [42]. Thus, a fish was introduced to the
water-filled photography box immediately after being
gently netted from its home tank. The whole process
away from the tank took less than 1 min. We measured
the area of red nuptial colouration (hue: 1-60 and 340-
359; saturation: 50-255; intensity: 0-255) from the
digital images by using image analysis software (ana-
lySIS FIVE, Olympus). Relative size of the red area was
calculated as a percentage of the total lateral body area
for analyses. The individual seasonal maximum color-
ation was strongly correlated to individual mean col-
ouration during the season (r* = 0.728, Fy 507 = 553.50,
P <0.001). Thus, the seasonal maximum was used for
statistical analyses.
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F1 females kept in their growth tanks were monitored
daily to record the maturation and fecundity. The earli-
est started to spawn in February, and 327 females
spawned repeatedly until August (7 =2044 clutches).
Whenever a female became fully gravid, the egg clutch
was stripped by applying gentle pressure to the abdomen
under light benzocaine anaesthetic and the eggs were
counted. On 329 occasions, gravid females spawned be-
fore we could strip and count the eggs, but the spawning
events were recorded. Thus, we used the total number
of clutches produced throughout the reproductive sea-
son as a measure of female fecundity. This fecundity
measure was not correlated with individual mean
known clutch size (> =0.008, Fj g5 = 2.225, P =0.137)
but strongly correlated with estimated total number of
eggs produced per female during the season (calculated
as mean known clutch size x number of clutches; r* =
0.785, Fj 25 = 1050.7, P <0.001). By the end of August
all females in the growth tanks had stopped egg pro-
duction and most males had become dull, and so we
stopped photographing males and monitoring females.

Quantitative genetic analyses

We estimated additive genetic variances and covari-
ances in male sexual signal (i.e., the seasonal maximum
of relative red size), female fecundity (i.e., the total
number of clutches) and juvenile survival rate by using
pedigree-based restricted maximum likelihood univari-
ate and multivariate animal models implemented in
ASReml (version 3). The estimation of the additive gen-
etic (co)variances was based on parental identities. The
significance of (co)variance terms was assessed by using
model comparison based on likelihood ratio tests.

Male sexual signal and female fecundity were calcu-
lated for both individuals and full-sib family replicates
(ie, growth tank means). We first used family replicate
means to balance (co)variance component structures of
the male and female traits and the family replicate-
specific juvenile survival rate. Therefore, in each univari-
ate model a single trait (f) of a family replicate, growth
tank gz, is specified as:

tgr = Wthatchdate + exp + ag + g,

where p was the overall mean, and hatching date
(hatchdate) and experimental treatment (exp, normal
or warm winter schemes) were included as fixed ef-
fects. The additive genetic effect (a,,) and the residual
error (&) were included as random effects. We also
fitted a multivariate animal model to test genetic cor-
relations among the three traits. The same fixed and
random effects as the univariate model were included
in the multivariate model.
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We additionally analysed male sexual signal and fe-
male fecundity at the individual level in univariate and
bivariate animal models, in which any covariance among
individuals due to shared environment (growth tank ef-
fect) is additionally determined. For example, a single
trait (¢) of an individual i is specified as:

t; = W+hatchdate + exp + a; + gt; + &,

where the common environment effect (growth tank ef-
fect, gt;) was included as an additional random effect.

Results

In the univariate model analyses based on the family
replicate traits, male sexual signal (i.e., seasonal peak
relative red area), female fecundity (i.e., number of
clutches) and juvenile survival rate showed significant
additive genetic effects (Table 1). Hatching date (a
fixed term) was significant only in the analysis of male
sexual signal (P =0.004) and temperature manipulation
only in female fecundity (P =0.013). The males born
earlier in the previous year showed a higher peak colour-
ation. The females reared under warm winter conditions
produced less clutches than the control females.

The multivariate model analysis based on the family
replicate traits, including trait-specific fixed effects (i.e.,
hatching date for male sexual signal and temperature
manipulation for female fecundity), showed significant
genetic correlations between juvenile survival to sexual
maturation and reproductive traits (Table 1). Juvenile
survival was positively genetically correlated with female
fecundity but negatively genetically correlated with male
sexual signal. However, there was no significant genetic
correlation between female fecundity and male sexual
signal (Table 1). The correlations based on full-sib family
mean values are presented in Fig. 1 only for the purpose
of illustrating the genetic correlation patterns between
the three traits.
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The analyses based on individual traits confirmed sig-
nificant heritability in male sexual signal and female fe-
cundity; growth tank effects (gt?) were not significant in
either of the traits (female fecundity: 4* = 0.196 + 0.107,
P =0.006; gt* = 0.052 +0.060, P =0.348; male sexual sig-
nal: /% = 0.499 + 0.162, P < 0.001; gt* = 0). The individual-
based multivariate analysis fitted to female fecundity and
male sexual signal also showed a non-significant intersex-
ual genetic correlation (rg = -0.108 + 0.349, P = 0.754).

Discussion

Our quantitative genetic results show a difference in the
way that male sexual attractiveness and female fecundity
genetically correlate with juvenile viability, all of which
are heritable traits closely related with fitness. There was
a strong positive genetic correlation between female fe-
cundity and juvenile viability, suggesting a common gen-
etic basis for variation in these fitness components. In
contrast, red sexual signal of male sticklebacks showed a
negative genetic correlation with juvenile viability. This
result is consistent with a previous finding in another
species [23], suggesting that antagonistic pleiotropy be-
tween sexual traits and juvenile viability may broadly ex-
plain the maintenance of genetic variation under sexual
selection. In addition, there was no significant correl-
ation between attractiveness of brothers and fecundity of
sisters, suggesting no intra-locus sexual conflict.

The high and significant heritability of carotenoid-
based ornament colouration of male sticklebacks sup-
ports a previous finding [35] and suggests that choosy
females should gain an indirect benefit by producing
attractive sons [43, 44]. However, our results show a
viability cost of bearing the sexy genes. Similarly, a previ-
ous study also showed that sticklebacks sired by redder
males were more resistant to parasite infection but grew
less quickly than those sired by dull males [34]. The nega-
tive effects of mating with a colourful male on offspring
viability may contribute to maintaining the heritable

Table 1 Quantitative genetics of growth tank-based traits (n =114 tanks)

Growth tank traits Variances
No. individuals Mean + SD Va % SE Vp + SE h*+SE P

Female fecundity 300 6.136 +2.609 1.658 + 0.825 6.609 + 0.986 0251 +0.105 0.002
Male signal 209 8257+ 2871 2799 +1.089 7.501 +£1.207 0373+0.103 <0.001
Juvenile survival to maturation 989 0.736 £ 0.205 0.012+0.005 0.042 = 0.006 0283 +£0.104 <0.001
Covariances Covp £+ SE ro + SE P

Female fecundity—juvenile survival 0.119+0.052 0.937+0.188 0.003

Male signal-juvenile survival —0.120 £ 0.057 -0.717£0.237 0.015

Female fecundity—male signal -0475+0.673 —0.226 +0.321 0474

Additive genetic and phenotypic variances (V4 and Vp) and heritability (h?) of female fecundity (number of spawning events), male sexual signal (seasonal

maximum of relative red area) and juvenile survival (proportion of individuals that survived to sexual maturation) were calculated by univariate animal model
analyses. Additive genetic covariances and correations (Cova and rg) among the three traits were calculated by a multivariate animal model. The significance of

each additive genetic variance or covariance is presented
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Fig. 1 Correlations between full-sib family traits (n = 32 families): (@) between family mean female fecundity and juvenile survival rate (the proportion of
individuals surviving to maturity), (b) between family mean male sexual signal (seasonal maximum sexual signal) and juvenile survival rate
and (c) between family mean male sexual signal and family mean female fecundity. Simple linear regression lines are shown for the relationships with a
significant genetic correlation (A: ¥ = 0.304; B: = 0.122)

variation, necessary for the “good genes” process, despite
strong directional sexual selection. Nevertheless, trad-
itional “good genes” predictions are still valid if total ex-
pected fitness returns from mating with an attractive
male exceed the returns from an unattractive male [45].
Traditional Fisherian models predict negative effects of
the expression of costly sexual traits on survival and
generally assume that only sexually matured adults bear
the costs of attractiveness [6]. Our results suggest that
the attractiveness genes may express not only during
sexual maturation and reproduction but also during
earlier life and their expression has antagonistic effects
during the early stage [23, 46].

In sticklebacks, carotenoids are stored in various tis-
sues during development and later mobilized and depos-
ited in the integument during maturation [47]. Perhaps
genotypes that store more carotenoids for later use in
nuptial colouration pay increased health costs in terms
of reduced antioxidant defence and immune function
even when not expressing red colouration during the de-
velopment and growth. The negative genetic correlation
between juvenile survival and male sexual signal can also
be due to linkage disequilibrium if, for example, deleteri-
ous mutations are linked with red colouration in the
non-recombining region of Y chromosome [23]. In the
three-spined sticklebacks, a nascent Y chromosome has
reduced recombination across a region with substantial
deletions [48]; selection tends to retain and upregulate
some genes in males [49, 50]. However, evidence from di-
verse animal taxa indicates that the loci underlying sexually
selected traits often do not locate in sex chromosome [51].

There was no genetic correlation between male sexual
signal and female fecundity. Therefore, the genetic bases
of traits underlying male and female reproductive effort

probably have little in common. Intersexual genetic cor-
relation is usually large and positive for most homolo-
gous traits, but it is often smaller or even negative for
fitness components [52-54]. Evidence of intersexual
genetic correlation between male secondary sexual signal
and female fitness is scarce. However, a study of a field
cricket demonstrated that male calling effort was posi-
tively genetically correlated with female fecundity, sug-
gesting no intra-locus sexual conflict over reproductive
fitness [55]. Similarly, our results suggest that intra-locus
sexual conflict will unlikely constrain the evolution of
male coloration in this stickleback population.

Conclusions

The genetic conflict between a male’s sexual signal and other
components of fitness is puzzling because there is much
evidence of the honesty of carotenoid-based skin or plumage
colouration as an indicator of the breeder quality and female
preferences for this signal across taxa (e.g., [34, 56—58]).
Male sexual signal and female preference of the three-
spined stickleback are sexually selected through both in-
creased direct benefits, such as territory quality and paternal
care for eggs, and indirect benefits by inheritance of attract-
iveness and breeder quality [32]. However, the strength of
sexual selection may be weaker than previously thought due
to the hidden genetic conflict between the secondary sexual
trait and viability of juveniles before sexual maturation. The
genes involving carotenoid-based animal coloration remain
largely unidentified, although some candidate genes have
been proposed [57]. The identification and mapping of these
genes in male sticklebacks, including those expressed during
early development, will improve our understanding of the
molecular mechanisms underlying the genetic conflict
reported here [58].
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